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Content of this Chapter
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� Extensions of Turing Machines (and PDAs)

� Restrictions of Turing Machines

Additional Reading: Chapter 8 of HMU.
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Introduction to TMs

Turing Machine: Informal Definition

Finite Control

B B B B BBa bc a b b · · ·· · ·

∠ An tape extending infinitely in both sides

∠ A reading head that can edit tape, move right or left.

∠ A finite control.

∠ A string is accepted if finite control reaches a final/accepting state
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Introduction to TMs

Turing Machine: Formal Definition

A Turing machine M = (Q,Σ,Γ, δ, q0,B,F ) is comprised of:

∠ Q: finite set of states

∠ Σ: finite set of input symbols

∠ Γ: finite set of tape symbols such that Σ ⊆ Γ

∠ δ: (deterministic) transition function. δ is a partial function over Q × Γ, where
the first component is viewed as the present state, and the second is viewed as
the tape symbol read. If δ(q,X ) is defined, then

∠ B ∈ Γ \ Σ is the blank symbol. All but a finite number of tape symbols are Bs.

∠ q0: the initial state of the TM.

∠ F : the set of final/accepting states of the TM.

∠ Head always moves to the left or right. Being stationary is not an option. It can also
be defined with such an option, see tutorial.
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Introduction to TMs

Describing TMs

∠ Turing machines can be defined by describing δ using a transition table.

∠ They can also be defined using transition diagrams (with labels appropriately altered)

q q0If ‹(q;X) = (q0; Y; D)

X=Y D

A TM that accepts any binary string that does not contain 111

q0

1=
1
!

1=1 !

1=1 !

0=0!

0=
0
!

q1

q2q3

qf

B=B
!

B=B !

B
=B

!

0=0 !
This encodes a DFA (almost).
Can you see why?

Because we never manipulate
the tape and terminate once
the String is read. The only
difference is that not all edges
are defined, but this can be
fixed with a trap state.
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Introduction to TMs

Instantaneous Descriptions of TMs

∠ An instantaneous description (or configuration) of a TM is a complete description of
the system that enables one to determine the trajectory of the TM as it operates.

∠ The instantaneous description or configuration or ID of a TM contains 3 parts:
(a) The (finite, non-trivial) portion of tape to the left of the reading head;
(b) the state that the TM is presently in; and
(c) the (finite, non-trivial) portion of the tape to the right of the reading head.

q B B X1 X2 X3 X‘· · · · · · · · ·· · · Xi

1  i  ‘

head

q B B X1 X2 X3 · · · · · ·· · · X‘

B B

B B

z }| {
i Blanks

segment to the strict leftz }| {
X1 · · ·Xi�1

statez}|{
q

segment from the head onwardsz }| {
Xi · · ·X‘

segment to the strict leftz }| {
X1 · · ·X‘Bi�1

statez}|{
q

head

· · ·

q B BX1 X2 X3 · · ·· · · X‘B B

z }| {

head

· · ·

i Blanks

· · · statez}|{
q

segment from the head onwardsz }| {
BiX1 · · ·X‘

IDState, Tape contents, Reading head location

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 6 / 27



Introduction to TMs

Instantaneous Descriptions of TMs

∠ An instantaneous description (or configuration) of a TM is a complete description of
the system that enables one to determine the trajectory of the TM as it operates.

∠ The instantaneous description or configuration or ID of a TM contains 3 parts:
(a) The (finite, non-trivial) portion of tape to the left of the reading head;
(b) the state that the TM is presently in; and
(c) the (finite, non-trivial) portion of the tape to the right of the reading head.

q B B X1 X2 X3 X‘· · · · · · · · ·· · · Xi

1  i  ‘

head

q B B X1 X2 X3 · · · · · ·· · · X‘

B B

B B

z }| {
i Blanks

segment to the strict leftz }| {
X1 · · ·Xi�1

statez}|{
q

segment from the head onwardsz }| {
Xi · · ·X‘

segment to the strict leftz }| {
X1 · · ·X‘Bi�1

statez}|{
q

head

· · ·

q B BX1 X2 X3 · · ·· · · X‘B B

z }| {

head

· · ·

i Blanks

· · · statez}|{
q

segment from the head onwardsz }| {
BiX1 · · ·X‘

IDState, Tape contents, Reading head location

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 6 / 27



Introduction to TMs

‘Moves’ of a TM

∠ Just as in the case of a PDA, we use ⊢
M
to indicate a single move of a TM M,

and
∗
⊢
M
to indicate zero or a finite number of moves of a TM.

