COMP3630 / COMP6363

week 6: Decidability and Undecidability

This Lecture Covers Chapter 9 of HMU: Decidability and Undecidability

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- > Preliminary Ideas
- > Example of a non-RE language
- > Recursive languages
- > Universal Language
- > Reductions of Problems
- > Rice's Theorem
- > Post's Correspondence Problem
- > Undecidable Problems about CFGs

Additional Reading: Chapter 9 of HMU.

2/33

Enumeration of (Binary) Strings

- > We can construct a bijective map ϕ from the set of binary strings $\{0,1\}^*$ to natural numbers \mathbb{N} .
 - Why might that appear surprising?
 - Because each number has a unique binary encoding, but for each we could add an arbitrary number of zeros in the front, so there seem to be more strings over {0,1} than numbers in N.
- Enlist all strings ordered by length, and for each length, order using lexicographic ordering.
- > The set of finite binary strings is countable/denumerable.

A Code for Turing Machines

- > For simplicity, let's assume that input alphabet to be binary.
- > WLOG, we can assume that TMs halt at the final state. Consequently, we only need **one** final state (perhaps after collapsing all states into one).
- > Consider $M = (Q, \Sigma = \{0, 1\}, \Gamma = \{0, 1, B, X_4, \dots, X_\ell\}, \delta, q_1, B, F).$
 - > Rename states $\{q_1, \ldots, q_k\}$ for k = |Q| with q_1 : start state and q_k : final state.
 - > Rename input alphabet using $X_1 = 0$, $X_2 = 1$, and blank B as X_3 .
 - > Rename the rest of the tape symbols by X_4, \ldots, X_ℓ for $\ell = |\Gamma|$.
 - > Rename L as D_1 and R and D_2 . (The directions.)
- > Every transition $\delta(q_i, X_j) = (q_k, X_l, D_m)$ can be represented as a tuple (i, j, k, l, m).
- > Map each transition tuple (i, j, k, l, m) to a **unique** binary string $0^{i}10^{i}10^{k}10^{l}10^{m}$. NB: No string representing a transition tuple contains 11.
- > Order transition tuples lexicographically and concatenate all transitions using 11 to indicate end of a transition. Let the resultant string be w_M . For example, 3 transitions can be combined as $\underbrace{0^{i_1}10^{i_1}10^{k_1}10^{l_1}10^{m_1}}_{0^{i_1}10^{l_1}10^{m_1}}11\underbrace{0^{i_2}10^{i_2}10^{i_2}10^{l_2}10^{m_2}}_{0^{i_2}10^{l_2}10^{l_3}10^{$

2nd transition

> For each TM *M*, define the code $\langle M \rangle$ for TM *M* as w_M .

1st transition

3rd transition

The Set of Turing Machines

Remark 9.1.1

- > Each TM M encoding has a unique natural number, i.e., $\phi(\langle M \rangle)$; Each TM M may have several codes $\langle M \rangle$ and thus several numbers; but each natural number corresponds to **at most** one TM.
- > The set of TMs/RE languages/CFLs/regular languages is countable.

Diagonalization Language L_d

- > Let M_i be the TM s.t. $\phi(\langle M_i \rangle) = i$. (If for an *i*, no such TM exists, we let M_i to be the TM with 1 state, no transitions and no final state, i.e., it accepts no input).
- > Construct an infinite table. Rows: M_0 , M_1 , ... as above and cols: All Strings according to slide 3. Cell (i, j) = 1 iff M_i accepts $w_j := \phi^{-1}(j)$.
- > Define a language $L_d = \{w_j : M_j \text{ does not accept } w_j, \text{ where } j \in \mathbb{N}\}.$

 L_d is not recursively enumerable language

> L_d cannot be accepted by **any** TM.

> Assume it were. Then there is a TM M_j accepting L_d , i.e., $L(M_j) = L_d$.

> But now we get a contradiction:

• If (j, j) = 1, then $w_j \in L(M_j)$. But if $w_j \in L(M_j)$, then $w_j \notin L_d$, so cell (j, j) should be 0! \notin • If (j, j) = 0, then $w_i \notin L(M_i)$.

