COMP3630 / COMP6363

week 4: **Properties and Normal Forms of Context-free Languages** This Lecture Covers Chapter 7 of HMU: Properties of Context-free Languages

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

- > Chomsky Normal Form
- > Pumping Lemma for Context-free Languages (CFLs)
- > Closure Properties of CFLs
- > Decision Properties of CFLs

Additional Reading: Chapter 7 of HMU.

- > A normal or canonical form (be it in algebra, matrices, or languages) is a standardized way of presenting the object (in this case, languages).
- > A normal form for CFGs provides a prescribed structure to the grammar without compromising on its power to define **all** context-free languages.
- > **Motivation:** Such normal forms can be exploited by algorithms (don't have to deal with all possible cases) and by proofs (same reason: can exploit this structure).

3/31

- > A normal or canonical form (be it in algebra, matrices, or languages) is a standardized way of presenting the object (in this case, languages).
- > A normal form for CFGs provides a prescribed structure to the grammar without compromising on its power to define **all** context-free languages.
- > **Motivation:** Such normal forms can be exploited by algorithms (don't have to deal with all possible cases) and by proofs (same reason: can exploit this structure).
- > Every non-empty language *L* with $\epsilon \notin L$ has **Chomsky Normal Form** grammar $G = (V, T, \mathcal{P}, S)$ where every production rule is of the form:

$$A \longrightarrow BC$$
 for $A, B, C \in V$, or

$$A \longrightarrow a$$
 for $A \in V$ and $a \in T$.

and every variable in V is useful, i.e. appears in the derivation of at least one terminal string: for all $X \in V$ there is α, β, w such that $S \stackrel{*}{\underset{G}{\to}} \alpha X \beta \stackrel{*}{\underset{G}{\to}} w$.

- > A normal or canonical form (be it in algebra, matrices, or languages) is a standardized way of presenting the object (in this case, languages).
- > A normal form for CFGs provides a prescribed structure to the grammar without compromising on its power to define **all** context-free languages.
- > **Motivation:** Such normal forms can be exploited by algorithms (don't have to deal with all possible cases) and by proofs (same reason: can exploit this structure).
- > Every non-empty language *L* with *e* ∉ *L* has Chomsky Normal Form grammar *G* = (*V*, *T*, *P*, *S*) where every production rule is of the form:
 > *A* → *BC* for *A*, *B*, *C* ∈ *V*, or
 > *A* → *a* for *A* ∈ *V* and *a* ∈ *T*.

and every variable in V is useful, i.e. appears in the derivation of at least one terminal string: for all $X \in V$ there is α, β, w such that $S \stackrel{*}{=} \alpha X \beta \stackrel{*}{=} w$.

- > CNF disallows:
 - > $A \longrightarrow \epsilon$ [ϵ -productions]. > $A \longrightarrow B$ for $A, B \in V$. [Unit productions]. > $A \longrightarrow B_1 \cdots B_k$, $A \in V$, $B_i \in V \cup T$ for $k \ge 2$ [Complex productions].

- > A normal or canonical form (be it in algebra, matrices, or languages) is a standardized way of presenting the object (in this case, languages).
- > A normal form for CFGs provides a prescribed structure to the grammar without compromising on its power to define **all** context-free languages.
- > **Motivation:** Such normal forms can be exploited by algorithms (don't have to deal with all possible cases) and by proofs (same reason: can exploit this structure).
- > Every non-empty language *L* with *e* ∉ *L* has Chomsky Normal Form grammar *G* = (*V*, *T*, *P*, *S*) where every production rule is of the form:
 > *A* → *BC* for *A*, *B*, *C* ∈ *V*, or
 > *A* → *a* for *A* ∈ *V* and *a* ∈ *T*.

and every variable in V is useful, i.e. appears in the derivation of at least one terminal string: for all $X \in V$ there is α, β, w such that $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$.

- > CNF <u>disallows</u>:
 - > $A \longrightarrow \epsilon$ [ϵ -productions]. > $A \longrightarrow B$ for $A, B \in V$. [Unit productions]. > $A \longrightarrow B_1 \cdots B_k$, $A \in V$, $B_i \in V \cup T$ for $k \ge 2$ [Complex productions].
- > Note that CNF can also be provided if $\epsilon \in L$. We only need a few additional steps.

The goal is to eliminate all ϵ -productions (see next slide for a definition).

Example: Grammar with ϵ -productions
Suppose $G = (\{A, B, C\}, \{0, 1\}, \mathcal{P}, A)$ with \mathcal{P} :
$ ightarrow A \longrightarrow BC$
$ ightarrow B \longrightarrow 0B \mid \epsilon$
$ ightarrow C \longrightarrow C 11 \mid \epsilon$

How could an equivalent grammar look like without e-productions?

The goal is to eliminate all ϵ -productions (see next slide for a definition).

Example: Grammar with ϵ -productions
Suppose $G = (\{A, B, C\}, \{0, 1\}, \mathcal{P}, A)$ with \mathcal{P} :
$ ightarrow A \longrightarrow BC$
$ ightarrow B \longrightarrow 0B \mid \epsilon$
$ ightarrow C \longrightarrow C 11 \mid \epsilon$

How could an equivalent grammar look like without ϵ -productions?

```
Example: Grammar without \epsilon-productions (with same language as above)

Now, G' = (\{A, B, C\}, \{0, 1\}, \mathcal{P}', A) with \mathcal{P}':

A \longrightarrow BC \mid B \mid C \mid \notin

B \longrightarrow 0B \mid 0 \mid \notin

C \longrightarrow C11 \mid 11 \mid \notin
```

Note that the ϵ is in the first language, but not in the second.

Pascal Bercher

> ϵ -production: $A \longrightarrow \epsilon$ for some $A \in V$.

- > ϵ -production: $A \longrightarrow \epsilon$ for some $A \in V$.
- > Let us call a variable $A \in V$ as **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
- > We can identify nullable variables as follows:

- > ϵ -production: $A \longrightarrow \epsilon$ for some $A \in V$.
- > Let us call a variable $A \in V$ as **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
- > We can identify nullable variables as follows:
 - > Basis: $A \in V$ is nullable if $A \longrightarrow \epsilon$ is a production rule in \mathcal{P} .
 - > Induction: $B \in V$ is nullable if $B \longrightarrow A_1 \cdots A_k$ is in \mathcal{P} , and each A_i is nullable.

Procedure to Eliminate ϵ -Productions

5/31

- > ϵ -production: $A \longrightarrow \epsilon$ for some $A \in V$.
- > Let us call a variable $A \in V$ as **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
- > We can identify nullable variables as follows:
 - > Basis: $A \in V$ is nullable if $A \longrightarrow \epsilon$ is a production rule in \mathcal{P} .
 - > Induction: $B \in V$ is nullable if $B \longrightarrow A_1 \cdots A_k$ is in \mathcal{P} , and each A_i is nullable.

Procedure to Eliminate ϵ -Productions

- > Given G = (V, T, P, S) define $G_{no-\epsilon} = (V, T, P_{no-\epsilon}, S)$ as follows:
 - 1. Start with $\mathcal{P}_{no-\epsilon} = \mathcal{P}$. Find all nullable variables of G.
 - 3. For each production rule in $\ensuremath{\mathcal{P}}$ do the following:
 - If the body contains k > 0 nullable variables, add 2^k − 1 productions to P_{no-ε} obtained by choosing all subsets of nullable variables and removing them
 - 4. Delete any production in $\mathcal{P}_{no-\epsilon}$ of the form $Y \to \epsilon$ for any $Y \in V$.

> ϵ -production: $A \longrightarrow \epsilon$ for some $A \in V$.

- > Let us call a variable $A \in V$ as **nullable** if $A \stackrel{*}{\Rightarrow} \epsilon$.
- > We can identify nullable variables as follows:
 - > Basis: $A \in V$ is nullable if $A \longrightarrow \epsilon$ is a production rule in \mathcal{P} .
 - > Induction: $B \in V$ is nullable if $B \longrightarrow A_1 \cdots A_k$ is in \mathcal{P} , and each A_i is nullable.

