COMP3630 / COMP6363

week 2: Context-free Grammars and Languages

This Lecture Covers Chapter 5 of HMU: Context-free Grammars and Languages
slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher convenor \& lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

> (Context-free) Grammars
> (Leftmost and Rightmost) Derivations
> Parse Trees
> An Equivalence between Derivations and Parse Trees
> Ambiguity in Grammars

Additional Reading: Chapter 5 of HMU.

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
> Grammars are a generative means of defining languages.

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
> Grammars are a generative means of defining languages.
> Grammars can be used to create a strictly larger class of languages.

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g., regular expressions) of defining languages
> Grammars are a generative means of defining languages.
> Grammars can be used to create a strictly larger class of languages.
> They are especially useful in compiler and parser design; they can be used to check if:
> parantheses are balanced in a program,
>else occurrences have a matching if, etc.

Grammars: Formal Definition

Grammars: Formal Definition

>A context-free grammar $(C F G) G=(V, T, \mathcal{P}, S)$, where

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots
$>T$ is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s_{1}, s_{2}, \ldots.

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots
$>T$ is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s_{1}, s_{2}, \ldots.
$>\mathcal{P} \subseteq V \times(V \cup T)^{*}$ is a finite set of production rules.

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots
> T is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s_{1}, s_{2}, \ldots.
$>\mathcal{P} \subseteq V \times(V \cup T)^{*}$ is a finite set of production rules.
> Each production rule (A, α) is also written as $A \longrightarrow \alpha$. Terminology: A, α are called the head and body of the production rule, resp.

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots
> T is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s_{1}, s_{2}, \ldots.
$>\mathcal{P} \subseteq V \times(V \cup T)^{*}$ is a finite set of production rules.
> Each production rule (A, α) is also written as $A \longrightarrow \alpha$.
Terminology: A, α are called the head and body of the production rule, resp.
> $S \in V$ is the unique variable/non-terminal that 'generates' the language.

Grammars: Formal Definition

> A context-free grammar (CFG) $G=(V, T, \mathcal{P}, S)$, where
> V is a finite set whose elements are called variables or non-terminal symbols. Notation: upper case letters, e.g., A, B, \ldots
> T is a finite set whose elements are called terminal symbols; T is precisely the alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s_{1}, s_{2}, \ldots
$>\mathcal{P} \subseteq V \times(V \cup T)^{*}$ is a finite set of production rules.
> Each production rule (A, α) is also written as $A \longrightarrow \alpha$.
Terminology: A, α are called the head and body of the production rule, resp.
> $S \in V$ is the unique variable/non-terminal that 'generates' the language.

Notation

> Strings consisting of non-terminals and/or terminals will be denoted by greek symbols, e.g., α, β, \ldots
> Strings of terminals will be denoted by lower case letters, e.g., w, u, v

How do Grammars Generate Languages?

How do Grammars Generate Languages?

$>$ A string $w \in T^{*}$ is in the language $L(G)$ generated by $G=(V, T, \mathcal{P}, S)$ iff we can derive w from S, i.e.,
start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in T^{*} is obtained.

How do Grammars Generate Languages?

$>$ A string $w \in T^{*}$ is in the language $L(G)$ generated by $G=(V, T, \mathcal{P}, S)$ iff we can derive w from S, i.e.,
start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in T^{*} is obtained.

Example 5.2.1

Let $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ be
a CFG with \mathcal{P} given by
(1) $\left\{\begin{array}{c}(S, \epsilon),(S, 0),(S, 1) \\ (S, 0 S 0),(S, 1 S 1)\end{array}\right\}$

(3) $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$

How do Grammars Generate Languages?
$>$ A string $w \in T^{*}$ is in the language $L(G)$ generated by $G=(V, T, \mathcal{P}, S)$ iff we can derive w from S, i.e.,
start from S and use production rule(s) repeatedly to replace heads of the rules by their bodies until a string in T^{*} is obtained.