Next IDPresent ID

X1 · · ·Xi�1qXi · · ·X‘

Transition

‹(q;Xi ) = (q0; Y; R)

‹(q;Xi ) = (q0; Y; L)

X1 · · ·Xi�1Y q
0Xi+1 · · ·X‘

X1 · · ·Xi�2q
0Xi�1Y Xi+1 · · ·X‘(1 < i < ‘)
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Introduction to TMs

Language accepted by a TM

∠ A string w is in the language accepted by a TM M iff q0w
∗
⊢
M
αpβ for some p ∈ F .

∠ Another possible notion of acceptance is to require a TM to halt (i.e., no further
transitions are possible).

∠ It is always possible to design a TM such that the TM halts when it reaches a final
state without changing the language the TM accepts.

∠ However, we cannot require (all) TMs to halt for all inputs.

∠ A language L is recursively enumerable if it is accepted by some TM.

∠ A language L is recursive if it is accepted by a TM that always halts on its input.

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

∠ (Another important class is the context-sensitive languages. They sit between the
context-free and recursive languages.)
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Introduction to TMs

On Acceptance, Rejection, Termination, and Deciding I/III

∠ The primary purpose of a TM is to recognize/accept a language.

∠ Since TMs might not always terminate, we differentiate between deciding and
accepting. The fundamental difference here is halting (on the non-accepted words).

∠ Recall the following definitions:

A TM halts if in the current state there’s no transition for the current symbol.
A TM accepts a word if there exists a transition to an accepting state when that
word is read.
a TM rejects a word if it’s not accepted and the TM halts.

∠ Now, what does that mean/imply for a TM M?

∠ We clarify this on the next slide in detail, but first a few general notes!

∠ Usually, there is no need to define outgoing edges for accepting states. Because as
soon as we enter such a state, the input word is accepted! (So why proceed?)

Thus, when you pick/design a TM for accepting a given language L (which you
know must exist by assumption if L is in a certain class), you are allowed to do
so using a “reasonable” TM that always halts on accepted words.
However, if you have to judge properties of a given TM (e.g., whether some TM
M always halts, or accepts a particular word etc.), then you have to deal with
any TM – reasonable or not... (Motivation: You might want to judge properties
of somebody’s “program”. And we’d like to know whether we actually can!)
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Introduction to TMs

On Acceptance, Rejection, Termination, and Deciding II/III

∠ “Accepting w”

implies w ∈ L(M). It does not imply halting since we can define
outgoing edges in accepting states. It is however noteworthy that usually we write
“accept and halt” since we usually pick the TM ourselves and thus use a reasonable
one that doesn’t have outgoing edges from accepting states.

∠ “Not accepting w”implies w /∈ L(M). This is however not the same as rejecting. We
can “not accept w” either by rejecting w (and thus terminating) or by looping
forever. In particular this means that “Not accepting” does not imply halting.

∠ “Rejecting w”implies w /∈ L(M). It also implies halting since this is the only way we
can reject a word.

∠ “Not rejecting w”neither implies w ∈ L(M) nor w /∈ L(M). This is because if we do
not reject w we could either accept it (then, w ∈ L(M)) or we could loop forever
without traversing an accepting state (then, w /∈ L(M)). It thus also neither implies
halting (since we could loop forever as just mentioned) nor does it imply not halting
(since we could accept and halt).

∠ “Halting on w”neither implies w ∈ L(M) nor w /∈ L(M). It also does not imply
rejection. This is all the case because we can halt both in an accepting and in a
rejecting state (without previously having traversed an accepting state).

∠ “Not halting on w”implies almost nothing. It only implies that we are not rejecting,
because rejection implies halting. That’s because we only know that we loop forever,
which can even happen after a word was accepted.
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Introduction to TMs

On Acceptance, Rejection, Termination, and Deciding III/III

Now, what does it mean that a language L is decidable (= recursive, in R)?

∠ If L is decidable, it means that there is a total (i.e., always halting) TM that judges
for all w ∈ Σ∗ whether w ∈ L (or not).

