COMP3630 / COMP6363

week 2: Context-free Grammars and Languages

This Lecture Covers Chapter 5 of HMU: Context-free Grammars and Languages

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- **>** (Context-free) Grammars
- > (Leftmost and Rightmost) Derivations
- > Parse Trees
- > An Equivalence between Derivations and Parse Trees
- > Ambiguity in Grammars

Additional Reading: Chapter 5 of HMU.

➤ We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages

- > We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
- **> Grammars** are a generative means of defining languages.

- ➤ We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
- **> Grammars** are a generative means of defining languages.
- > Grammars can be used to create a strictly larger class of languages.

- ➤ We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
- **> Grammars** are a generative means of defining languages.
- > Grammars can be used to create a strictly larger class of languages.
- > They are especially useful in compiler and parser design; they can be used to check if:
 - > parantheses are balanced in a program,
 - > else occurrences have a matching if, etc.

> A context-free grammar (CFG) G = (V, T, P, S), where

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - > V is a **finite** set whose elements are called **variables** or **non-terminal symbols**. Notation: upper case letters, e.g., A, B, \ldots

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, . . .
 - T is a **finite** set whose elements are called **terminal symbols**; T is precisely the alphabet of the language generated by the grammar G.

Notation: <u>lower case letters</u>, e.g., s_1, s_2, \ldots

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - > *V* is a **finite** set whose elements are called **variables** or **non-terminal symbols**. Notation: upper case letters, e.g., *A*, *B*,
 - > T is a **finite** set whose elements are called **terminal symbols**; T is precisely the alphabet of the language generated by the grammar G. Notation: lower case letters, e.g., s_1, s_2, \ldots
 - $\rightarrow \mathcal{P} \subseteq V \times (V \cup T)^*$ is a finite set of production rules.

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - > *V* is a **finite** set whose elements are called **variables** or **non-terminal symbols**. Notation: upper case letters, e.g., *A*, *B*,
 - > T is a **finite** set whose elements are called **terminal symbols**; T is precisely the alphabet of the language generated by the grammar G. Notation: lower case letters, e.g., s_1, s_2, \ldots
 - $P \subseteq V \times (V \cup T)^*$ is a finite set of production rules.
 - > Each production rule (A, α) is also written as $A \longrightarrow \alpha$. Terminology: A, α are called the head and body of the production rule, resp.

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - > *V* is a **finite** set whose elements are called **variables** or **non-terminal symbols**. Notation: upper case letters, e.g., *A*, *B*,
 - > T is a **finite** set whose elements are called **terminal symbols**; T is precisely the alphabet of the language generated by the grammar G. Notation: lower case letters, e.g., s_1, s_2, \ldots
 - $P \subseteq V \times (V \cup T)^*$ is a finite set of production rules.
 - > Each production rule (A, α) is also written as $A \longrightarrow \alpha$. Terminology: A, α are called the head and body of the production rule, resp.
 - $ightarrow S \in V$ is the unique variable/non-terminal that 'generates' the language.

- **>** A **context-free** grammar (CFG) G = (V, T, P, S), where
 - > *V* is a **finite** set whose elements are called **variables** or **non-terminal symbols**. Notation: upper case letters, e.g., *A*, *B*,
 - > T is a **finite** set whose elements are called **terminal symbols**; T is precisely the alphabet of the language generated by the grammar G.

 Notation: lower case letters, e.g., s_1, s_2, \ldots
 - $\mathcal{P} \subset V \times (V \cup T)^*$ is a finite set of production rules.
 - > Each production rule (A, α) is also written as $A \longrightarrow \alpha$. Terminology: A, α are called the head and body of the production rule, resp.
 - $> S \in V$ is the unique variable/non-terminal that 'generates' the language.

Notation

- > Strings consisting of non-terminals and/or terminals will be denoted by greek symbols, e.g., α, β, \ldots
- > Strings of terminals will be denoted by lower case letters, e.g., w, u, v

> A string $w ∈ T^*$ is in the language L(G) generated by G = (V, T, P, S) iff we can **derive** w from S, i.e.,

start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in \mathcal{T}^* is obtained.