Example 5.2.1

Let $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ be a CFG with \mathcal{P} given by
(1) $\left\{\begin{array}{c}(S, \epsilon),(S, 0),(S, 1) \\ (S, 0 S 0),(S, 1 S 1)\end{array}\right\}$

(3) $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.

The following phrases are used interchangeably.
β is derived from $\alpha \Leftrightarrow$ there exists a derivation of β from $\alpha \Leftrightarrow \alpha \underset{G}{*} \beta$.

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.
β is derived from $\alpha \Leftrightarrow$ there exists a derivation of β from $\alpha \Leftrightarrow \alpha \underset{G}{*} \beta$.

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.
β is derived from $\alpha \Leftrightarrow$ there exists a derivation of β from $\alpha \Leftrightarrow \alpha \underset{G}{*} \beta$.

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

$S \underset{\substack{G \\ S \rightarrow 0 S 0}}{\Rightarrow} 0 S 0$

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.

$$
\beta \text { is derived from } \alpha \Leftrightarrow \text { there exists a derivation of } \beta \text { from } \alpha \Leftrightarrow \alpha \underset{G}{*} \beta \text {. }
$$

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

$$
S \underset{\substack{G \\ S \rightarrow 0 S 0}}{\Rightarrow} 0 S 0 \underset{\substack{G \\ s \rightarrow 1 S 1}}{\Rightarrow} 01 S 10
$$

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.

$$
\beta \text { is derived from } \alpha \Leftrightarrow \text { there exists a derivation of } \beta \text { from } \alpha \Leftrightarrow \alpha \underset{G}{*} \beta \text {. }
$$

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

$$
S \underset{\substack{G \\ S \rightarrow 0 S 0}}{\Rightarrow} 0 S 0 \underset{\substack{G \\ S \rightarrow 1 S 1}}{\Rightarrow} 01 S 10 \underset{\substack{G \\ S \rightarrow 0 S 0}}{\Rightarrow} 010 S 010
$$

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.

$$
\beta \text { is derived from } \alpha \Leftrightarrow \text { there exists a derivation of } \beta \text { from } \alpha \Leftrightarrow \alpha \underset{G}{*} \beta \text {. }
$$

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

$$
S \underset{\substack{G \\ s \rightarrow 0 S 0}}{\Rightarrow} 0 S 0 \underset{\substack{G \\ s \rightarrow 1 S 1}}{\Rightarrow} 01 S 10 \underset{\substack{G \\ s \rightarrow 0 S 0}}{\Rightarrow} 010 S 010 \underset{\substack{G \\ s \rightarrow 1 S 1}}{\Rightarrow} 0101 S 1010
$$

Derivation: Formal Definition

Definition

Given $G=(V, T, \mathcal{P}, S)$ and $\alpha, \beta \in(V \cup T)^{*}$, a derivation of β from α is a finite sequence of strings $\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k}$ for some $k \in \mathbb{N}$ where

1. $\gamma_{1}=\alpha$ and $\gamma_{k}=\beta$;
2. $\gamma_{1}, \ldots, \gamma_{k} \in(V \cup T)^{*}$
3. For each $i=1, \ldots, k-1, \gamma_{i+1}$ is obtained from γ_{i} by replacing the head of a production rule of \mathcal{P} by its body.
The following phrases are used interchangeably.

$$
\beta \text { is derived from } \alpha \Leftrightarrow \text { there exists a derivation of } \beta \text { from } \alpha \Leftrightarrow \alpha \underset{G}{*} \beta \text {. }
$$

Example 5.2.2

For the grammar $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$, the following is a derivation of 010111010 from S

$$
S \underset{\substack{G \\ s \rightarrow 0 S 0}}{\Rightarrow} 0 S 0 \underset{\substack{G \\ s \rightarrow 1 S 1}}{\Rightarrow} 01 S 10 \underset{\substack{G \\ s \rightarrow 0 S 0}}{\Rightarrow} 010 S 010 \underset{\substack{G \\ s \rightarrow 1 S 1}}{\Rightarrow} 0101 S 1010 \underset{\substack{G \\ s \rightarrow 1}}{\Rightarrow} 010111010 .
$$

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given $G=(V, T, \mathcal{P}, S)$, any string in $(V \cup T)^{*}$ derived from S is a sentential form.