∠ Thus, there is a TM M with L = L(M), and TM halts on all w ∈ Σ∗, whether
w ∈ L(M) or whether w /∈ L(M).

∠ Note that while a TM does not have to halt after accepting a word, we know that
there is no point in continuing after a word was accepted. Therefore, we can just pick
a TM without such pointless transitions for accepting states. Thus, since we choose
that TM, we can assume that it always halts for all words that are accepted.
(But recall that this is not the case if you need to decide whether “a given TM” has
certain properties – then everything goes!)

What does it mean that a language L is semi-decidable (= recursively enumerable, in RE)?

∠ There is a TM M with L = L(M) that halts on all words in L. (As above f.a. w ∈ L.)

∠ But if w /∈ L, our TM could either reject or not halt (without accepting). Thus, it
might loop forever and therefore, potentially (if L is not in R), not halt.

∠ Note that R ⊊ RE , and therefore being in RE , does not mean that we are not in R!
We might be since for any L ∈ R holds L ∈ RE .
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Extensions of TMs

Multiple-Track TMs

Multiple-track TM

∠ We do not provide a formal definition (but assume you could provide one).

∠ There are k tracks, each having symbols written on them. They are essentially tapes,
but we call them that way since they are not independent.

∠ The machine can only read symbols from each tape corresponding to one location,
i.e., all symbols in a column at any one time.

∠ Likewise, all tapes move simultaneously in the same direction.

Finite Control

· · ·· · ·
· · ·· · ·

· · ·· · ·

...

X1

X2

Xk

∠ A k-track TM with tape alphabet Γ has the same langauge-acceptance power as a
TM with tape alphabet Γk . (E.g., each cell contains the “symbol” (X1, . . . ,Xk))
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Extensions of TMs

Multi-tape TMs

Multiple-tape TM

∠ We (again) don’t provide a formal definition (but assume you could provide one).

∠ There are k (independent) tapes, each having symbols written on them.

∠ The machine can read each tape independently, i.e., the symbols read from each tape
need not correspond to the same location.

∠ After all tapes are read, all tape transitions must happen (now we can also stay with
a head – the entire TM is for convenience anyway!).

Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·

...

X1

X2

Xk

∠ The rest stays the same (e.g., one set of states, acceptance, etc.).
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Extensions of TMs

Multi-tape TMs

Theorem 8.2.1

Every language that is accepted by a multi-tape TM is also recursively enumerable
(i.e., accepted by some ‘standard’ TM).

Proof of Theorem 8.2.1

∠ Let L be accepted by a k-tape TM M. We’ll devise a 2k-track TM M ′ that accepts L.

∠ Every even tape of M ′ has the same alphabet as that of the k-tape TM.
The 2i th track of M ′ contains exactly the same contents as the i th tape of M.

∠ Every odd track has an alphabet {B, †}, and contains a single †.
The 2i − 1th track of M ′ contains † at the location where the i th head of M is located.

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

10 11

54

1312

6 14

†

12

†

†

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0 1 1 0 0 1 1 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · ·
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 8.2.1 (1 of 3)

What is the main problem we need to solve?

∠ In the Multi-tape TM M, heads move independently, whereas in the Multi-track TM
M ′ they do not. So the heads can diverge:

Finite Control Finite Control

· · ·· · ·

· · ·· · ·

· · ·· · ·· · ·

10 11

54

1312

6 14

†

12

†

†

0 1 1 0 0 1 1 0 0

1 1 1 1 0 0 0
0 0 0 0

0 1 1 0 0 1 1 0 0

0
1 1 1 1

1 0 1 0 1 0 1 0 11 0 1 0 1 0 1 0 1

M 0 M

· · ·· · · (But M ′ has just a single head position!)

So, how to solve it?

∠ Make sure that in each transition of M, we visit all heads of M ′.

∠ “Store” all head positions in a state with k (number of tapes) entries.
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 8.2.1 (2 of 3)

∠ The state of M ′ has 3 components: (a) the state of M; (b) the number of †s to its
head’s strict left; and (c) a k-length tuple from (Γ ∪ {?})k .