But if $w_j \notin L(M_j)$, then $w_j \in L_d$, so cell (j, j) should be 1! \notin

Recursive Languages

- > A language L is recursive if it is accepted by a TM M that halts on all inputs
 - > In such a case, the TM M is said to **decide** L.
 - > Every recursive language is recursively enumerable (by definition).

> Do not confuse deciding with accepting! TMs can accept without always terminating (namely, e.g, for languages in $RE \setminus R$, where R denotes the recursive languages).

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is L^c .

Proof of Theorem 9.3.1

- > Accepting states of M with L(M) = L are nonaccepting states of M' with $L(M') = L^c$.
- > Add a new and only final state q_f in M' such that: $\delta_M(q, X)$ undefined and $q \notin F$

$$\downarrow \\ \delta_{M'}(q,X) = (q_f,X,R).$$

> Recursive languages are closed under complementation.

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and L^c are both recursively enumerable, then L (and L^c) are recursive.

Proof of Theorem 9.3.2

- > Let L = L(M) and $L^c = L(M')$. Run M and M' in parallel using a 2-tape TM.
- > Both TMs cannot halt in final states, and both TMs cannot halt in non-final states.
- > Continue running both TMs until either halts in a final state.
- > Accept (or reject) if M (or M') halts in a final state, respectively.

Alternate Definition of Recursive Languages

L is recursive if both L and L^c are recursively enumerable.

The Universal Language and Turing Machine

Universal Language Lu

> $L_u := \{ \langle M \rangle \mathbb{111} w : \mathsf{TM} \ M \text{ and } w \in L(M) \}.$ [See Slide 3]

Universal TM U (modelled as 5-tape TM)

- 1 U copies $\langle M \rangle$ to tape 2 and verifies it for valid structure. 2 Copies w onto tape 3 (maps $0 \mapsto 01, 1 \mapsto 001$)
- **3** Initiates 4th tape with 0^1 (*M* starts in q_1)
- 4 To simulate a move of M, U reads tapes 3 and 4 to identify M's state and input as 0^i and 0^i ; if state is accepting, M (and hence U) accepts its inputs and halts. Else, Uscans tape 2 for $110^i 10^i 1$ or $BB0^i 10^j 1$.
 - > If found, using the transition, tapes 4 and 3 are updated, and tape 3's head moves to right or left.
 - > If not, M halts, and so does U.

Where does L_u Lie in the Hierarchy of Languages?

Theorem 9.4.1

L_u is recursively enumerable, but is not recursive.

Proof of Theorem 9.4.1

- > L_u is recursively enumerable because TM U accepts it.
- > Suppose it were recursive. Then, L_u^c is also recursive.
- > Let TM M' accept $w \in L^c_u$ and reject $w \in L_u$.
- > Construct a TM M'' such that it first takes its input w and appends it with 111w. It then moves to the beginning of the first w and simulates M'.
- $\succ M'' \text{ accepts } w \iff w111w \in L^c_u \iff w111w \notin L_u \iff w \in L_d.$
- > Then, L(M'') is the diagonal language L_d , which is impossible!

Recap

Recap

- > There exists a bijection $\phi: \Sigma^* \to \mathbb{N}$.
- > There exists an injective function $<\cdot>:$ Set of TMs $\rightarrow \Sigma^*.$
- > RE languages are countable.

- > The diagonalization Language L_d is not recursively enumerable.
- > Recursive languages are closed under complementation. (See tutorials for more!)
- > The universal language $L_u = \{\langle M \rangle 111w : M \text{ accepts } w\}$ is RE, but not recursive.

What is a Reduction?