Procedure to Eliminate ϵ -Productions

> Given G = (V, T, P, S) define $G_{no-\epsilon} = (V, T, P_{no-\epsilon}, S)$ as follows:

- 1. Start with $\mathcal{P}_{no-\epsilon} = \mathcal{P}$. Find all nullable variables of G.
- 3. For each production rule in $\ensuremath{\mathcal{P}}$ do the following:
 - ➤ If the body contains k > 0 nullable variables, add 2^k 1 productions to P_{no-ε} obtained by choosing all subsets of nullable variables and removing them
- 4. Delete any production in $\mathcal{P}_{no-\epsilon}$ of the form $Y \to \epsilon$ for any $Y \in V$.

Examples: Suppose that in a given grammar, B, D are nullable and C is not.

> If $A \longrightarrow BCD$ is a rule in \mathcal{P} , then $A \longrightarrow BCD|CD|BC|C$ are rules in $\mathcal{P}_{no-\epsilon}$.

> Similarly, if $A \longrightarrow BD$ is a rule in \mathcal{P} , then $A \longrightarrow BD|B|D$ are rules in $\mathcal{P}_{no-\epsilon}$.

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove *e*-Productions]

Examples

- > The one from Slide 4. (Eliminates ϵ from language.)
- > The two from Slide 5. (Languages stay equivalent.)

Examples

- > The one from Slide 4. (Eliminates ϵ from language.)
- > The two from Slide 5. (Languages stay equivalent.)

Theorem 7.1.1

The induction procedure described in Slide 5 identifies all nullable variables.

Theorem 7.1.2

 $L(G_{no-\epsilon}) = L(G) \setminus \{\epsilon\}.^{a}$

^aProof in the Additional Proofs Section at the end

6/31

Examples

- > The one from Slide 4. (Eliminates ϵ from language.)
- > The two from Slide 5. (Languages stay equivalent.)

Theorem 7.1.1

The induction procedure described in Slide 5 identifies all nullable variables.

Theorem 7.1.2

 $L(G_{no-\epsilon}) = L(G) \setminus \{\epsilon\}.^{a}$

^aProof in the Additional Proofs Section at the end

Recall: We <u>could</u> extend the procudure to keep $\epsilon \in L(G)$. *Procedure:* Add a new start symbol with two rules:

- > One that goes into ϵ (only if $\epsilon \in L(G)$),
- > one that goes into the original start symbol.

Example: Grammar <u>with</u> Unit Productions	
Suppose $G = (\{A, B, C, D\}, \{a, b\}, \mathcal{P}, A)$ with \mathcal{P} :	
$ ightarrow$ $A \longrightarrow aC \mid B$	
$\rightarrow B \longrightarrow bD \mid A$	
$ ightarrow C \longrightarrow aC \mid \epsilon$	
$\rightarrow D \longrightarrow bD \mid \epsilon$	

How could an equivalent grammar look like without unit productions?

Example: Grammar with Unit Productions Suppose $G = (\{A, B, C, D\}, \{a, b\}, \mathcal{P}, A)$ with \mathcal{P} : $A \longrightarrow aC \mid B$ $B \longrightarrow bD \mid A$ $C \longrightarrow aC \mid \epsilon$ $D \longrightarrow bD \mid \epsilon$

How could an equivalent grammar look like without unit productions?

Example: Grammar without Unit Productions Suppose $G = (\{A, B, C, D\}, \{a, b\}, \mathcal{P}, A)$ with \mathcal{P} : $A \longrightarrow aC \mid bD \mid B'$ $B \longrightarrow bD \mid aC \mid A$ $C \longrightarrow aC \mid \epsilon$ $D \longrightarrow bD \mid \epsilon$ Note: Rules with B being the head can **never** be used.

> Given a grammar *G* and variables $A, B \in V$, we say (A, B) form a **unit pair** if $A \underset{G}{\stackrel{*}{\Rightarrow}} B$ using unit productions alone.

- > Given a grammar *G* and variables $A, B \in V$, we say (A, B) form a **unit pair** if $A \underset{G}{\stackrel{*}{\Rightarrow}} B$ using unit productions alone.
- > We can identify unit pairs as follows:
 - > Basis: For each $A \in V$, (A, A) is a unit pair (since $A \stackrel{*}{\Rightarrow} A$).
 - > Induction: If (A, B) is a unit pair, and $B \to C$ is a production in \mathcal{P} , then (A, C) is a unit pair.

8/31

- > Given a grammar *G* and variables $A, B \in V$, we say (A, B) form a **unit pair** if $A \underset{G}{\stackrel{*}{\Rightarrow}} B$ using unit productions alone.
- > We can identify unit pairs as follows:
 - > Basis: For each $A \in V$, (A, A) is a unit pair (since $A \stackrel{*}{\Rightarrow} A$).
 - > Induction: If (A, B) is a unit pair, and $B \to C$ is a production in \mathcal{P} , then (A, C) is a unit pair.
- > Note: Suppose $A \longrightarrow BC$ and $C \longrightarrow \epsilon$ are productions then $A \stackrel{*}{\underset{G}{\Rightarrow}} B$, but (A, B) is

not a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

- > Given a grammar *G* and variables $A, B \in V$, we say (A, B) form a **unit pair** if $A \underset{G}{\stackrel{*}{\Rightarrow}} B$ using unit productions alone.
- > We can identify unit pairs as follows:
 - > Basis: For each $A \in V$, (A, A) is a unit pair (since $A \stackrel{*}{\Rightarrow} A$).
 - > Induction: If (A, B) is a unit pair, and $B \to C$ is a production in \mathcal{P} , then (A, C) is a unit pair.
- > Note: Suppose $A \longrightarrow BC$ and $C \longrightarrow \epsilon$ are productions then $A \stackrel{*}{\underset{G}{\Rightarrow}} B$, but (A, B) is **not** a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

- > Given G = (V, T, P, S) define $G_{\text{no-unit}} = (V, T, P_{\text{no-unit}}, S)$ as follows:
 - 1. Start with $\mathcal{P}_{no-unit} = \mathcal{P}$. Find all unit pairs of G.
 - 2. For every unit pair (A, B) and non-unit production rule $B \longrightarrow \alpha$, add rule $A \longrightarrow \alpha$ to $\mathcal{P}_{no-unit}$.
 - 3. Delete **all** unit production rules in $\mathcal{P}_{no-unit}$.

8/31

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

Example See Slide 7. Theorem 7.1.3 The induction procedure on Slide 8 identifies all unit pairs. Theorem 7.1.4 $L(G_{no-unit}) = L(G).^{b}$ ^bOutline of the proof is given in the Additional Proofs Section at the end

> A symbol $X \in V \cup T$ is said to be

> generating if
$$X \stackrel{*}{\Rightarrow} w$$
 for some $w \in T^*$;

> reachable if $S \stackrel{*}{\Rightarrow} \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$; and

> useful if
$$S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta \stackrel{*}{\underset{G}{\Rightarrow}} w$$
 for some $w \in T^*$ and $\alpha, \beta \in (V \cup T)^*$.
(Useful \Rightarrow Reachable + Generating, but not necessarily vice versa!
Suppose $X \stackrel{*}{\underset{G}{\Rightarrow}} a$, so X is generating. Assume $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta$, so X is reachable.
Now assume each rule $A \longrightarrow \alpha$ with $X \in \alpha$ has another variabe $B \in \alpha$ with empty language. So we can't turn X into a terminal word, although X is generating!)

> A symbol $X \in V \cup T$ is said to be

> generating if
$$X \stackrel{*}{\Rightarrow} w$$
 for some $w \in T^*$;

> reachable if $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$; and

> useful if
$$S \underset{G}{\Rightarrow} \alpha X \beta \underset{G}{\Rightarrow} w$$
 for some $w \in T^*$ and $\alpha, \beta \in (V \cup T)^*$.
(Useful \Rightarrow Reachable + Generating, but not necessarily vice versa!
Suppose $X \underset{G}{\Rightarrow} a$, so X is generating. Assume $S \underset{G}{\Rightarrow} \alpha X \beta$, so X is reachable.
Now assume each rule $A \longrightarrow \alpha$ with $X \in \alpha$ has another variabe $B \in \alpha$ with empty language. So we can't turn X into a terminal word, although X is generating!)