> A string $w ∈ T^*$ is in the language L(G) generated by G = (V, T, P, S) iff we can **derive** w from S, i.e.,

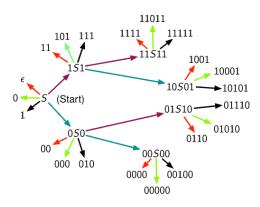
start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in \mathcal{T}^* is obtained.

Example 5.2.1 Let $G = (\{S\}, \{0, 1\}, \mathcal{P}, S)$ be a CFG with \mathcal{P} given by $(1) \left\{ \begin{array}{l} (S,\epsilon), (S,0), (S,1) \\ (S,0S0), (S,1S1) \end{array} \right\}$ $S \longrightarrow \epsilon$ $S \longrightarrow 0$ (2) $S \longrightarrow 1$ $S \longrightarrow 0.50$ $S \longrightarrow 1S1$ (3) $S \longrightarrow \epsilon |0|1|0S0|1S1$

▶ A string $w \in T^*$ is in the language L(G) generated by G = (V, T, P, S) iff we can derive w from S, i.e.,

start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in T^* is obtained.

Example 5.2.1 Let $G = (\{S\}, \{0,1\}, \mathcal{P}, S)$ be a CFG with \mathcal{P} given by $(1) \left\{ \begin{array}{c} (S,\epsilon), (S,0), (S,1) \\ (S,0S0), (S,1S1) \end{array} \right\}$ $S \longrightarrow \epsilon$ $S \longrightarrow 0$ (2) $S \longrightarrow 1$ $S \longrightarrow 0.50$ $S \longrightarrow 1S1$ (3) $S \longrightarrow \epsilon |0|1|0S0|1S1$



Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each $i=1,\ldots,k-1$, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \text{there exists a derivation of } \beta \text{ from } \alpha \Leftrightarrow \alpha \stackrel{*}{\Rightarrow} \beta.$

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each $i=1,\ldots,k-1$, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \text{there exists a derivation of } \beta \text{ from } \alpha \Leftrightarrow \alpha \stackrel{*}{\Rightarrow} \beta.$

Example 5.2.2

For the grammar $G = (\{S\}, \{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1$, the following is a derivation of 010111010 from S

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each $i=1,\ldots,k-1$, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \alpha \Leftrightarrow \alpha \Rightarrow \beta$.

Example 5.2.2

$$S \Rightarrow_{G} 0S0$$

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each $i=1,\ldots,k-1$, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \alpha \Leftrightarrow \alpha \Rightarrow \beta$.

Example 5.2.2

$$S \underset{S \to 050}{\Rightarrow} 050 \underset{S \to 151}{\Rightarrow} 01510$$

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each i = 1, ..., k 1, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \text{there exists a derivation of } \beta \text{ from } \alpha \Leftrightarrow \alpha \stackrel{*}{\Rightarrow} \beta.$

Example 5.2.2

$$S \underset{S \to 050}{\Rightarrow} 050 \underset{S \to 151}{\Rightarrow} 01510 \underset{S \to 050}{\Rightarrow} 0105010$$

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each i = 1, ..., k 1, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \text{there exists a derivation of } \beta \text{ from } \alpha \Leftrightarrow \alpha \stackrel{*}{\Rightarrow} \beta.$

Example 5.2.2

$$S \underset{S \to 050}{\overset{c}{\Rightarrow}} 050 \underset{S \to 151}{\overset{c}{\Rightarrow}} 01510 \underset{S \to 050}{\overset{c}{\Rightarrow}} 0105010 \underset{S \to 151}{\overset{c}{\Rightarrow}} 010151010$$

Definition

Given $G = (V, T, \mathcal{P}, S)$ and $\alpha, \beta \in (V \cup T)^*$, a derivation of β from α is a finite sequence of strings $\gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_k$ for some $k \in \mathbb{N}$ where

- 1. $\gamma_1 = \alpha$ and $\gamma_k = \beta$;
- 2. $\gamma_1,\ldots,\gamma_k\in (V\cup T)^*$
- 3. For each $i=1,\ldots,k-1$, γ_{i+1} is obtained from γ_i by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.

$$\beta$$
 is derived from $\alpha \Leftrightarrow \text{there exists a derivation of } \beta \text{ from } \alpha \Leftrightarrow \alpha \stackrel{*}{\Rightarrow} \beta.$

Example 5.2.2

$$S \Rightarrow 0S0 \Rightarrow 01S10 \Rightarrow 010S010 \Rightarrow 0101S1010 \Rightarrow 010111010.$$

 $S \to 0S0 \Rightarrow 0S \to 1S1 \Rightarrow 0S0 \Rightarrow 0S \to 1S1 \Rightarrow 0S1 \Rightarrow 0S \to 1S1 \Rightarrow 0S1 \Rightarrow 0S$

Definition

Given $G = (V, T, \mathcal{P}, S)$, any string in $(V \cup T)^*$ derived from S is a sentential form.