∠ At the beginning of the sweep, the head of M ′ is at the location of the leftmost † and
the state of M ′ is (q, 0, [?, · · · , ?]). The head moves to the right uncovering †s and
the corresponding track symbols (are stored in the third component of the state).

∠ Each move of M takes multiple moves of M ′, and is a sweep of the tape from the
location of the leftmost † to that of the rightmost † and back performing the changes
to tracks that M would do to its corresponding tapes.

∠ The right sweep ends when the second component is k.
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 8.2.1 (3 of 3)

∠ At this stage (once the i in (q, i , [γ1, · · · , γk ]) is k and all γj are set), M ′ knows the
head symbols M will have read, and knows what actions to take.

∠ It then sweeps left making appropriate changes to the tracks (just like M does to its
tape) each time a † is encountered. M ′ also moves the †s accordingly.

∠ The left sweep ends when the second component is zero. At this time, M ′ would
have completed moving the †s and the track contents; they’ll now match those of M.

∠ M ′ then moves the state to (q′, 0, [?, · · · , ?]) and starts the next sweep if q′ is not a
final state.

∠ Note that M ′ mimics M and hence the languages accepted are identical.
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Extensions of TMs

Multi-tape TMs

Proof of Theorem 8.2.1 (3 of 3)

∠ At this stage (once the i in (q, i , [γ1, · · · , γk ]) is k and all γj are set), M ′ knows the
head symbols M will have read, and knows what actions to take.

∠ It then sweeps left making appropriate changes to the tracks (just like M does to its
tape) each time a † is encountered. M ′ also moves the †s accordingly.

∠ The left sweep ends when the second component is zero. At this time, M ′ would
have completed moving the †s and the track contents; they’ll now match those of M.

∠ M ′ then moves the state to (q′, 0, [?, · · · , ?]) and starts the next sweep if q′ is not a
final state.

∠ Note that M ′ mimics M and hence the languages accepted are identical.
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Extensions of TMs

Multi-tape TMs

∠ The running time of a TM M with input w is the number of moves M makes before
it halts. (If it does not, the running time is ∞).

∠ The time complexity TM : {0, 1, . . .} → {0, 1, . . .} ∪ {∞} of a TM M is defined as
follows:

∠ TM(n) := maximum running time of M for an input w of length n symbols.

Theorem 8.2.2

The time taken for M ′ in Theorem 8.2.1 to process n moves of M is O(n2).

Outline of Proof of Theorem 8.2.2

∠ In the ith move of M, any two heads of M
can be at most 2i locations apart.

∠ Each sweep then requires 4i moves of M ′.

∠ Each track update requires Θ(k) time.

∠ So n moves in M need O(n2) moves in M ′.

! ! !

!
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Extensions of TMs

Non-deterministic TMs

Non-deterministic TM: δ(q,X ) is a set of triples representing possible moves.

Theorem 8.2.3

For every non-deterministic TM M, there is a TM N such that L(M) = L(N).

Outline of Proof of Theorem 8.2.3
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Extensions of TMs

Outline of Proof of Theorem 8.2.3

∠ We can devise a 2-tape TM N that simulates M.

∠ N first replaces the content of the first tape by ‡ followed by the ID that M is initially
in, which is then followed by a special symbol †, which serves as ID separator.
(N uses the second tape as scratch tape to enable this operation).

∠ If the ID corresponds to a final state, N accepts (as would M).

∠ If not, N then identifies all possible choices for the next IDs for M and enters each
one of them followed by † at the right end of its first tape. (Again, N uses the second
tape as scratch tape to enable this operation.)

∠ N then searches for † to the right of ‡, changes the † to a ‡ (to signify that it is
processing the succeeding ID), and processes that ID in the similar way.

∠ N halts at an ID iff M would at that ID.
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(N does Breadth-First exploration of IDs of M)
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Restrictions of TMs

TM Semi-infinite Tape

A TM with a semi-infinite tape is a TM that only has blanks on one of its sides, but not
on the other.

Phrased (slightly) more formally:
A TM with a semi-infinite tape is a TM that can never move to left of the left-most
input symbol.

We don’t provide a formal definition, but a way of simulating this is by providing a
special symbol, placed on the left of the input, and defining the transitions to always go
to the right when this is read.
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Restrictions of TMs

TM Semi-infinite Tape

Theorem 8.3.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 8.3.1

∠ Given a TM M that accepts a language L, construct a two-track TM M ′ as follows.