> Given a grammar G, we can identify generating variables as follows:

> Basis: For each $a \in T$, $a \stackrel{*}{\underset{C}{\Rightarrow}} a$. So a is generating.

> Induction: If $A \longrightarrow \alpha$, and every symbol of α is generating, so is A.

- > A symbol $X \in V \cup T$ is said to be
 - > generating if $X \stackrel{*}{\to} w$ for some $w \in T^*$;
 - > reachable if $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$; and
 - > useful if $S \stackrel{*}{\underset{G}{\Rightarrow}} \alpha X \beta \stackrel{*}{\underset{G}{\Rightarrow}} w$ for some $w \in T^*$ and $\alpha, \beta \in (V \cup T)^*$. (Useful \Rightarrow Reachable + Generating, but not necessarily vice versa!
 - Suppose $X \stackrel{*}{\Rightarrow} a$, so X is generating. Assume $S \stackrel{*}{\Rightarrow} \alpha X \beta$, so X is reachable.

Now assume each rule $A \longrightarrow \alpha$ with $X \in \alpha$ has another variabe $B \in \alpha$ with empty language. So we can't turn X into a terminal word, although X is generating!)

- > Given a grammar G, we can identify generating variables as follows:
 - > Basis: For each $a \in T$, $a \stackrel{*}{\Rightarrow} a$. So a is generating.
 - > Induction: If $A \longrightarrow \alpha$, and every symbol of α is generating, so is A.
- > Given a grammar G, we can identify reachable variables as follows:
 - > Basis: $S \stackrel{*}{\to} S$ so S is reachable.
 - > Induction: If $A \longrightarrow \alpha$, and A is reachable, so is every symbol of α .

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

Procedure to Eliminate Useless Variables

- > Given $G = (V, T, \mathcal{P}, S)$ define $G_G = (V_G, T, \mathcal{P}_G, S)$ as follows:
 - > Find all generating symbols of G.
 - > V_G is the set of all generating variables.
 - > P_G is the set of production rules involving **only** generating symbols.

Procedure to Eliminate Useless Variables

> Given $G = (V, T, \mathcal{P}, S)$ define $G_G = (V_G, T, \mathcal{P}_G, S)$ as follows:

- > Find all generating symbols of G.
- > V_G is the set of all generating variables.
- > P_G is the set of production rules involving **only** generating symbols.
- > Now, define $G_{GR} = (V_{GR}, T_{GR}, \mathcal{P}_{GR}, S)$ as follows:
 - > Find all reachable symbols of G_{G} .
 - > $V_{\rm GR}$ is the set of all reachable variables.
 - > P_{GR} is the set of production rules involving **only** reachable symbols.

Procedure to Eliminate Useless Variables

> Given G = (V, T, P, S) define $G_G = (V_G, T, P_G, S)$ as follows:

- > Find all generating symbols of G.
- > V_G is the set of all generating variables.
- > P_G is the set of production rules involving **only** generating symbols.
- > Now, define $G_{GR} = (V_{GR}, T_{GR}, \mathcal{P}_{GR}, S)$ as follows:
 - > Find all reachable symbols of G_{G} .
 - > $V_{\rm GR}$ is the set of all reachable variables.
 - > P_{GR} is the set of production rules involving **only** reachable symbols.

The Order of Eliminating Variables is Important!

Procedure to Eliminate Useless Variables

> Given G = (V, T, P, S) define $G_G = (V_G, T, P_G, S)$ as follows:

- > Find all generating symbols of G.
- > V_G is the set of all generating variables.
- > P_G is the set of production rules involving **only** generating symbols.
- > Now, define $G_{GR} = (V_{GR}, T_{GR}, \mathcal{P}_{GR}, S)$ as follows:
 - > Find all reachable symbols of G_{G} .
 - > $V_{\rm GR}$ is the set of all reachable variables.
 - > P_{GR} is the set of production rules involving **only** reachable symbols.

The Order of Eliminating Variables is Important!

 $\textbf{>} \text{ Consider } \textit{G} = (\{\textit{A},\textit{B},\textit{S}\},\{\textit{0},1\},\mathcal{P},\textit{S}) \text{ with } \mathcal{P}: \textit{S} \longrightarrow \textit{AB} | \textit{0}; \textit{A} \longrightarrow \textit{1A}; \textit{B} \longrightarrow \textit{1}.$

Procedure to Eliminate Useless Variables

> Given G = (V, T, P, S) define $G_G = (V_G, T, P_G, S)$ as follows:

- > Find all generating symbols of G.
- > V_G is the set of all generating variables.
- > P_G is the set of production rules involving **only** generating symbols.
- > Now, define $G_{GR} = (V_{GR}, T_{GR}, \mathcal{P}_{GR}, S)$ as follows:
 - > Find all reachable symbols of G_{G} .
 - > $V_{\rm GR}$ is the set of all reachable variables.
 - > P_{GR} is the set of production rules involving **only** reachable symbols.

The Order of Eliminating Variables is Important!

> Consider $G = (\{A, B, S\}, \{0, 1\}, \mathcal{P}, S)$ with $\mathcal{P} : S \longrightarrow AB|0; A \longrightarrow 1A; B \longrightarrow 1$.

> A is not generating. Removing A and the rules $S \longrightarrow AB$ and $A \longrightarrow 1A$ results in B being unreachable. Removing B and $B \rightarrow 1$ yields $G_{GR} = (\{S\}, \{0\}, S \longrightarrow 0, S)$.

Procedure to Eliminate Useless Variables

> Given G = (V, T, P, S) define $G_G = (V_G, T, P_G, S)$ as follows:

- > Find all generating symbols of G.
- > V_G is the set of all generating variables.
- > P_G is the set of production rules involving **only** generating symbols.
- > Now, define $G_{GR} = (V_{GR}, T_{GR}, \mathcal{P}_{GR}, S)$ as follows:
 - > Find all reachable symbols of G_{G} .
 - > $V_{\rm GR}$ is the set of all reachable variables.
 - > P_{GR} is the set of production rules involving **only** reachable symbols.

The Order of Eliminating Variables is Important!

> Consider *G* = ({*A*, *B*, *S*}, {0,1}, *P*, *S*) with *P* : *S* → *AB*|0; *A* → 1*A*; *B* → 1.

- > A is not generating. Removing A and the rules $S \longrightarrow AB$ and $A \longrightarrow 1A$ results in B being unreachable. Removing B and $B \rightarrow 1$ yields $G_{GR} = (\{S\}, \{0\}, S \longrightarrow 0, S)$.
- > Reversing the order, we first see that all symbols are reachable; removing then the non-generating symbol A and production rules $S \longrightarrow AB$ and $A \longrightarrow 1A$ yields $G_{RG} = (\{B, S\}, \{0\}, S \longrightarrow 0 \text{ and } B \longrightarrow 0, S)$. But B is unreachable now!

Theorem 7.1.5

The induction procedure on Slide 10 identifies all generating variables.

Theorem 7.1.6

The induction procedure on Slide 10 identifies all reachable variables.

Theorem 7.1.7

(1) $L(G) = L(G_{GR})$; and (2) Every symbol in G_{GR} is useful.^c

^cProof in the Additional Proofs Section at the end

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

> Given G = (V, T, P, S), define $\hat{G} = (\hat{V}, T, \hat{P}, S)$ as follows:

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

- > Given G = (V, T, P, S), define $\hat{G} = (\hat{V}, T, \hat{P}, S)$ as follows:
 - > Start with $\hat{G} = G$ and do the following operations.
 - > For every terminal $a \in T$ that appears in the body of length 2 or more, introduce a new variable A and a new production rule $A \longrightarrow a$.
 - > Replace the occurrence of all such terminals in the body of length 2 or more by the introduced variables.