- > A decision problem P is said to reduce to decision problem Q if every instance of P can be <u>transformed</u> to some instance of Q and a yes (or no) answer to that instance of Q yields a yes (or no) answer to original instance of P, respectively.
 - We did already make use of reductions in this lecture multiple times!
 - E.g., reduce the problem of deciding *L*^c to the problem of deciding *L*: Here the new problem was only a minimal modification, by flipping results (see slide 9).
- > Here, **transform** implies the existence of a Turing machine that takes an instance of P written on a tape and **always halts** with an instance of Q written on it.
- > Alternative formulation: There is a function $f: \Sigma^* \to \Sigma^*$, s.t., $\sigma \in P \leftrightarrow f(\sigma) \in Q$, and f can be computed by a terminating TM.

Theorem 9.6.1

If a problem P <u>reduces</u> to a problem Q then: (a) P is undecidable \Rightarrow Q is undecidable. (b) P is non-RE \Rightarrow Q is non-RE.

Problem Reduction

Proof of Theorem 9.6.1

(a) *P* is undecidable \Rightarrow *Q* is undecidable.

Suppose P is undecidable and Q is decidable. Let TM M_Q decide Q.

> Consider the TM M_P that first operates as TM M_{P2Q} that transforms P to Q, and then operates as M_Q .

> This is a TM that decides all instances of P, a contradiction.

(b) *P* is non-RE \Rightarrow *Q* is non-RE.

Suppose *P* is non-RE and *Q* is RE. Then there must be a TM M_Q that accepts inputs when they correspond to instances of *Q* whose answer is yes.

- > Consider the TM M_P that first operates as TM M_{P2Q} , and then operates as M_Q .
- > Note that M_P might not halt, since M_Q might not.

> This is a TM that accepts all instances of P whose answer is a yes, a contradiction.

Some More Abstract Languages

Language of TMs Accepting Empty and Non-empty Languages

>
$$L_e = \{ \langle M \rangle : L(M) = \emptyset \}.$$

> $L_{ne} = \{ \langle M \rangle : L(M) \neq \emptyset \}$. (Note: $L_{ne} \neq L_e^c$, because some strings don't encode TMs.)

Theorem 9.7.1

L_{ne} is RE.

Note that this theorem doesn't say whether it's recursive or not!

Rice's Theorem

L_{ne} is RE.

L_{ne} is not recursive

Theorem 9.7.2

L_{ne} is not recursive.

Proof of Theorem 9.7.2

> For every TM *M* and string *w*, there is a TM $M_{M,w}$ that ignores its input and runs *M* on *w*: $M_{M,w}$ erases its input tape, pastes *w*, and runs it as/on *M*.

$$x \longrightarrow M_{M,w} \qquad w \longrightarrow M \rightarrow \text{Accep}$$

> Mind-bending step: There is a TM M_1 that takes $\langle M \rangle$ 111w and outputs $\langle M_{M,w} \rangle$. Note: M_1 always halts (even if M does not halt when input is w!)

$$\langle M \rangle$$
111 $w \longrightarrow M_1 \longrightarrow \langle M_{M,w} \rangle$

- > M accepts $w \iff M_{M,w}$ accepts **all** inputs $\iff \langle M_{M,w} \rangle \in L_{ne}$
- > Suppose L_{ne} is recursive. Then there is a TM M_2 that accepts iff input $\langle M \rangle \in L_{ne}$.
- > Let TM M_3 read $\langle M \rangle$ 111w and operate as M_1 and then when M_1 halts, operate as M_2 . Then, M_3 accepts/rejects $\langle M \rangle$ 111w iff M accepts/rejects w.
- > L_u is then recursive, which is a contradiction.

Rice's Theorem

Given: alphabet Σ and let $RE = \{L \subseteq \Sigma^* \mid L \text{ recursively enumerable}\}.$

- > Recursively enumerable (RE) languages L corresponds to TM M if L = L(M)
- > A **property** of RE languages is subset $\mathcal{P} \subseteq RE$ of the set of RE languages over Σ . Why do we call sets of languages a property? Think of examples:

• $\mathcal{P}_1 = \{L \subseteq \Sigma^* : |L| < \infty\}$ (the property is being finite) • $\mathcal{P}_2 = \{L \subseteq \Sigma^* : \text{there is a DFA D, s.t. } L = L(D)\}$ (the property is being regular)

- > A property \mathcal{P} is **trivial** if $\mathcal{P} = \emptyset$ or $\mathcal{P} = RE$ (and non-trivial otherwise).
- > A property $\mathcal{P} \subseteq RE$ is decidable if $L_{\mathcal{P}} = \{\langle M \rangle \mid L(M) \in \mathcal{P}\}$ is decidable.