∠ The first/second tracks of M ′ are the right/left parts of the tape of M.

∠ First, write a special symbol, say † at the leftmost part of the second track; this
indicates to M ′ that a left move is not to be attempted at this location.

∠ At any time, M ′ keeps track of whether M is to the right or left of its start location.

∠ If M is to the strict right of its start location, M ′ mimics M on the first track. If M is
to the strict left of its start location, M ′ mimics M on second track, but with the
head directions reversed. M ′ detects the start by the † symbol.

∠ It can be formally shown that M ′ accepts a string iff M accepts it.

0 1�1 2�2

BB ab b ab b

† BB

�1 �2

0 1 2

· · ·· · ·
· · ·· · ·

· · ·

· · ·

· · ·

M 0
M L$ RL$ RL$ R

R $ L
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∠ If M is to the strict right of its start location, M ′ mimics M on the first track. If M is
to the strict left of its start location, M ′ mimics M on second track, but with the
head directions reversed. M ′ detects the start by the † symbol.

∠ It can be formally shown that M ′ accepts a string iff M accepts it.

0 1�1 2�2

BB ab b ab b

† BB

�1 �2

0 1 2

· · ·· · ·
· · ·· · ·

· · ·

· · ·

· · ·

M 0
M L$ RL$ RL$ R

R $ L
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Restrictions of TMs

TM Semi-infinite Tape

Theorem 8.3.1

Every recursively enumerable language is also accepted by a TM with semi-infinite tape.

Outline of Proof of Theorem 8.3.1
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Extensions of PDAs

Multi-stack Machines

A multistack machne is a PDA with several independent stacks (i.e., one can be popping
a symbol, while another is pushing a symbol).

Theorem 8.4.1

Every recursively enumerable language is accepted by a two-stack PDA

Outline of Proof of Theorem 8.4.1

∠ Let each stack again contain a bottom-most start symbol.

∠ Let ID = x−3x−2x−1qx0x1x2, i.e., w = x−3x−2x−1x0x1x2, and head read reads x0

∠ Let stack-1 be x0x1x2 (top to bottom) the head and its right and stack-2 be
x−1x−2x−3 the head’s left part in reversed order.

∠ What if we move the head to the right? Then, ID’ = x−3x−2x−1x0q
′x1x2.

We can easily do this with our stacks:

How should the stack now look like?
stack-1: x1x2 and stack-2: x0x−1x−2x−3.
But that’s just a simple pop and push!

∠ Moving to the left, and changing the symbol that’s written can be simulated as well.
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Extensions of PDAs

Multi-stack Machines

Outline of Proof of Theorem 8.4.1, cont’d

∠ Remaining problem: How to fill the stacks initially?

∠ Recall: stack-1 contains the head and its right and stack-2 the head’s left part in
reversed order.

∠ Initial configuration is q0w , so stack-1 should be w and stack-2 “empty”.

∠ We achieve this by the following procedure:

ab

S S

B B

TM

Finite Control Finite Control

ab

PDA

aa

SFinite Control

ab

PDA

a

†

a

a

b
1 2

Finite Control

ab

PDA

a

3
†
a

a

b †

R semi-infinite portion of TM’s tape

Strict L semi-infinite portion of TM’s tape

∠ I.e., run to the right filling stack-2, then run back putting it on stack-1.
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Extensions of PDAs

Counter Machines

∠ A counter machine is a multi-stack machine whose stack alphabet contains two
symbols: Z0 (stack end marker) and X

∠ Z0 is initially in the stack.

∠ Z0 may be replaced by X iZ0 for some i ≥ 0

∠ X may be replaced by X i for some i ≥ 0.

∠ A counter machine effectively stores a non-negative number.

Finite Control

X
Z0

X

X

X

Z0

X

X

X

X
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Extensions of PDAs

Counter Machines

Theorem 8.4.2

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 8.4.2

∠ We know a two-stack PDA can simulate any TM.

∠ We’ll show that a 3-counter machine can simulate any (two stack) PDA.

∠ WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
∠ Suppose stack 1/2 contains Y1(top), . . . ,Yk . Then counter stores
Y1 + rY2 + · · ·+ r k−1Yk . E.g., if stack is 1, 5, 7, interpret it as 157.