Definition

Given G = (V, T, P, S), any string in $(V \cup T)^*$ derived from S is a sentential form.

- **>** The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
 - \rightarrow Basis: $S \in SF(G)$
 - > Induction: if $\alpha A \gamma \in SF(G)$ for some $\alpha, \gamma \in (V \cup T)^*$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in SF(G)$.
 - > Only those strings that are generated by the above induction are sentential forms.

Definition

Given G = (V, T, P, S), any string in $(V \cup T)^*$ derived from S is a sentential form.

- **>** The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
 - > Basis: S ∈ SF(G)
 - > Induction: if $\alpha A \gamma \in \mathrm{SF}(G)$ for some $\alpha, \gamma \in (V \cup T)^*$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in \mathrm{SF}(G)$.
 - > Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG $G = (V, T, \mathcal{P}, S)$, the language L(G) generated by G is the set of sentential forms that are also in T^* , i.e., $L(G) = SF(G) \cap T^*$.

Definition

Given G = (V, T, P, S), any string in $(V \cup T)^*$ derived from S is a sentential form.

- **>** The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
 - → Basis: $S \in SF(G)$
 - > Induction: if $\alpha A \gamma \in SF(G)$ for some $\alpha, \gamma \in (V \cup T)^*$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in SF(G)$.
 - \succ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG $G = (V, T, \mathcal{P}, S)$, the language L(G) generated by G is the set of sentential forms that are also in T^* , i.e., $L(G) = SF(G) \cap T^*$.

Example 5.2.3

For the CFG $G = (\{S\}, \{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1$,

(1) S, ϵ , 0, 1 0S0, 00, 000, 010, 1S1, 11, 101, 111,... are all sentential forms.

Definition

Given G = (V, T, P, S), any string in $(V \cup T)^*$ derived from S is a sentential form.

- \blacktriangleright The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
 - \gt Basis: $S \in SF(G)$
 - > Induction: if $\alpha A \gamma \in SF(G)$ for some $\alpha, \gamma \in (V \cup T)^*$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha\beta\gamma\in SF(G)$.
 - > Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V, T, P, S), the language L(G) generated by G is the set of sentential forms that are also in T^* , i.e., $L(G) = SF(G) \cap T^*$.

Example 5.2.3

For the CFG $G = (\{S\}, \{0, 1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon |0| 1 |0S0| 1S1$,

- (1) S, ϵ , 0, 1 0S0, 00, 000, 010, 1S1, 11, 101, 111,... are all sentential forms.
- (2) S, ϵ , 0, 1 $\frac{0S0}{0}$, 00, 000, 010, $\frac{1S1}{1}$, 11, 101, 111,... are in L(G).

> At each step of a derivation, one can replace any variable by a suitable production.

- **>** At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{\overset{*}{\Rightarrow}} \beta$ (or $\alpha \underset{RM}{\overset{*}{\Rightarrow}} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.

- **>** At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{*} \beta$ (or $\alpha \underset{RM}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.
- > Sentential forms derived via **leftmost** (or **rightmost**) derivations are known as **leftmost** (or **rightmost**) sentential forms, respectively.

- At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{*} \beta$ (or $\alpha \underset{RM}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.
- Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow SS \mid (S) \mid ()$.

In the above, † indicates the variable that is replaced in the following step

- **>** At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{*} \beta$ (or $\alpha \underset{RM}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.
- Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG
$$G = (\{S\}, \{(,)\}, \mathcal{P}, S)$$
 with \mathcal{P} given by $S \longrightarrow SS \mid (S) \mid ()$.

$$[\text{Derivation}] \qquad \underset{\uparrow}{\mathcal{S}} \Rightarrow \underset{c}{\mathcal{S}} S \Rightarrow \underset{c}{\mathcal{S}} (S) \underset{\uparrow}{\mathcal{S}} \Rightarrow \underset{c}{(\mathcal{S})} () \Rightarrow \underset{c}{\Rightarrow} (()) ()$$

In the above, † indicates the variable that is replaced in the following step

- **>** At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{*} \beta$ (or $\alpha \underset{RM}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.
- Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow SS \mid (S) \mid ()$.