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given $G=(V, T, \mathcal{P}, S)$, any string in $(V \cup T)^{*}$ derived from S is a sentential form.
$>$ The set of all sentential forms of G (denoted by $\operatorname{SF}(G)$) is defined inductively:
> Basis: $S \in \operatorname{SF}(G)$
> Induction: if $\alpha A \gamma \in \operatorname{SF}(G)$ for some $\alpha, \gamma \in(V \cup T)^{*}$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in \operatorname{SF}(G)$.
> Only those strings that are generated by the above induction are sentential forms.

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given $G=(V, T, \mathcal{P}, S)$, any string in $(V \cup T)^{*}$ derived from S is a sentential form.
$>$ The set of all sentential forms of G (denoted by $\operatorname{SF}(G)$) is defined inductively:
> Basis: $S \in \operatorname{SF}(G)$
> Induction: if $\alpha A \gamma \in \operatorname{SF}(G)$ for some $\alpha, \gamma \in(V \cup T)^{*}$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in \operatorname{SF}(G)$.
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG $G=(V, T, \mathcal{P}, S)$, the language $L(G)$ generated by G is the set of sentential forms that are also in T^{*}, i.e., $L(G)=\operatorname{SF}(G) \cap T^{*}$.

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given $G=(V, T, \mathcal{P}, S)$, any string in $(V \cup T)^{*}$ derived from S is a sentential form.
$>$ The set of all sentential forms of G (denoted by $\operatorname{SF}(G)$) is defined inductively:
> Basis: $S \in \operatorname{SF}(G)$
$>$ Induction: if $\alpha A \gamma \in \operatorname{SF}(G)$ for some $\alpha, \gamma \in(V \cup T)^{*}$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in \operatorname{SF}(G)$.
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG $G=(V, T, \mathcal{P}, S)$, the language $L(G)$ generated by G is the set of sentential forms that are also in T^{*}, i.e., $L(G)=\operatorname{SF}(G) \cap T^{*}$.

Example 5.2.3

For the CFG $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$,
(1) $S, \epsilon, 0,10 S 0,00,000,010,1 S 1,11,101,111, \ldots$ are all sentential forms.

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given $G=(V, T, \mathcal{P}, S)$, any string in $(V \cup T)^{*}$ derived from S is a sentential form.
$>$ The set of all sentential forms of G (denoted by $\operatorname{SF}(G)$) is defined inductively:
> Basis: $S \in \operatorname{SF}(G)$
$>$ Induction: if $\alpha A \gamma \in \operatorname{SF}(G)$ for some $\alpha, \gamma \in(V \cup T)^{*}$ and $A \in V$, and $A \longrightarrow \beta$ is a production rule, then $\alpha \beta \gamma \in \operatorname{SF}(G)$.
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG $G=(V, T, \mathcal{P}, S)$, the language $L(G)$ generated by G is the set of sentential forms that are also in T^{*}, i.e., $L(G)=\operatorname{SF}(G) \cap T^{*}$.

Example 5.2.3

For the CFG $G=(\{S\},\{0,1\}, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow \epsilon|0| 1|0 S 0| 1 S 1$,
(1) $S, \epsilon, 0,10 S 0,00,000,010,1 S 1,11,101,111, \ldots$ are all sentential forms.
(2) $S, \epsilon, 0,10 S 0,00,000,010,1 S 1,11,101,111, \ldots$ are in $L(G)$.