Theorem 9.7.3

Every non-trivial property \mathcal{P} of RE languages is undecidable, i.e., $L_{\mathcal{P}}$ is not recursive.

> So Rice's theorem says something about some (many!) subsets $S \subseteq \{\langle M \rangle : M \text{ is a TM}\}$ (So we want to know something about TMs!)

Rice's Theorem (Example 1)

How about the "property" that a TM has 10 states? (Should be decidable!)

- > Let $L_{10} = \{\langle M \rangle : M \text{ has 10 states}\}$. But we have to be able to write it as: $L_{10} = \{\langle M \rangle : L(M) \in \mathcal{P}\}$ where $\mathcal{P} \subseteq RE$ and not trivial.
- > So how about

 $\mathcal{P}_{10} = \{L \subseteq \Sigma^* : \text{there is a TM M, s.t. } L = L(M) \text{ and } M \text{ has 10 states}\}$?

- > This doesn't work since we can take some M_9 with 9 states (and thus $\langle M_9 \rangle \notin L_{10}$) and add a dummy state, so we have 10 in the resulting TM M_{10} . Now we have:
 - $\langle M_9
 angle
 otin L_{10}$, and $\langle M_{10}
 angle \in L_{10}$, but
 - $L(M_9) = L(M_{10})$, so $L(M_9) \in \mathcal{P}_{10}$ and $L(M_{10}) \in \mathcal{P}_{10}$.
 - Recall $L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \in \mathcal{P} \}$, so $\langle M_9 \rangle \in L_{\mathcal{P}_{10}}$. \notin
 - \rightarrow So it doesn't work! It's not a property of languages! (So Rice's theorem doesn't apply.)

20/33

Rice's Theorem (Example 2)

How about the property that the language contains String "01"?

> Let
$$\mathcal{P}_{01} = \{L \subseteq \Sigma : 01 \in L\}$$
, which is non-trivial:

- $\mathcal{P}_{01} \neq \emptyset$ (e.g., $L_1 = \{01\} \in \mathcal{P}_{01}$)
- $\mathcal{P}_{01} \neq RE$ (e.g., $L_{ne} \notin \mathcal{P}_{01}$ because $01 \notin L_{ne}$ because 01 is not the code of a TM, but L_{ne} is in RE; recall: $L_{ne} = \{\langle M \rangle : L(M) \neq \emptyset\}$)
- > Thus, $L_{\mathcal{P}_{01}} = \{\langle M \rangle : L(M) \in \mathcal{P}_{01}\}$ is undecidable. In other words: We can't decide whether a given TM accepts a language that contains a 01.

Rice's Theorem

Rice's Theorem (Proof)

Proof of Theorem 9.7.3

- > WLOG, we can assume that $\emptyset \notin \mathcal{P}$. Else consider \mathcal{P}^c .
- > Since \mathcal{P} is non-trivial, there is a language $L \in \mathcal{P}$ and a TM M_L that accepts L
- > Let $M_{M,w}$ be a TM that runs M on w and if M accepts w, then reads its input and operates as M_L .

> Mind-bending step: There is a TM M_1 that takes $\langle M \rangle$ 111w and outputs $\langle M_{M,w} \rangle$. Note: M_1 always halts (even if M does not halt when input is w!)

$$\langle M \rangle$$
 111 w $\longrightarrow M_1 \longrightarrow \langle M_{M,w} \rangle$

- > M accepts $w \iff L(M_{M,w}) = L \in \mathcal{P}$
- > If \mathcal{P} were decidable, then there is a TM M_2 such that M_2 accepts $\langle M \rangle$ iff $L(M) \in \mathcal{P}$.
- > Then, we can devise a TM M_3 such that it reads $\langle M \rangle$ 111w operates first as M_1 and then when M_1 has halted, it operates as M_2 .
- > M_3 accepts/rejects $\langle M \rangle 111w \iff L(M_{M,w}) \in / \notin \mathcal{P} \iff M$ accepts/rejects w.
- > Then, L_u is recursive, a contradiction