∠ The third counter is used to change the two stack contents.

∠ Popping the top symbol from a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

∠ pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

∠ Now empty stack A and copy the third stack contents onto stack A.

∠ Change Y1 to some Y ′
1 requires adding or subtracting, which is done by popping or

pushing the corresponding number of X s.

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 26 / 27



Extensions of PDAs

Counter Machines

Theorem 8.4.2

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 8.4.2

∠ We know a two-stack PDA can simulate any TM.

∠ We’ll show that a 3-counter machine can simulate any (two stack) PDA.

∠ WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
∠ Suppose stack 1/2 contains Y1(top), . . . ,Yk . Then counter stores
Y1 + rY2 + · · ·+ r k−1Yk . E.g., if stack is 1, 5, 7, interpret it as 157.

∠ The third counter is used to change the two stack contents.

∠ Popping the top symbol from a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

∠ pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

∠ Now empty stack A and copy the third stack contents onto stack A.

∠ Change Y1 to some Y ′
1 requires adding or subtracting, which is done by popping or

pushing the corresponding number of X s.

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 26 / 27



Extensions of PDAs

Counter Machines

Theorem 8.4.2

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 8.4.2

∠ We know a two-stack PDA can simulate any TM.

∠ We’ll show that a 3-counter machine can simulate any (two stack) PDA.

∠ WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
∠ Suppose stack 1/2 contains Y1(top), . . . ,Yk . Then counter stores
Y1 + rY2 + · · ·+ r k−1Yk . E.g., if stack is 1, 5, 7, interpret it as 157.

∠ The third counter is used to change the two stack contents.

∠ Popping the top symbol from a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

∠ pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

∠ Now empty stack A and copy the third stack contents onto stack A.

∠ Change Y1 to some Y ′
1 requires adding or subtracting, which is done by popping or

pushing the corresponding number of X s.

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 26 / 27



Extensions of PDAs

Counter Machines

Theorem 8.4.2

Every recursively enumerable language is accepted by a three-counter machine

Outline of Proof of Theorem 8.4.2

∠ We know a two-stack PDA can simulate any TM.

∠ We’ll show that a 3-counter machine can simulate any (two stack) PDA.

∠ WLOG, let the stack alphabet of Γ = {0, 1, . . . , r − 1}.
∠ Suppose stack 1/2 contains Y1(top), . . . ,Yk . Then counter stores
Y1 + rY2 + · · ·+ r k−1Yk . E.g., if stack is 1, 5, 7, interpret it as 157.

∠ The third counter is used to change the two stack contents.

∠ Popping the top symbol from a stack (say A) = finding quotient when
Y1 + rY2 + · · ·+ r k−1Yk is divided by r .

∠ pop r X’s from stack A, and push a single X on the third stack. Repeat until all
X s are exhausted on the stack where popping is performed.

∠ Now empty stack A and copy the third stack contents onto stack A.

∠ Change Y1 to some Y ′
1 requires adding or subtracting, which is done by popping or

pushing the corresponding number of X s.

Pascal Bercher week 5: Introduction to Turing Machines Semester 1, 2023 26 / 27



Extensions of PDAs

Counter Machines

Outline of Proof of Theorem 8.4.2

∠ pushing a symbol Z onto a stack (say A) = compute rC + Z where C is the number
presently stored in the stack A.

∠ pop one X from stack A, and push r X s on the third stack.
∠ Finally push Z X s onto the third stack. Now empty stack A and copy the third
stack contents onto stack A.

∠ Since the above three are the only operations needed to simulate a TM on a two-stack
PDA, we can stimulate a 2-stack PDA and hence a TM using a 3-counter machine.

Theorem 8.4.3

Every recursively enumerable language is accepted by a two-counter machine

Outline of Proof of Theorem 8.4.3

∠ The key idea: simulate three counters using one, and use the other for manipulations.

∠ The first counter stores 2i3j5k where i , j , k are the contents of the 3-counter machine.

∠ Updates to the stack involve: (a) divide by 2, 3, or 5; (b) multiply by 2, 3, or 5; or
(c) identify if i or j or k is zero (check divisibility).

∠ Each operation can be easily seen to be done with a spare counter.
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