[Derivation]
$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)() \Rightarrow (())()$$

[Leftmost Derivation]
$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (())S \Rightarrow (())()$$

In the above, † indicates the variable that is replaced in the following step

Other Sentential Forms

- **>** At each step of a derivation, one can replace any variable by a suitable production.
- If at each non-trivial step of the derivation the **leftmost** (or **rightmost**) variable is replaced by a production rule, then the derivation is said to be a **leftmost** (or **rightmost**) derivation, respectively. We let $\alpha \underset{LM}{*} \beta$ (or $\alpha \underset{RM}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α , respectively.
- > Sentential forms derived via **leftmost** (or **rightmost**) derivations are known as **leftmost** (or **rightmost**) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG
$$G = (\{S\}, \{(,)\}, \mathcal{P}, S)$$
 with \mathcal{P} given by $S \longrightarrow SS \mid (S) \mid ()$.

[Derivation]
$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)() \Rightarrow (())()$$

[Leftmost Derivation]
$$S \Rightarrow SS \Rightarrow (S)S \Rightarrow (())S \Rightarrow (())()$$

[Rightmost Derivation
$$S \Rightarrow SS \Rightarrow S() \Rightarrow (S)() \Rightarrow (S)()$$

In the above, † indicates the variable that is replaced in the following step

> Parse trees are a graphical method of representing derivations.

- **>** Parse trees are a graphical method of representing derivations.
- ➤ They are used in compilers to represent the source program.

- **>** Parse trees are a graphical method of representing derivations.
- > They are used in compilers to represent the source program.

Definition

- **>** Parse trees are a graphical method of representing derivations.
- **>** They are used in compilers to represent the source program.

Definition

Given a CFG G = (V, T, P, S), a parse tree for G is any directed labelled tree that meets the following three conditions:

- **>** Parse trees are a graphical method of representing derivations.
- **>** They are used in compilers to represent the source program.

Definition

Given a CFG G = (V, T, P, S), a parse tree for G is any directed labelled tree that meets the following three conditions:

- > every interior node is labelled by a non-terminal (i.e., variable);
- > every leaf node is labelled by a non-terminal, or a terminal or ϵ ; however if it is labelled by ϵ , it is the sole child of its parent.
- \Rightarrow if an interior node is labelled by $A \in V$, and its children are labelled $s_1, \ldots, s_k \in V \cup T \cup \{\epsilon\}$, then $A \longrightarrow s_1 \cdots s_k$ is a production rule in \mathcal{P} .

- **>** Parse trees are a graphical method of representing derivations.
- **>** They are used in compilers to represent the source program.

Definition

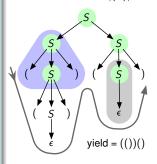
Given a CFG G = (V, T, P, S), a parse tree for G is any directed labelled tree that meets the following three conditions:

- > every interior node is labelled by a non-terminal (i.e., variable);
- > every leaf node is labelled by a non-terminal, or a terminal or ϵ ; however if it is labelled by ϵ , it is the sole child of its parent.
- > if an interior node is labelled by $A \in V$, and its children are labelled $s_1, \ldots, s_k \in V \cup T \cup \{\epsilon\}$, then $A \longrightarrow s_1 \cdots s_k$ is a production rule in \mathcal{P} .

The **yield** of a parse tree is the string formed from the labels of the tree leaves read from left to right.

Note: The yield is not necessarily a string of terminals.

$$G = (\{S\}, \{(,)\}, \mathcal{P}, S)$$
$$\mathcal{P}: S \longrightarrow SS|(S)|\epsilon$$



Derivations and Parse Trees

- ▶ Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent means of generating words of the language L(G) of a CFG G.
- ➤ The proof for equivalence of rightmost derivations mirrors that of leftmost derivations. (So we'll not delve into rightmost derivations).