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{*} \beta($ or $\alpha \underset{R M}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{\stackrel{*}{\Rightarrow}} \beta($ or $\alpha \underset{R M}{\Rightarrow} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.
$>$ Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{*} \beta($ or $\alpha \underset{R M}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.
> Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G=(\{S\},\{()\},, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow S S|(S)|()$.

In the above, \uparrow indicates the variable that is replaced in the following step

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{*} \beta($ or $\alpha \underset{R M}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.
> Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G=(\{S\},\{()\},, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow S S|(S)|()$.

In the above, \uparrow indicates the variable that is replaced in the following step

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{*} \beta($ or $\alpha \underset{R M}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.
> Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G=(\{S\},\{()\},, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow S S|(S)|()$.

$$
\begin{aligned}
\text { [Derivation] } & \underset{\uparrow}{S} \underset{G}{\Rightarrow} \underset{\uparrow}{S S} \underset{G}{\Rightarrow}(S) \underset{\uparrow}{S} \underset{\uparrow}{\Rightarrow}(S)() \underset{G}{\Rightarrow}(())() \\
\text { [Leftmost Derivation] } & \underset{\uparrow}{S} \underset{\uparrow}{\underset{~}{S} \underset{G}{\Rightarrow}(S) S \underset{G}{\Rightarrow}(()) \underset{\uparrow}{S} \underset{G}{\Rightarrow}(())()} \text { () }
\end{aligned}
$$

In the above, \uparrow indicates the variable that is replaced in the following step

Other Sentential Forms

> At each step of a derivation, one can replace any variable by a suitable production.
> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is replaced by a production rule, then the derivation is said to be a leftmost (or rightmost) derivation, respectively. We let $\alpha \underset{L M}{*} \beta($ or $\alpha \underset{R M}{*} \beta$) to denote the existence of a leftmost (or rightmost) derivation of β from α, respectively.
> Sentential forms derived via leftmost (or rightmost) derivations are known as leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG $G=(\{S\},\{()\},, \mathcal{P}, S)$ with \mathcal{P} given by $S \longrightarrow S S|(S)|()$.

$$
\begin{aligned}
& \text { [Leftmost Derivation] } \quad \underset{\uparrow}{\underset{G}{\Rightarrow}} \underset{\uparrow}{S} \underset{G}{\Rightarrow}(S) S \underset{G}{\Rightarrow}(()) \underset{\uparrow}{S_{G}} \underset{\sim}{\Rightarrow}(())()
\end{aligned}
$$

In the above, \uparrow indicates the variable that is replaced in the following step

Parse Trees

> Parse trees are a graphical method of representing derivations.

Parse Trees

> Parse trees are a graphical method of representing derivations.
$>$ They are used in compilers to represent the source program.

Parse Trees

> Parse trees are a graphical method of representing derivations.
> They are used in compilers to represent the source program.

Definition

Parse Trees

> Parse trees are a graphical method of representing derivations.
> They are used in compilers to represent the source program.

Definition

Given a CFG $G=(V, T, \mathcal{P}, S)$, a parse tree for G is any directed labelled tree that meets the following three conditions:

Parse Trees

> Parse trees are a graphical method of representing derivations.
$>$ They are used in compilers to represent the source program.

Definition

Given a CFG $G=(V, T, \mathcal{P}, S)$, a parse tree for G is any directed labelled tree that meets the following three conditions:
> every interior node is labelled by a non-terminal (i.e., variable);
> every leaf node is labelled by a non-terminal, or a terminal or ϵ; however if it is labelled by ϵ, it is the sole child of its parent.
> if an interior node is labelled by $A \in V$, and its children are labelled $s_{1}, \ldots, s_{k} \in V \cup T \cup\{\epsilon\}$, then $A \longrightarrow s_{1} \cdots s_{k}$ is a production rule in \mathcal{P}.

Parse Trees

> Parse trees are a graphical method of representing derivations.
> They are used in compilers to represent the source program.