13/31

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

> Given
$$G = (V, T, P, S)$$
, define $\hat{G} = (\hat{V}, T, \hat{P}, S)$ as follows:

- > Start with $\hat{G} = G$ and do the following operations.
- > For every terminal $a \in T$ that appears in the body of length 2 or more, introduce a new variable A and a new production rule $A \rightarrow a$.
- > Replace the occurrence of all such terminals in the body of length 2 or more by the introduced variables.
- > Replace every rule $A \longrightarrow B_1 \cdots B_k$ for k > 2, by introducing k 2 variables D_1, \ldots, D_{k-2} , and by replacing the rule by the following k 1 rules:

$$\begin{array}{cccc} A \longrightarrow B_1 \underbrace{D_1} & \underbrace{D_2} \longrightarrow B_3 \underbrace{D_3} & \cdots & \underbrace{D_{k-2}} \longrightarrow B_{k-1} B_k \\ & \underbrace{D_1} \longrightarrow B_2 \underbrace{D_2} & \cdots & D_{k-3} \longrightarrow B_{k-2} \underbrace{D_{k-2}} \end{array}$$

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

> Given
$$G = (V, T, P, S)$$
, define $\hat{G} = (\hat{V}, T, \hat{P}, S)$ as follows:

- > Start with $\hat{G} = G$ and do the following operations.
- > For every terminal $a \in T$ that appears in the body of length 2 or more, introduce a new variable A and a new production rule $A \longrightarrow a$.
- > Replace the occurrence of all such terminals in the body of length 2 or more by the introduced variables.
- > Replace every rule $A \longrightarrow B_1 \cdots B_k$ for k > 2, by introducing k 2 variables D_1, \ldots, D_{k-2} , and by replacing the rule by the following k 1 rules:

$$\begin{array}{cccc} A \longrightarrow B_1 \underbrace{D_1} & \underbrace{D_2} \longrightarrow B_3 \underbrace{D_3} & \cdots & \underbrace{D_{k-2}} \longrightarrow B_{k-1} B_k \\ & \underbrace{D_1} \longrightarrow B_2 \underbrace{D_2} & \cdots & D_{k-3} \longrightarrow B_{k-2} \underbrace{D_{k-2}} \end{array}$$

> Note: Each introduced variable appears in the head exactly once.

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

> Given
$$G = (V, T, P, S)$$
, define $\hat{G} = (\hat{V}, T, \hat{P}, S)$ as follows:

- > Start with $\hat{G} = G$ and do the following operations.
- > For every terminal $a \in T$ that appears in the body of length 2 or more, introduce a new variable A and a new production rule $A \longrightarrow a$.
- > Replace the occurrence of all such terminals in the body of length 2 or more by the introduced variables.
- > Replace every rule $A \longrightarrow B_1 \cdots B_k$ for k > 2, by introducing k 2 variables D_1, \ldots, D_{k-2} , and by replacing the rule by the following k 1 rules:

$$\begin{array}{cccc} A \longrightarrow B_1 \underbrace{D_1} & \underbrace{D_2} \longrightarrow B_3 \underbrace{D_3} & \cdots & \underbrace{D_{k-2}} \longrightarrow B_{k-1} B_k \\ & D_1 \longrightarrow B_2 \underbrace{D_2} & \cdots & D_{k-3} \longrightarrow B_{k-2} \underbrace{D_{k-2}} \end{array}$$

> Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

 $L(G) = L(\hat{G}).^d$

^dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher

week 4: Properties and Normal Forms of CFLs

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

14/31

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

Proof

> Since L is a CFL, it must correspond to some CFG G.

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

- > Since L is a CFL, it must correspond to some CFG G.
- > Eliminate ϵ productions (Step 1) to derive a grammar G_1 from G such that $L(G_1) = L(G) \setminus {\epsilon}$.

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

Proof

- > Since L is a CFL, it must correspond to some CFG G.
- > Eliminate ϵ productions (Step 1) to derive a grammar G_1 from G such that $L(G_1) = L(G) \setminus \{\epsilon\}.$
- > Eliminate unit productions (Step 2) to derive a grammar G_2 from G_1 such that $L(G_2) = L(G_1)$.

14/31

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

- > Since L is a CFL, it must correspond to some CFG G.
- > Eliminate ϵ productions (Step 1) to derive a grammar G_1 from G such that $L(G_1) = L(G) \setminus {\epsilon}$.
- > Eliminate unit productions (Step 2) to derive a grammar G_2 from G_1 such that $L(G_2) = L(G_1)$.
- > Eliminate useless variables (Step 3) to derive a grammar G_3 from G_2 such that $L(G_3) = L(G_2)$.

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

- > Since L is a CFL, it must correspond to some CFG G.
- > Eliminate ϵ productions (Step 1) to derive a grammar G_1 from G such that $L(G_1) = L(G) \setminus \{\epsilon\}.$
- > Eliminate unit productions (Step 2) to derive a grammar G_2 from G_1 such that $L(G_2) = L(G_1)$.
- > Eliminate useless variables (Step 3) to derive a grammar G_3 from G_2 such that $L(G_3) = L(G_2)$.
- > Eliminate complex productions (Step 4) to derive a grammar G_4 from G_3 such that $L(G_4) = L(G_3)$.

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar G in Chomsky Normal Form such that $L \setminus \{\epsilon\} = L(G)$.

- > Since L is a CFL, it must correspond to some CFG G.
- > Eliminate ϵ productions (Step 1) to derive a grammar G_1 from G such that $L(G_1) = L(G) \setminus \{\epsilon\}.$
- > Eliminate unit productions (Step 2) to derive a grammar G_2 from G_1 such that $L(G_2) = L(G_1)$.
- > Eliminate useless variables (Step 3) to derive a grammar G_3 from G_2 such that $L(G_3) = L(G_2)$.
- > Eliminate complex productions (Step 4) to derive a grammar G_4 from G_3 such that $L(G_4) = L(G_3)$.
- > G_4 contains no ϵ -productions, no unit productions, no useless variables, and all productions have one terminal or two non-terminals in the body; Hence G_4 is in CNF.

Theorem 7.2.1

Let $L \neq \emptyset$ be a CFL. Then there exists n > 0 such that for any string $z \in L$ with $|z| \ge n$, (1) z = uvwxy; (2) $vx \ne \epsilon$; (3) $|vwx| \le n$; $uv^iwx^iy \in L$ for any $i \ge 0$.

Theorem 7.2.1

Let $L \neq \emptyset$ be a CFL. Then there exists n > 0 such that for any string $z \in L$ with $|z| \ge n$, (1) z = uvwxy; (2) $vx \ne \epsilon$; (3) $|vwx| \le n$; $uv^i wx^i y \in L$ for any $i \ge 0$.

Proof

> Since the claim only pertains to non-empty strings, we can show the claim for $L \setminus \{\epsilon\}$.

Theorem 7.2.1

Let $L \neq \emptyset$ be a CFL. Then there exists n > 0 such that for any string $z \in L$ with $|z| \ge n$, (1) z = uvwxy; (2) $vx \ne \epsilon$; (3) $|vwx| \le n$; $uv^i wx^i y \in L$ for any $i \ge 0$.

- > Since the claim only pertains to non-empty strings, we can show the claim for $L \setminus \{\epsilon\}$.
- > Let CNF grammar G generate $L \setminus \{\epsilon\}$. Choose $n = 2^m$ where m = |V| in G.

Theorem 7.2.1

Let $L \neq \emptyset$ be a CFL. Then there exists n > 0 such that for any string $z \in L$ with $|z| \ge n$, (1) z = uvwxy; (2) $vx \ne \epsilon$; (3) $|vwx| \le n$; $uv^iwx^iy \in L$ for any $i \ge 0$.

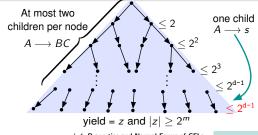
- > Since the claim only pertains to non-empty strings, we can show the claim for $L \setminus \{\epsilon\}$.
- > Let CNF grammar G generate $L \setminus \{\epsilon\}$. Choose $n = 2^m$ where m = |V| in G.
- > Pick any z with $|z| \ge n$.

Theorem 7.2.1

Let $L \neq \emptyset$ be a CFL. Then there exists n > 0 such that for any string $z \in L$ with $|z| \ge n$, (1) z = uvwxy; (2) $vx \ne \epsilon$; (3) $|vwx| \le n$; $uv^i wx^i y \in L$ for any $i \ge 0$.