Theorem 5.5.1

Let CFG $G = (V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $w \in T^*$. Then,

$$A \overset{*}{\underset{G}{\Rightarrow}} w \Leftrightarrow A \overset{*}{\underset{LM}{\Rightarrow}} w \Leftrightarrow \text{ there exists a parse tree with root } A \text{ and yield } w \Leftrightarrow A \overset{*}{\underset{RM}{\Rightarrow}} w.$$

Proof Idea

We'll show the following implications.

Existence of a parse tree with root A and yield w(b)

(a) $A \stackrel{*}{\Rightarrow} w$ By Definition $A \stackrel{*}{\Rightarrow} w$

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{\overset{*}{\Rightarrow}} w \Rightarrow \exists$ Parse Tree

> We use induction on the (length of the) derivation.

> We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G = (V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in SF(G)$. If $A \underset{G}{\overset{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α .

> We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G = (V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in SF(G)$. If $A \underset{G}{\overset{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α .

Proof of Lemma 5.5.2 (Induction on the length of derivation)

> We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V, T, P, S) be given. Let $A \in V$ and $\alpha \in SF(G)$. If $A \underset{G}{\overset{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α .

Proof of Lemma 5.5.2 (Induction on the length of derivation)

> Suppose $A \stackrel{*}{\Rightarrow} \alpha$ is a derivation of length 0.

> We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G = (V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in SF(G)$. If $A \underset{G}{\overset{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α .

Proof of Lemma 5.5.2 (Induction on the length of derivation)

- > Suppose $A \stackrel{*}{\Rightarrow} \alpha$ is a derivation of length 0.
- > Then A is a parse tree with root A and yield A.

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length k-1 or lesser for some k>1.

Proof of Lemma 5.5.2 (Induction on derivations)

- > Hypothesis: the claim is true for all derivations of length k-1 or lesser for some k>1.
- > Suppose a derivation of α from A in k steps exists.

$$A = \gamma_1 \underset{G}{\Rightarrow} \gamma_2 \underset{G}{\Rightarrow} \gamma_3 \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_k = \alpha$$

Proof of Lemma 5.5.2 (Induction on derivations)

- > Hypothesis: the claim is true for all derivations of length k-1 or lesser for some $k\geq 1$.
- > Suppose a derivation of α from A in k steps exists.

$$A = \gamma_1 \underset{G}{\Rightarrow} \gamma_2 \underset{G}{\Rightarrow} \gamma_3 \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_k = \alpha$$

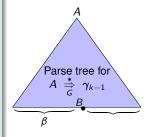
> The last step must involve the application of a production rule. Hence, $\gamma_{k-1}=\beta B\omega$ and $\alpha=\beta\lambda\omega$ where (a) $\beta,\omega\in(V\cup T)^*$, (b) $B\in V$, and (b) $B\longrightarrow\lambda$ is a production rule.

Proof of Lemma 5.5.2 (Induction on derivations)

- > Hypothesis: the claim is true for all derivations of length k-1 or lesser for some $k \geq 1$.
- > Suppose a derivation of α from A in k steps exists.

$$A = \gamma_1 \underset{G}{\Rightarrow} \gamma_2 \underset{G}{\Rightarrow} \gamma_3 \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_k = \alpha$$

- > The last step must involve the application of a production rule. Hence, $\gamma_{k-1} = \beta B \omega$ and $\alpha = \beta \lambda \omega$ where (a) $\beta, \omega \in (V \cup T)^*$, (b) $B \in V$, and (b) $B \longrightarrow \lambda$ is a production rule.
- \rightarrow Extend the parse tree from the first k-1 steps by:
 - If $\lambda = X_1 \dots X_n$ with $X_1, \dots, X_n \in V \cup T$, add childen X_1, \dots, X_n to node B.



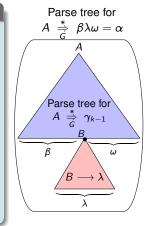
Part (a) of Proof of Theorem 5.5.1: $A \underset{c}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

- > Hypothesis: the claim is true for all derivations of length k-1 or lesser for some k>1.
- > Suppose a derivation of α from A in k steps exists.

$$A = \gamma_1 \underset{G}{\Rightarrow} \gamma_2 \underset{G}{\Rightarrow} \gamma_3 \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_k = \alpha$$

- > The last step must involve the application of a production rule. Hence, $\gamma_{k-1} = \beta B \omega$ and $\alpha = \beta \lambda \omega$ where (a) $\beta, \omega \in (V \cup T)^*$, (b) $B \in V$, and (b) $B \longrightarrow \lambda$ is a production rule.
- > Extend the parse tree from the first k-1 steps by:
 - If $\lambda = X_1 \dots X_n$ with $X_1, \dots, X_n \in V \cup T$, add childen X_1, \dots, X_n to node B.



Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{LM}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{LM}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{LM}{\longrightarrow}} w$

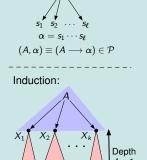
Proof of Theorem 5.5.1 (Induction on the height of the tree)

- > Base case: the parse tree has height 0
- \rightarrow Then A is a leftmost derivation in zero steps.

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{LM}{\rightleftharpoons}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

- > Base case: the parse tree has height 0
- > Then A is a leftmost derivation in zero steps.
- > Induction: Let the claim be true for all parse trees of up to height $\ell-1$.

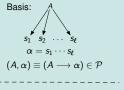


Basis:

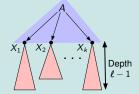
Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\Rightarrow} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

- > Base case: the parse tree has height 0 > Then A is a leftmost derivation in zero steps.
- > Induction: Let the claim be true for all parse trees of up
- \rightarrow Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_1 \cdots X_k$.



Induction:

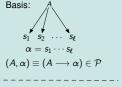


to height $\ell-1$.

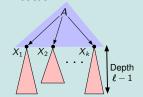
Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{LM}{\rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

- > Base case: the parse tree has height 0
- > Then A is a leftmost derivation in zero steps.
- > Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
- > Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_1 \cdots X_k$.
 - > If X_i is a leaf, then the yield of the sub-tree rooted at X_i is $w_i = X_i$ itself. Then trivially $X_i \stackrel{*}{\Longrightarrow} w_i$.



Induction:

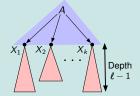


Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{IM}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

- > Base case: the parse tree has height 0
- > Then A is a leftmost derivation in zero steps.
- > Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
- > Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_1 \cdots X_k$.
 - > If X_i is a leaf, then the yield of the sub-tree rooted at X_i is $w_i = X_i$ itself. Then trivially $X_i \stackrel{*}{\to} w_i$.
 - > If X_i is not a leaf, let w_i be the yield of the parse (sub-)tree rooted at X_i of depth $\ell-1$ or less. Then, by induction hypothesis, $X_i \stackrel{*}{\Rightarrow} w_i$.

Induction:



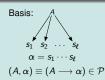
Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \stackrel{*}{\underset{IM}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

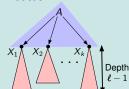
- > Base case: the parse tree has height 0
- > Then A is a leftmost derivation in zero steps.
- > Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
- > Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_1 \cdots X_k$.
 - If X_i is a leaf, then the yield of the sub-tree rooted at X_i is w_i = X_i itself. Then trivially X_i * w_i.
 - > If X_i is not a leaf, let w_i be the yield of the parse (sub-)tree rooted at X_i of depth $\ell-1$ or less. Then, by induction hypothesis, $X_i \stackrel{*}{\Rightarrow} w_i$.

Then, the following is a leftmost derivation for α from A

$$A \underset{G}{\Rightarrow} \underset{X_1}{X_2} \cdots X_k \underset{LM}{\overset{*}{\Rightarrow}} w_1 \underset{X_2}{X_2} \cdots X_k \underset{LM}{\overset{*}{\Rightarrow}} w_1 w_2 \underset{X_3}{X_3} \cdots X_k \underset{LM}{\overset{*}{\Rightarrow}} \cdots \underset{LM}{\overset{*}{\Rightarrow}} w_1 \cdots w_k$$



Induction:



Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and **not** the language it generates.

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and **not** the language it generates.

An Example

> CFG $G=(\{E\},\{0,1,\ldots,9,+,*\},\mathcal{P},E)$ with $\mathcal{P}:E\longrightarrow E+E|E*E|0|1|\cdots|9$

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and **not** the language it generates.

An Example

- > CFG $G=(\{E\},\{0,1,\ldots,9,+,*\},\mathcal{P},E)$ with $\mathcal{P}:E\longrightarrow E+E|E*E|0|1|\cdots|9$
- > Consider the parse trees for 9 + 2 * 2.

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and **not** the language it generates.