Definition

Given a CFG $G=(V, T, \mathcal{P}, S)$, a parse tree for G is any directed labelled tree that meets the following three conditions:
> every interior node is labelled by a non-terminal (i.e., variable);
> every leaf node is labelled by a non-terminal, or a terminal or ϵ; however if it is labelled by ϵ, it is the sole child of its parent.
> if an interior node is labelled by $A \in V$, and its children are labelled $s_{1}, \ldots, s_{k} \in V \cup T \cup\{\epsilon\}$, then $A \longrightarrow s_{1} \cdots s_{k}$ is a production rule in \mathcal{P}.
The yield of a parse tree is the string formed from the

$$
\begin{aligned}
G= & (\{S\},\{(,)\}, \mathcal{P}, S) \\
& \mathcal{P}: S \longrightarrow S S|(S)| \epsilon
\end{aligned}
$$

 labels of the tree leaves read from left to right. Note: The yield is not necessarily a string of terminals.

Derivations and Parse Trees

> Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent means of generating words of the language $L(G)$ of a CFG G.
> The proof for equivalence of rightmost derivations mirrors that of leftmost derivations. (So we'll not delve into rightmost derivations).

Theorem 5.5.1

Let $C F G G=(V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $w \in T^{*}$. Then,
$A \underset{G}{\stackrel{*}{\Rightarrow}} w \Leftrightarrow A \underset{L M}{\stackrel{*}{\Rightarrow}} w \Leftrightarrow$ there exists a parse tree with root A and yield $w \Leftrightarrow A \underset{R M}{\stackrel{*}{\Rightarrow}} w$.

Proof Idea

We'll show the following implications.

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{*} w \Rightarrow \exists$ Parse Tree

$>$ We use induction on the (length of the) derivation.

Part (a) of Proof of Theorem 5.5.1: $A \underset{\sigma}{\stackrel{*}{G}} w \Rightarrow \exists$ Parse Tree

$>$ We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G=(V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in S F(G)$. If $A \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α.

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{\stackrel{*}{F}} w \Rightarrow \exists$ Parse Tree

$>$ We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G=(V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in S F(G)$. If $A \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{\stackrel{*}{F}} w \Rightarrow \exists$ Parse Tree

$>$ We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G=(V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in S F(G)$. If $A \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

$>$ Suppose $A \underset{G}{*} \alpha$ is a derivation of length 0 .

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{\stackrel{*}{F}} w \Rightarrow \exists$ Parse Tree

$>$ We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG $G=(V, T, \mathcal{P}, S)$ be given. Let $A \in V$ and $\alpha \in S F(G)$. If $A \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$, then there exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

$>$ Suppose $A \underset{G}{\stackrel{*}{\Rightarrow}} \alpha$ is a derivation of length 0 .
$>$ Then A is a parse tree with root A and yield A.

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length $k-1$ or lesser for some $k \geq 1$.

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length $k-1$ or lesser for some $k \geq 1$.
> Suppose a derivation of α from A in k steps exists.

$$
A=\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \gamma_{3} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_{k}=\alpha
$$

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length $k-1$ or lesser for some $k \geq 1$.
> Suppose a derivation of α from A in k steps exists.

$$
A=\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \gamma_{3} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_{k}=\alpha
$$

> The last step must involve the application of a production rule. Hence, $\gamma_{k-1}=\beta B \omega$ and $\alpha=\beta \lambda \omega$ where (a) $\beta, \omega \in(V \cup T)^{*}$, (b) $B \in V$, and (b) $B \longrightarrow \lambda$ is a production rule.