Proof

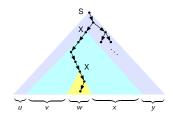
- > Since the claim only pertains to non-empty strings, we can show the claim for $L \setminus \{\epsilon\}$.
- > Let CNF grammar G generate $L \setminus \{\epsilon\}$. Choose $n = 2^m$ where m = |V| in G.
- > Pick any z with $|z| \ge n$.
- > Depth $d \ge m + 1$.



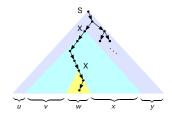
15/31

Proof

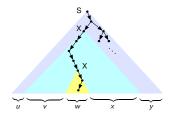
> Since depth $d \ge m + 1$, there must be a path with with at least m + 1 edges.



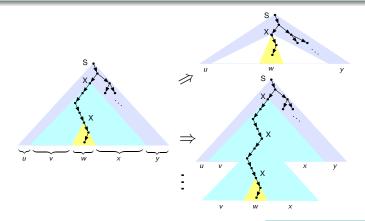
- > Since depth $d \ge m + 1$, there must be a path with with at least m + 1 edges.
- > In this path, at least two labels must match (since there are only m = |V| many).



- > Since depth $d \ge m + 1$, there must be a path with with at least m + 1 edges.
- > In this path, at least two labels must match (since there are only m = |V| many).
- > Then, the Pumping Lemma claim follows from the following pictorial argument.



- > Since depth $d \ge m + 1$, there must be a path with with at least m + 1 edges.
- > In this path, at least two labels must match (since there are only m = |V| many).
- > Then, the Pumping Lemma claim follows from the following pictorial argument.



> The Pumping Lemma (PL) can be used to argue that some langauges are **not** CFLs.

Proof that $L = \{0^n 1^n 2^n : n \ge 0\}$ is Not Context-Free

> The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that $L = \{0^n 1^n 2^n : n \ge 0\}$ is Not Context-Free

> Suppose it were.

> The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that $L = \{0^n 1^n 2^n : n \ge 0\}$ is Not Context-Free

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.

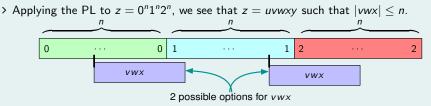
> The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that $L = \{0^n 1^n 2^n : n \ge 0\}$ is Not Context-Free

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.
- > Applying the PL to $z = 0^n 1^n 2^n$, we see that z = uvwxy such that $|vwx| \le n$.

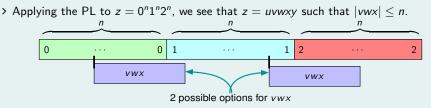
> The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.



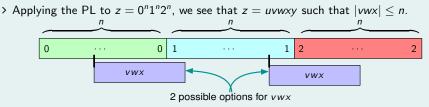
> *vwx* cannot contain both zeros and twos. Two cases arise:

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.



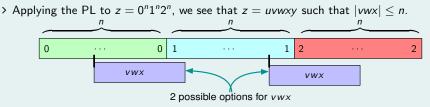
- > *vwx* cannot contain both zeros and twos. Two cases arise:
 - > Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than 2s. Such a string is not in L.

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.



- > *vwx* cannot contain both zeros and twos. Two cases arise:
 - > Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than 2s. Such a string is not in L.
 - > Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than 0s. Such a string is not in L.

- > Suppose it were.
- > There exists an n such that for strings z longer than n pumping lemma applies.



- > *vwx* cannot contain both zeros and twos. Two cases arise:
 - > Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than 2s. Such a string is not in L.
 - > Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than 0s. Such a string is not in L.
- > There are 3 cases with only one letter. (Also show that String is not in L.)

> Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .

- > Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .
- > We can extend the substitution to words by concatenation, i.e., $h(s_1 \cdots s_k) = h(s_1)h(s_2) \cdots h(s_k)$. // here, we concatenate languages!

18/31

- > Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .
- > We can extend the substitution to words by concatenation, i.e., $h(s_1 \cdots s_k) = h(s_1)h(s_2) \cdots h(s_k)$. // here, we concatenate languages!
- > One can then extend the substitution to languages by unioning, i.e.,

$$h(L) := \bigcup_{s_1 \cdots s_\ell \in L} h(s_1 \cdots s_\ell) = \bigcup_{s_1 \cdots s_\ell \in L} h(s_1) \cdots h(s_\ell)$$

i.e., h(L) is the language formed by substituting each symbol in a string in the language L by a corresponding language.

- > Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .
- > We can extend the substitution to words by concatenation, i.e., $h(s_1 \cdots s_k) = h(s_1)h(s_2) \cdots h(s_k)$. // here, we concatenate languages!
- > One can then extend the substitution to languages by unioning, i.e.,

$$h(L) := \bigcup_{s_1 \cdots s_\ell \in L} h(s_1 \cdots s_\ell) = \bigcup_{s_1 \cdots s_\ell \in L} h(s_1) \cdots h(s_\ell)$$

i.e., h(L) is the language formed by substituting each symbol in a string in the language L by a corresponding language.

An Example

Let $h(a) = \{0\}$ and $h(b) = \{1, 11\}$, $L = \{a^n b^n : n \ge 0\}$, and $w = aabb \in L$. Then,

- > Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .
- > We can extend the substitution to words by concatenation, i.e., $h(s_1 \cdots s_k) = h(s_1)h(s_2) \cdots h(s_k)$. // here, we concatenate languages!
- > One can then extend the substitution to languages by unioning, i.e.,

$$h(L) := \bigcup_{s_1 \cdots s_\ell \in L} h(s_1 \cdots s_\ell) = \bigcup_{s_1 \cdots s_\ell \in L} h(s_1) \cdots h(s_\ell)$$

i.e., h(L) is the language formed by substituting each symbol in a string in the language L by a corresponding language.

An Example

Let
$$h(a) = \{0\}$$
 and $h(b) = \{1, 11\}$, $L = \{a^n b^n : n \ge 0\}$, and $w = aabb \in L$. Then,
 $h(w) = h(a)h(a)h(b)h(b) = \{0\}\{0\}\{1, 11\}\{1, 11\} = \{00\}\{11, 111, 111, 1111\}$
 $= \{00\}\{11, 111, 1111\} = \{0011, 00111, 001111\} = \{0^21^m : 2 \le m \le 2 \cdot 2 = 4\}$

- > Let L be a CFL on Σ_1 , and let h be a substitution, i.e., for each $a \in \Sigma_1$, h(a) is a language over some alphabet Σ_a .
- > We can extend the substitution to words by concatenation, i.e., $h(s_1 \cdots s_k) = h(s_1)h(s_2) \cdots h(s_k)$. // here, we concatenate languages!
- > One can then extend the substitution to languages by unioning, i.e.,

$$h(L) := \bigcup_{s_1 \cdots s_\ell \in L} h(s_1 \cdots s_\ell) = \bigcup_{s_1 \cdots s_\ell \in L} h(s_1) \cdots h(s_\ell)$$

i.e., h(L) is the language formed by substituting each symbol in a string in the language L by a corresponding language.

An Example

Let
$$h(a) = \{0\}$$
 and $h(b) = \{1, 11\}$, $L = \{a^n b^n : n \ge 0\}$, and $w = aabb \in L$. Then,
 $h(w) = h(a)h(a)h(b)h(b) = \{0\}\{0\}\{1, 11\}\{1, 11\} = \{00\}\{11, 111, 111, 111\}$
 $= \{00\}\{11, 111, 1111\} = \{0011, 00111, 001111\} = \{0^21^m : 2 \le m \le 2 \cdot 2 = 4\}$
 $h(L) = \{0^n1^m : n, m \ge 0$, such that $n \le m \le 2n\}$

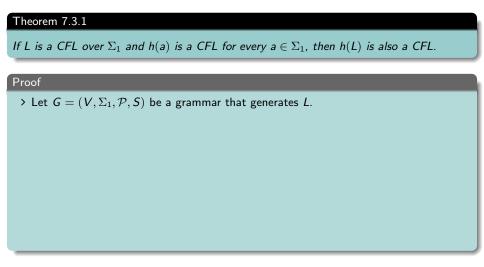
Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Let G be a CFG generating L.



Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Proof

- > Let $G = (V, \Sigma_1, \mathcal{P}, S)$ be a grammar that generates L.
- > For each $a \in \Sigma_1$, let $G_a = (V_a, \Sigma_a, \mathcal{P}_a, S_a)$ be a grammar that generates h(a).

19/31

Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Proof

- > Let $G = (V, \Sigma_1, \mathcal{P}, S)$ be a grammar that generates L.
- > For each $a \in \Sigma_1$, let $G_a = (V_a, \Sigma_a, \mathcal{P}_a, S_a)$ be a grammar that generates h(a).
- > WLOG, assume that $V \cap V_a = \emptyset$ for each $a \in \Sigma_1$.

Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Proof

- > Let $G = (V, \Sigma_1, \mathcal{P}, S)$ be a grammar that generates L.
- > For each $a \in \Sigma_1$, let $G_a = (V_a, \Sigma_a, \mathcal{P}_a, S_a)$ be a grammar that generates h(a).
- > WLOG, assume that $V \cap V_a = \emptyset$ for each $a \in \Sigma_1$.
- > Now define $\hat{G} = (V, \{S_a : a \in \Sigma_1\}, \hat{\mathcal{P}}, S)$ by
 - > Every rule of $\hat{\mathcal{P}}$ is a rule of \mathcal{P} obtained by replacing each $a \in \Sigma_1$ by S_a .
 - > For example, $X \to aXb$ in \mathcal{P} will correspond to $X \to S_aXS_b$ in $\hat{\mathcal{P}}$ if $a, b \in \Sigma_1$.

Theorem 7.3.1

If L is a CFL over Σ_1 and h(a) is a CFL for every $a \in \Sigma_1$, then h(L) is also a CFL.

Proof

- > Let $G = (V, \Sigma_1, \mathcal{P}, S)$ be a grammar that generates L.
- > For each $a \in \Sigma_1$, let $G_a = (V_a, \Sigma_a, \mathcal{P}_a, S_a)$ be a grammar that generates h(a).
- > WLOG, assume that $V \cap V_a = \emptyset$ for each $a \in \Sigma_1$.
- > Now define $\hat{G} = (V, \{S_a : a \in \Sigma_1\}, \hat{\mathcal{P}}, S)$ by
 - > Every rule of $\hat{\mathcal{P}}$ is a rule of \mathcal{P} obtained by replacing each $a \in \Sigma_1$ by S_a .
 - > For example, $X \to aXb$ in \mathcal{P} will correspond to $X \to S_aXS_b$ in \mathcal{P} if $a, b \in \Sigma_1$.
- > Let $G_{sub} = (V \cup (\cup_{a \in \Sigma_1} V_a), \cup_{a \in \Sigma_1} \Sigma_a, \hat{\mathcal{P}} \cup (\cup_{a \in \Sigma_1} \mathcal{P}_a), S)$. Claim: G_{sub} generates h(L).
- > Note that $w \in h(L)$ can be written as $w_{a_1} \cdots w_{a_\ell}$ for $w_{a_i} \in h(a_i)$ for each *i*, and for some $a_1 \cdots a_\ell \in L$.

Closure under:

> (Finite) Union: Let $L = \{1, 2, ..., k\}$ and $h(i) = L_i$ be a CFL for each i = 1, ..., k. By Theorem 7.3.1, $h(L) = L_1 \cup \cdots \cup L_k$ is a CFL.

- > (Finite) Union: Let $L = \{1, 2, ..., k\}$ and $h(i) = L_i$ be a CFL for each i = 1, ..., k. By Theorem 7.3.1, $h(L) = L_1 \cup \cdots \cup L_k$ is a CFL.
- > (Finite) Concatenation: Let $L = \{a_1a_2 \cdots a_k\}$ and $h(a_i) = L_{a_i}$ be a CFL for each $i = 1, \dots, k$. By Theorem 7.3.1, $h(L) = L_{a_1} \cdots L_{a_k}$ is a CFL.

- > (Finite) Union: Let $L = \{1, 2, ..., k\}$ and $h(i) = L_i$ be a CFL for each i = 1, ..., k. By Theorem 7.3.1, $h(L) = L_1 \cup \cdots \cup L_k$ is a CFL.
- > (Finite) Concatenation: Let $L = \{a_1a_2 \cdots a_k\}$ and $h(a_i) = L_{a_i}$ be a CFL for each $i = 1, \dots, k$. By Theorem 7.3.1, $h(L) = L_{a_1} \cdots L_{a_k}$ is a CFL.
- > Kleene-* closure: Let $L = \{a\}^*$ and $h(a) = L_a$ be a CFL. By Theorem 7.3.1, $h(L) = (L_a)^*$ is a CFL.

- > (Finite) Union: Let $L = \{1, 2, ..., k\}$ and $h(i) = L_i$ be a CFL for each i = 1, ..., k. By Theorem 7.3.1, $h(L) = L_1 \cup \cdots \cup L_k$ is a CFL.
- > (Finite) Concatenation: Let $L = \{a_1a_2 \cdots a_k\}$ and $h(a_i) = L_{a_i}$ be a CFL for each $i = 1, \dots, k$. By Theorem 7.3.1, $h(L) = L_{a_1} \cdots L_{a_k}$ is a CFL.
- > Kleene-* closure: Let $L = \{a\}^*$ and $h(a) = L_a$ be a CFL. By Theorem 7.3.1, $h(L) = (L_a)^*$ is a CFL.
- > Positive closure: Let $L = \{a\}^+ := \{a^n : n \ge 1\}$ and $h(a) = L_a$ be a CFL. By Theorem 7.3.1, $h(L) = L_a(L_a)^*$ is a CFL.

- > (Finite) Union: Let $L = \{1, 2, ..., k\}$ and $h(i) = L_i$ be a CFL for each i = 1, ..., k. By Theorem 7.3.1, $h(L) = L_1 \cup \cdots \cup L_k$ is a CFL.
- > (Finite) Concatenation: Let $L = \{a_1 a_2 \cdots a_k\}$ and $h(a_i) = L_{a_i}$ be a CFL for each $i = 1, \dots, k$. By Theorem 7.3.1, $h(L) = L_{a_1} \cdots L_{a_k}$ is a CFL.
- > Kleene-* closure: Let $L = \{a\}^*$ and $h(a) = L_a$ be a CFL. By Theorem 7.3.1, $h(L) = (L_a)^*$ is a CFL.
- > Positive closure: Let $L = \{a\}^+ := \{a^n : n \ge 1\}$ and $h(a) = L_a$ be a CFL. By Theorem 7.3.1, $h(L) = L_a(L_a)^*$ is a CFL.
- > Homomorphism: Let *L* be a CFL and *g* be a homomorphism (i.e., *h* maps symbols to strings of symbols over some alphabet). Define $h(a) = \{g(a)\}$, which is a regular/CF language.Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

21/31

Theorem 7.3.2

If L is CFL, then so is L^R .

Theorem 7.3.2

If L is CFL, then so is L^R .

Proof

→ If $G = (V, T, \mathcal{P}, S)$ generates L, then $G^R = (V, T, \mathcal{P}^R, S)$ generates L^R where $A \to X_1 \cdots X_\ell$ in $\mathcal{P} \iff A \to (X_1 \cdots X_\ell)^R = X_\ell X_{\ell-1} \cdots X_1$ in \mathcal{P}^R

Theorem 7.3.2

If L is CFL, then so is L^R .

Proof

→ If
$$G = (V, T, \mathcal{P}, S)$$
 generates L , then $G^R = (V, T, \mathcal{P}^R, S)$ generates L^R where
 $A \to X_1 \cdots X_\ell$ in $\mathcal{P} \iff A \to (X_1 \cdots X_\ell)^R = X_\ell X_{\ell-1} \cdots X_1$ in \mathcal{P}^R

Theorem 7.3.3

If L is a CFL, R is a regular language, then $L \cap R$ is a CFL.

21/31

Theorem 7.3.2

If L is CFL, then so is L^R .