An Example

- ightarrow CFG $G=(\{E\},\{0,1,\ldots,9,+,*\},\mathcal{P},E)$ with $\mathcal{P}:E\longrightarrow E+E|E*E|0|1|\cdots|9$
- > Consider the parse trees for 9 + 2 * 2.
- > Since there are two distinct parse trees, a compiler will not know to reduce this to 13 or to 22.

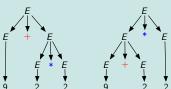
Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and **not** the language it generates.

An Example

- > CFG $G = (\{E\}, \{0, 1, ..., 9, +, *\}, \mathcal{P}, E)$ with $\mathcal{P} : E \longrightarrow E + E|E * E|0|1| \cdots |9|$
- > Consider the parse trees for 9 + 2 * 2.
- > Since there are two distinct parse trees, a compiler will not know to reduce this to 13 or to 22.



> This ambiguity is addressed by precedence rules for operators.

> Some languages are generated by unambiguous as well as ambiguous grammars.

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- \rightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- \rightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- \rightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P} : S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

> CFG $G_2 = (\{B, R\}, \{(,)\}, \mathcal{Q}, B)$ with $\mathcal{Q} : B \longrightarrow (RB|\epsilon \text{ and } R \longrightarrow)|(RR$

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- ightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

- ightarrow CFG $G_2=(\{B,R\},\{(,)\},\mathcal{Q},B)$ with $\mathcal{Q}:B\longrightarrow (RB|\epsilon \text{ and }R\longrightarrow)|(RR)$
- \rightarrow G_2 is **not** ambiguous, since there is precisely only one rule at any stage of derivation.

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- ightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

- ightarrow CFG $G_2=(\{B,R\},\{(,)\},\mathcal{Q},B)$ with $\mathcal{Q}:B\longrightarrow (RB|\epsilon \text{ and }R\longrightarrow)|(RR)$
- \rightarrow G_2 is **not** ambiguous, since there is precisely only one rule at any stage of derivation.

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- \rightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P} : S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

- ightarrow CFG $G_2=(\{B,R\},\{(,)\},\mathcal{Q},B)$ with $\mathcal{Q}:B\longrightarrow (RB|\epsilon \text{ and }R\longrightarrow)|(RR)$
- ightarrow G_2 is **not** ambiguous, since there is precisely only one rule at any stage of derivation.

$$B \underset{\scriptscriptstyle LM}{\overset{*}{\Rightarrow}} (RB \underset{\scriptscriptstyle LM}{\Rightarrow} ()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()(RB \underset{\scriptscriptstyle LM}{\Rightarrow} ()()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()()()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()()()()e$$

> Some languages are intrinsically ambiguous, e.g., $\{0^i1^j2^k: i=j \text{ or } j=k\}$. All grammars for such languages are ambiguous.

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

- \rightarrow CFG $G_1 = (\{S\}, \{(,)\}, \mathcal{P}, S)$ with $\mathcal{P} : S \longrightarrow SS|(S)|()$
- \rightarrow G_1 is ambiguous for there are two leftmost derivations for ()()().

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} ()S \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\Rightarrow} ()()()$$

$$S \underset{LM}{\Rightarrow} SS \underset{LM}{\Rightarrow} SSS \underset{LM}{\Rightarrow} ()SS \underset{LM}{\Rightarrow} ()()S \underset{LM}{\stackrel{*}{\Rightarrow}} ()()()$$

- > CFG $G_2 = (\{B,R\},\{(,)\},\mathcal{Q},B)$ with $\mathcal{Q}:B\longrightarrow (RB|\epsilon \text{ and }R\longrightarrow)|(RR)$
- ightarrow G_2 is **not** ambiguous, since there is precisely only one rule at any stage of derivation.

$$B \underset{\scriptscriptstyle LM}{\overset{*}{\Rightarrow}} (RB \underset{\scriptscriptstyle LM}{\Rightarrow} ()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()(RB \underset{\scriptscriptstyle LM}{\Rightarrow} ()()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()()()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()()()()B \underset{\scriptscriptstyle LM}{\Rightarrow} ()()()()e$$

- > Some languages are intrinsically ambiguous, e.g., $\{0^i1^j2^k: i=j \text{ or } j=k\}$. All grammars for such languages are ambiguous.
- > In general, there is **no** way to tell if a grammar is ambiguous.