Part (a) of Proof of Theorem 5.5.1: $A \underset{G}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length $k-1$ or lesser for some $k \geq 1$.
> Suppose a derivation of α from A in k steps exists.

$$
A=\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \gamma_{3} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_{k}=\alpha
$$

> The last step must involve the application of a production rule. Hence, $\gamma_{k-1}=\beta B \omega$ and $\alpha=\beta \lambda \omega$ where (a) $\beta, \omega \in(V \cup T)^{*}$, (b) $B \in V$, and (b) $B \longrightarrow \lambda$ is a production rule.

> Extend the parse tree from the first $k-1$ steps by:

- If $\lambda=X_{1} \ldots X_{n}$ with $X_{1}, \ldots, X_{n} \in V \cup T$, add childen X_{1}, \ldots, X_{n} to node B.

Part (a) of Proof of Theorem 5.5.1: $A \underset{\sigma}{*} w \Rightarrow \exists$ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length $k-1$ or lesser for some $k \geq 1$.
> Suppose a derivation of α from A in k steps exists.

$$
A=\gamma_{1} \underset{G}{\Rightarrow} \gamma_{2} \underset{G}{\Rightarrow} \gamma_{3} \underset{G}{\Rightarrow} \cdots \underset{G}{\Rightarrow} \gamma_{k-1} \underset{G}{\Rightarrow} \gamma_{k}=\alpha
$$

> The last step must involve the application of a production rule. Hence, $\gamma_{k-1}=\beta B \omega$ and $\alpha=\beta \lambda \omega$ where (a) $\beta, \omega \in(V \cup T)^{*}$, (b) $B \in V$, and (b) $B \longrightarrow \lambda$ is a production rule.
> Extend the parse tree from the first $k-1$ steps by:

- If $\lambda=X_{1} \ldots X_{n}$ with $X_{1}, \ldots, X_{n} \in V \cup T$, add childen X_{1}, \ldots, X_{n} to node B.

Parse tree for

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{\stackrel{*}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{\stackrel{*}{P}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{\stackrel{*}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
> Then A is a leftmost derivation in zero steps.

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{*} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
> Then A is a leftmost derivation in zero steps.
> Induction: Let the claim be true for all parse trees of up to height $\ell-1$.

$(A, \alpha) \equiv(A \longrightarrow \alpha) \in \mathcal{P}$

Induction:

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{*} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
> Then A is a leftmost derivation in zero steps.
> Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
> Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_{1} \cdots X_{k}$.

$(A, \alpha) \equiv(A \longrightarrow \alpha) \in \mathcal{P}$

Induction:

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{*} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
> Then A is a leftmost derivation in zero steps.
> Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
> Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_{1} \cdots X_{k}$.
> If X_{i} is a leaf, then the yield of the sub-tree rooted at X_{i} is $w_{i}=X_{i}$ itself. Then trivially $X_{i} \stackrel{*}{\Rightarrow} w_{i}$.

$(A, \alpha) \equiv(A \longrightarrow \alpha) \in \mathcal{P}$

Induction:

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{\stackrel{*}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
> Then A is a leftmost derivation in zero steps.
> Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
> Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_{1} \cdots X_{k}$.
> If X_{i} is a leaf, then the yield of the sub-tree rooted at X_{i} is $w_{i}=X_{i}$ itself. Then trivially $X_{i} \stackrel{*}{\Rightarrow} w_{i}$.
> If X_{i} is not a leaf, let w_{i} be the yield of the parse (sub-)tree rooted at X_{i} of depth $\ell-1$ or less. Then, by induction hypothesis, $X_{i} \stackrel{*}{\Rightarrow} w_{i}$.