Proof

→ If
$$G = (V, T, \mathcal{P}, S)$$
 generates L , then $G^R = (V, T, \mathcal{P}^R, S)$ generates L^R where
 $A \to X_1 \cdots X_\ell$ in $\mathcal{P} \iff A \to (X_1 \cdots X_\ell)^R = X_\ell X_{\ell-1} \cdots X_1$ in \mathcal{P}^R

Theorem 7.3.3

If L is a CFL, R is a regular language, then $L \cap R$ is a CFL.

Proof of Theorem 7.3.3

Product PDA approach: Run the PDA accepting L₁ and DFA accepting L₂ in parallel. Accept input string iff (if and only if) both machines accept.

Theorem 7.3.2

If L is CFL, then so is L^R .

Proof

→ If
$$G = (V, T, \mathcal{P}, S)$$
 generates L , then $G^R = (V, T, \mathcal{P}^R, S)$ generates L^R where
 $A \to X_1 \cdots X_\ell$ in $\mathcal{P} \iff A \to (X_1 \cdots X_\ell)^R = X_\ell X_{\ell-1} \cdots X_1$ in \mathcal{P}^R

Theorem 7.3.3

If L is a CFL, R is a regular language, then $L \cap R$ is a CFL.

Proof of Theorem 7.3.3

Product PDA approach: Run the PDA accepting L₁ and DFA accepting L₂ in parallel. Accept input string iff (if and only if) both machines accept.

Note: In an exam/paper/book, these would be proof ideas, not full proofs.

Theorem 7.3.4

If L is a CFL and h is a homomorphism, $h^{-1}(L) = \{w : h(w) \in L\}$ is also a CFL.

Theorem 7.3.4

If L is a CFL and h is a homomorphism, $h^{-1}(L) = \{w : h(w) \in L\}$ is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

Theorem 7.3.4

If L is a CFL and h is a homomorphism, $h^{-1}(L) = \{w : h(w) \in L\}$ is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

- > $h: \Sigma_1 \to \Sigma_2$ (since homomorphisms can map to another alphabet)
- > L is defined over Σ_2 and a CFL. Thus there is a PDA P with L(P) = L.

Theorem 7.3.4

If L is a CFL and h is a homomorphism, $h^{-1}(L) = \{w : h(w) \in L\}$ is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

- > $h: \Sigma_1 \to \Sigma_2$ (since homomorphisms can map to another alphabet)
- > L is defined over Σ_2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

> For $L' = h^{-1}(L)$ to be a CFL it suffices to show that there is a PDA P', such that: P' accepts w iff $h(w) \in L$, i.e., iff P accepts h(w).

Theorem 7.3.4

If L is a CFL and h is a homomorphism, $h^{-1}(L) = \{w : h(w) \in L\}$ is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

- > $h: \Sigma_1 \to \Sigma_2$ (since homomorphisms can map to another alphabet)
- > L is defined over Σ_2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

> For $L' = h^{-1}(L)$ to be a CFL it suffices to show that there is a PDA P', such that: P' accepts w iff $h(w) \in L$, i.e., iff P accepts h(w).

Example and Idea:

> Turn each w into h(w), then use P.

> Let
$$\Sigma_1 = \{0, 1\}$$
, $\Sigma_2 = \{a, b\}$, $h(0) = aa$, $h(1) = bbb$, $w = 011$

Pascal Bercher

Some More Closure Properties – 2 (cont'd)

A Coarse Outline of Proof of Theorem 7.3.4, Part 2

Problem:

> A PDA can't manipulate the input string! (Only Turing Machines can do that.)

Solution:

- > We store the outcome of *h* in the state itself!
- > Recall: h(0) = aa, h(1) = bbb.
- > Let the states of PDA P be q_0, \ldots, q_k . Then, the PDA P' that accepts $h^{-1}(L)$ has 6k states, namely (q_i, aa) , (q_i, a) , (q_i, ϵ) , (q_i, bb) , (q_i, bb) , and (q_i, b) .
- > The transition between states of P' is defined as if the second component is the input tape (e.g., (q_i, aa) transitions to (q_i, a)). Once the second component is empty, we can move on reading another symbol from $\{0, 1\}$ and filling the second component again accordingly.

Some Non-Closure Properties

> CFLs are not closed under intersection.

> Let $L_1 = \{0^n 1^n 2^m : n, m \ge 0\}$, $L_2 = \{0^n 1^m 2^n : n, m \ge 0\}$. Both are CFLs. However, $L_1 \cap L_2 = \{0^n 1^n 2^n : n \ge 0\}$ is not a CFL.

Some Non-Closure Properties

- > CFLs are not closed under intersection.
 - > Let $L_1 = \{0^n 1^n 2^m : n, m \ge 0\}$, $L_2 = \{0^n 1^m 2^n : n, m \ge 0\}$. Both are CFLs. However, $L_1 \cap L_2 = \{0^n 1^n 2^n : n \ge 0\}$ is not a CFL.
- > CFLs are not closed under complementation.
 - > Suppose CFLs are closed under complementation. Let L_1, L_2 be the aforementioned CFLs. Then $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$ must be a CFL (see slide 20), but it is not. Hence, CFLs cannot be closed under complementation.
 - > Note: There exist CFLs L such that L^c is a CFL as well.

Some Non-Closure Properties

- > CFLs are not closed under intersection.
 - > Let $L_1 = \{0^n 1^n 2^m : n, m \ge 0\}$, $L_2 = \{0^n 1^m 2^n : n, m \ge 0\}$. Both are CFLs. However, $L_1 \cap L_2 = \{0^n 1^n 2^n : n \ge 0\}$ is not a CFL.
- > CFLs are not closed under complementation.
 - > Suppose CFLs are closed under complementation. Let L_1, L_2 be the aforementioned CFLs. Then $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$ must be a CFL (see slide 20), but it is not. Hence, CFLs cannot be closed under complementation.
 - > Note: There exist CFLs L such that L^c is a CFL as well.
- > CFLs are not closed under set difference.
 - > Since CFLs are not closed under complementation, choose a CFL L such that L^c is not a CFL. But $L^c = \Sigma^* \setminus L$ and Σ^* is a CFL. Hence, CFLs are not closed under set difference.
 - > Note: There exist CFLs L_1, L_2 such that $L_1 \setminus L_2$ is a CFL as well.

Language Emptiness

> Conversion of a grammar *G* to a corresponding PDA, PDA to a corresponding grammar *G*, and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL *L*

Language Emptiness

> Conversion of a grammar G to a corresponding PDA, PDA to a corresponding grammar G, and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL L

> Let a grammar G = (V, T, P, S) generating the language L be given. (If PDA is given, convert it to a grammar G).

Language Emptiness

> Conversion of a grammar G to a corresponding PDA, PDA to a corresponding grammar G, and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL L

- > Let a grammar G = (V, T, P, S) generating the language L be given. (If PDA is given, convert it to a grammar G).
- > G is non-empty \iff S is generating.

Language Membership - The CYK Algorithm

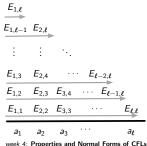
Membership of w in a CFL L

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

> Given CNF $G = (V, T, \mathcal{P}, S)$ and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2)$ sets $E_{i,j}$, with $1 \le i \le j \le \ell$.



Pascal Bercher

Language Membership – The CYK Algorithm

Membership of w in a CFL L

> Given CNF $G = (V, T, \mathcal{P}, S)$ and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2) \text{ sets } E_{i,j}, \text{ with } 1 \le i \le j \le \ell.$

> $E_{i,j}$ corresponds to **all** variables that can derive $a_i \cdots a_j$.

<i>E</i> _{1,ℓ}				
$E_{1,\ell-1}$	E _{2,ℓ}	•		
÷	÷	·		
E _{1,3}	E _{2,4}		• E _{l-2,l}	e
E _{1,2}	E _{2,3}	E _{3,4}	E _l	-1,ℓ
<i>E</i> _{1,1}	E _{2,2}	E _{3,3}		Ε _ℓ
a ₁	a 2	a ₃		al
week 4: Properties and Normal Forms of O				

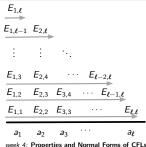
Pascal Bercher

CELS

Language Membership – The CYK Algorithm

Membership of w in a CFL L

- > Given CNF $G = (V, T, \mathcal{P}, S)$ and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2)$ sets $E_{i,j}$, with $1 \le i \le j \le \ell$.
- > $E_{i,j}$ corresponds to all variables that can derive $a_i \cdots a_j$.
- > $E_{i,i}$'s are identified from bottom to top, left to right by the following induction.