$(A, \alpha) \equiv(A \longrightarrow \alpha) \in \mathcal{P}$

Induction:

Part (b) of Proof of Theorem 5.5.1: Parse Tree $\Rightarrow A \underset{L M}{\stackrel{*}{\Rightarrow}} w$

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0
$>$ Then A is a leftmost derivation in zero steps.
> Induction: Let the claim be true for all parse trees of up to height $\ell-1$.
> Consider the root and its (say k) children. This corresponds to a production rule $A \longrightarrow X_{1} \cdots X_{k}$.
> If X_{i} is a leaf, then the yield of the sub-tree rooted at X_{i} is $w_{i}=X_{i}$ itself. Then trivially $X_{i} \stackrel{*}{\Rightarrow} w_{i}$.
> If X_{i} is not a leaf, let w_{i} be the yield of the parse (sub-)tree rooted at X_{i} of depth $\ell-1$ or less. Then, by induction hypothesis, $X_{i} \stackrel{*}{\Rightarrow} w_{i}$.
Then, the following is a leftmost derivation for α from A

$(A, \alpha) \equiv(A \longrightarrow \alpha) \in \mathcal{P}$

Induction:

$$
A \underset{G}{\Rightarrow} X_{1} X_{2} \cdots X_{k} \underset{L M}{\stackrel{*}{\Rightarrow}} w_{1} X_{2} \cdots X_{k} \underset{L M}{*} w_{1} w_{2} X_{3} \cdots X_{k} \underset{L M}{\stackrel{*}{\Rightarrow}} \cdots \underset{L M}{*} w_{1} \cdots w_{k}
$$

Ambiguity in CFGs

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.
>Ambiguity is a property of a grammar, and not the language it generates.

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.
>Ambiguity is a property of a grammar, and not the language it generates.

An Example

$>\operatorname{CFG} G=(\{E\},\{0,1, \ldots, 9,+, *\}, \mathcal{P}, E)$ with $\mathcal{P}: E \longrightarrow E+E|E * E| 0|1| \cdots \mid 9$

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.
>Ambiguity is a property of a grammar, and not the language it generates.

An Example

$>\operatorname{CFG} G=(\{E\},\{0,1, \ldots, 9,+, *\}, \mathcal{P}, E)$ with $\mathcal{P}: E \longrightarrow E+E|E * E| 0|1| \cdots \mid 9$
$>$ Consider the parse trees for $9+2 * 2$.

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.
>Ambiguity is a property of a grammar, and not the language it generates.

An Example

$>$ CFG $G=(\{E\},\{0,1, \ldots, 9,+, *\}, \mathcal{P}, E)$ with $\mathcal{P}: E \longrightarrow E+E|E * E| 0|1| \cdots \mid 9$
$>$ Consider the parse trees for $9+2 * 2$.
> Since there are two distinct parse trees, a compiler will not know to reduce this to 13 or to 22.

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string $w \in L(G)$ is the yield of two different parse trees. Equivalently, a CFG G is ambiguous if a string $w \in L(G)$ has two different leftmost (or rightmost) derivations.
>Ambiguity is a property of a grammar, and not the language it generates.

An Example

$>$ CFG $G=(\{E\},\{0,1, \ldots, 9,+, *\}, \mathcal{P}, E)$ with $\mathcal{P}: E \longrightarrow E+E|E * E| 0|1| \cdots \mid 9$
$>$ Consider the parse trees for $9+2 * 2$.
> Since there are two distinct parse trees, a compiler will not know to reduce this to 13 or to 22.

> This ambiguity is addressed by precedence rules for operators.

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow} S()() S \underset{L M}{\Rightarrow} S S()()() \\
& S S \underset{L M}{\Rightarrow} \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow}()()()
\end{aligned}
$$

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} S S S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} \underset{\text { LM }}{\Rightarrow}()()()
\end{aligned}
$$

$>$ CFG $G_{2}=(\{B, R\},\{()\},, \mathcal{Q}, B)$ with $\mathcal{Q}: B \longrightarrow(R B \mid \epsilon$ and $R \longrightarrow) \mid(R R$

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} S S S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} \underset{\text { LM }}{\Rightarrow}()()()
\end{aligned}
$$

$>$ CFG $G_{2}=(\{B, R\},\{()\},, \mathcal{Q}, B)$ with $\mathcal{Q}: B \longrightarrow(R B \mid \epsilon$ and $R \longrightarrow) \mid(R R$
> G_{2} is not ambiguous, since there is precisely only one rule at any stage of derivation.

$$
B \underset{L M}{\stackrel{*}{\Rightarrow}}(R B \underset{L M}{\Rightarrow}() B \underset{L M}{\Rightarrow}()(R B \underset{L M}{\Rightarrow}()() B \underset{L M}{\Rightarrow}()()() B \underset{L M}{\Rightarrow \Rightarrow}()()() \epsilon
$$

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} S S S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} \underset{\text { LM }}{\Rightarrow}()()()
\end{aligned}
$$

$>$ CFG $G_{2}=(\{B, R\},\{()\},, \mathcal{Q}, B)$ with $\mathcal{Q}: B \longrightarrow(R B \mid \epsilon$ and $R \longrightarrow) \mid(R R$
> G_{2} is not ambiguous, since there is precisely only one rule at any stage of derivation.

$$
B \underset{L M}{\stackrel{*}{\Rightarrow}}(R B \underset{L M}{\Rightarrow}() B \underset{L M}{\Rightarrow}()(R B \underset{L M}{\Rightarrow}()() B \underset{L M}{\Rightarrow}()()() B \underset{L M}{\Rightarrow \Rightarrow}()()() \epsilon
$$

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} S S S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} \underset{\text { LM }}{\Rightarrow}()()()
\end{aligned}
$$

$>$ CFG $G_{2}=(\{B, R\},\{()\},, \mathcal{Q}, B)$ with $\mathcal{Q}: B \longrightarrow(R B \mid \epsilon$ and $R \longrightarrow) \mid(R R$
> G_{2} is not ambiguous, since there is precisely only one rule at any stage of derivation.

$$
B \underset{L M}{\stackrel{*}{\Rightarrow}}(R B \underset{L M}{\Rightarrow}() B \underset{L M}{\Rightarrow}()(R B \underset{L M}{\Rightarrow}()() B \underset{L M}{\Rightarrow}()()() B \underset{L M}{\Rightarrow \Rightarrow}()()() \epsilon
$$

> Some languages are intrinsically ambiguous, e.g., $\left\{0^{i} 1^{j} 2^{k}: i=j\right.$ or $\left.j=k\right\}$. All grammars for such languages are ambiguous.

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

$>$ CFG $G_{1}=(\{S\},\{()\},, \mathcal{P}, S)$ with $\mathcal{P}: S \longrightarrow S S|(S)|()$
$>G_{1}$ is ambiguous for there are two leftmost derivations for ()()() .

$$
\begin{aligned}
& S \underset{L M}{\Rightarrow} S S \underset{L M}{\Rightarrow}() S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} S S S \underset{L M}{\Rightarrow}() S S \underset{L M}{\Rightarrow}()() S \underset{L M}{\Rightarrow} \underset{\text { LM }}{\Rightarrow}()()()
\end{aligned}
$$

$>$ CFG $G_{2}=(\{B, R\},\{()\},, \mathcal{Q}, B)$ with $\mathcal{Q}: B \longrightarrow(R B \mid \epsilon$ and $R \longrightarrow) \mid(R R$
> G_{2} is not ambiguous, since there is precisely only one rule at any stage of derivation.

$$
B \underset{L M}{\stackrel{*}{\Rightarrow}}(R B \underset{L M}{\Rightarrow}() B \underset{L M}{\Rightarrow}()(R B \underset{L M}{\Rightarrow}()() B \underset{L M}{\Rightarrow}()()() B \underset{L M}{\Rightarrow \Rightarrow}()()() \epsilon
$$

>Some languages are intrinsically ambiguous, e.g., $\left\{0^{i} 1^{j} 2^{k}: i=j\right.$ or $\left.j=k\right\}$. All grammars for such languages are ambiguous.
> In general, there is no way to tell if a grammar is ambiguous.