Pascal Bercher

Language Membership - The CYK Algorithm

Membership of w in a CFL L

- > Given CNF $G = (V, T, \mathcal{P}, S)$ and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2)$ sets $E_{i,j}$, with $1 \le i \le j \le \ell$.
- > $E_{i,j}$ corresponds to **all** variables that can derive $a_i \cdots a_j$.
- > $E_{i,j}$'s are identified from bottom to top, left to right by the following induction.
 - > Basis: For each $i = 1, ..., \ell$, $E_{i,i}$ contains **all** variables X such that $X \to a_i$.

Pascal Bercher

Semester 1, 2023

Language Membership – The CYK Algorithm

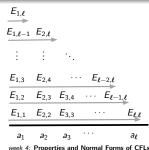
Membership of w in a CFL L

> Given CNF
$$G = (V, T, \mathcal{P}, S)$$
 and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2)$ sets $E_{i,j}$, with $1 \le i \le j \le \ell$.

> $E_{i,j}$ corresponds to all variables that can derive $a_i \cdots a_j$.

> $E_{i,i}$'s are identified from bottom to top, left to right by the following induction.

- > Basis: For each $i = 1, \ldots, \ell$, $E_{i,i}$ contains all variables X such that $X \to a_i$.
- > Induction: For each $i = 1, ..., \ell$ and $j > i, E_{i,i}$ contains X if:
 - (1) $X \longrightarrow YZ$ (2) $Y \in E_{i,i'}$ and $Z \in E_{i'+1,i}$ for some $i \leq i' \leq j$.



Pascal Bercher

Language Membership – The CYK Algorithm

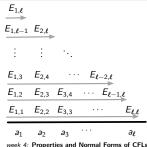
Membership of w in a CFL L

> Given CNF
$$G = (V, T, \mathcal{P}, S)$$
 and $w = a_1 \cdots a_\ell$ we identify $\sum_{i=1}^{\ell} i = \ell(\ell+1)/2 \in \mathcal{O}(\ell^2)$ sets $E_{i,j}$, with $1 \le i \le j \le \ell$.

> $E_{i,j}$ corresponds to all variables that can derive $a_i \cdots a_j$.

> $E_{i,i}$'s are identified from bottom to top, left to right by the following induction.

- > Basis: For each $i = 1, \ldots, \ell$, $E_{i,i}$ contains all variables X such that $X \to a_i$.
- > Induction: For each $i = 1, ..., \ell$ and $j > i, E_{i,i}$ contains X if:
- (1) $X \longrightarrow YZ$ (2) $Y \in E_{i,i'}$ and $Z \in E_{i'+1,i}$ for some $i \leq i' \leq j$.
- $> S \in E_1_{\ell} \iff w \in L(G).$



Pascal Bercher

Some Undecidable Questions about CFGs and CFLs

You might not know yet what "Undecidable" means. Thus:

- > You might want to get back to this in a few weeks!
- > In a nutshell (and quite informally), it implies that there's no algorithm that answers these questions correctly (with yes/no) and always terminates.

Some Undecidable Questions about CFGs and CFLs

You might not know yet what "Undecidable" means. Thus:

- > You might want to get back to this in a few weeks!
- > In a nutshell (and quite informally), it implies that there's no algorithm that answers these questions correctly (with yes/no) and always terminates.

Undecidable questions:

- > Is a given grammar unambiguous/ambiguous?
- > Is a given CFL inherently ambiguous?
- > Is the intersection of two CFLs empty?

(Fun fact: this is used to prove that HTN planning is undecidable. We might look into this in week 12!)

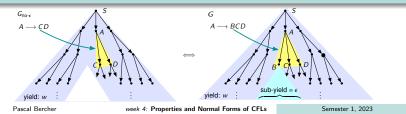
> Are two CFLs identical?

> Is a given CFL equal to Σ^* ?

Proof of Theorem 7.1.2

- $\leftarrow \text{ Construct a parse tree with yield } w \in L(G) \setminus \{\epsilon\}. \text{ Identify a maximal subtree, rooted at say } X, whose yield is <math>\epsilon$. Delete X and its subtree. Repeat until no such subtrees remain. In this illustrative example below, suppose that there is only one subtree with ϵ yield; let B be its label and let $A \longrightarrow BCD$ be the production that introduced B. Now, delete B and its subtree. This new subtree is a parse tree for $G_{\mathsf{no-}\epsilon}$ with yield w since $A \longrightarrow CD$ is a valid production rule in $\mathcal{P}_{\mathsf{no-}\epsilon}$ [Why? B is nullable].
- ⇒ Construct a parse tree with yield $w \in L(G_{no-\epsilon})$. Identify production rules (used in the tree) that are not in *P*. For each such rule, find an appropriate rule by appending nullable variables. To the parse tree, add the corresponding nullable variable(s) and a zero-yield subtrees to transform it to a parse tree for *G*.

In the example, the portion of the parse tree in yellow corresponds to the rule $A \longrightarrow CD$; then there must be some rule in \mathcal{P} (namely $A \longrightarrow BCD$) such that the added variable(s) (Bin this case) is nullable. So we add a child node with label B to the node with label A and append a sub-tree of yield ϵ rooted at B. This is now a parse tree for G with yield w.



Outline of Proof of Theorem 7.1.4

 $\underbrace{L(G_{\text{no-unit}}) \subseteq L(G)}_{G}: \text{ By definition, } A \to \gamma \text{ in } P_{\text{no-unit}} \text{ iff there exists a } B \in V \text{ such that}}_{G}$

> Thus, every production rule $A \rightarrow \gamma$ of $P_{\text{no-unit}}$ is effectively a derivation $A \stackrel{*}{\Rightarrow} \alpha$ in G.

> Hence, every derivation of $G_{\text{no-unit}}$ is a derivation of G.

 $L(G) \subseteq L(G_{no-unit})$: Consider a derivation of $w \in L(G)$ from S.

- > Argue that every run of unit productions in \mathcal{P} that are used in this derivation must be followed by a non-unit production rule in \mathcal{P} .
- > Each such run of unit productions in \mathcal{P} followed by a non-unit production can be condensed to a single production in $P_{\text{no-unit.}}$ [See definition of $P_{\text{no-unit}}$]
- > The condensed derivation is then a derivation of w using rules in $P_{\text{no-unit}}$.

29/31

Proof of Theorem 7.1.7

(1) L(G_{GR}) ⊆ L(G)) since the alphabets and the rule of G_{GR} are subsets of those of G.
> Suppose w ∈ L(G). Then, there must be such a derivation of w from S:

$$S \underset{G}{\Rightarrow} \gamma_1 \underset{G}{\Rightarrow} \gamma_2 \underset{G}{\Rightarrow} \gamma_3 \cdots \underset{G}{\Rightarrow} \gamma_k = w.$$

Rule: $R_1 \qquad R_2 \qquad R_3 \qquad R_k$

- > Since every variable symbol that appears in this derivation is generating, they and the production rules R_1, \ldots, R_k used in this derivation will be present in G_G .
- > Every variable in this derivation is reachable; consequently, the variables that appear and the rules R_1, \ldots, R_k will be present in G_{GR} . Then, $w \in L(G_{GR})$.
- (2) A straightforward exercise in verifying the definition on Slide 7. Note that the remaining symbols have to be shown to be useful in G_{GR} , and not in G!

30 / 31

Outline of Proof of Theorem 7.1.8

- > $L(G) \subseteq L(\hat{G})$ because every production rule of \hat{G} has a corresponding equivalent derivation of α from A in \hat{G} .
- > Consider the parse tree of $w \in L(\hat{G})$. If there are no introduced variables, then this is also the parse tree of w in G and hence $w \in L(G)$.
- > If there are introduced variables, replace them by the complex production in G that introduced them in the first place (such replacements are always possible). The resultant tree is a parse tree for w in G, and hence $w \in G$.