PCP: Definition

- > Suppose we are given two ordered lists of strings over Σ , say $A = (u_1, \ldots, u_k)$ and $B = (v_1, \ldots, v_k)$. We say (u_i, v_i) to be a **corresponding pair**.
- > PCP Problem: Is there a sequence of integers i_1, \ldots, i_m such that:

$$= \underbrace{u_{i_1} \cdots u_{i_m}}_{v_{i_1} \cdots v_{i_m}}?$$

- > m can be greater than the list length k.
- > We can reuse pairs as many times as we like.

- > A solution does exist: $(i_1, i_2, i_3) = (2, 3, 1)$.
- > $(i_1, i_2, i_3, i_4, i_5, i_6) = (2, 3, 1, 2, 3, 1)$ is also a solution.

Modified PCP (MPCP): Definition

- > Suppose we are again given two ordered lists of strings over Σ , say $A = (u_1, \ldots, u_k)$ and $B = (v_1, \ldots, v_k)$.
- > MPCP Problem: Is there a sequence of integers i_1, \ldots, i_m such that $u_1 u_{i_1} \cdots u_{i_m}$
 - $= \mathbf{v}_1 \mathbf{v}_{i_1} \cdots \mathbf{v}_{i_m}$
- > The previous example does not have a solution when viewed as an MPCP problem.
- > So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to PCP

MPCP: Thoughts/Ideas before constructing a Proof

- > So we want to prove that MPCP reduces to PCP.
- > More specifically we need to:
 - Turn every MPCP problem into a PCP problem (with preserving solutions).
 - I.e., how can we enforce PCP to always select the first element first?

Thus, the problem we need to solve is:

- To make sure that that the first string gets selected first, but
- without making additional solutions available or cutting some out!

Initial thoughts:

- We add a new start symbol to u_1 and v_1 so that they match.
- But that still doesn't enforce that we start with them! ...

Outline of Proof of Theorem 9.8.1

> Given MPCP's lists $A = (u_1, \ldots, u_k)$ and $B = (v_1, \ldots, v_k)$. We now transform this into a PCP problem! Suppose that symbols \diamond, \triangle are not in the strings of A and B. > Construct lists $C = (w_0, \ldots, w_{k+1})$ and $D = (x_0, \ldots, x_{k+1})$ for PCP as follows. > For $i = 1, \ldots, k$. • if $u_i = s_1 \dots s_\ell$, then $w_i = s_1 \diamond s_2 \diamond \dots \diamond s_\ell \diamond$ [\diamond succeeds symbols] • if $v_i = s_1 \dots s_\ell$, then $x_i = \diamond s_1 \diamond s_2 \diamond \dots \diamond s_\ell$ [\diamond precedes symbols] > $w_0 = \diamond w_1$ and $x_0 = x_1$. [Ensures any solution to PCP also starts with $i_1 = 1$] > $w_{k+1} = \triangle$ and $x_{k+1} = \diamond \triangle$. [Balances the extra \diamond] Α C B D 0101000 110110 010100010100 110~ $1 \diamond 1 \diamond 0 \diamond$ **★**◇1◇1◇0◇1◇1◇0 0011. 00~ 0110~ $0 \diamond 0 \diamond 1 \diamond 1 \diamond$ $0 \circ 0 \circ 0$ 110~ $1 \diamond 1 \diamond 1 \diamond 0 \diamond$

Theorem 9.8.2

PCP is undecidable.

Outline of Proof of Theorem 9.8.2 (Overview)

We reduce L_u to MPCP (and did already MPCP to PCP). We will show:

- > *M* accepts $w \iff$ a solution to the MPCP exists.
- > If MPCP were decidable, then L_u would be too (i.e., recursive), which it isn't.
- > Hence, MPCP is undecidable. [following Theorem 9.6.1]
- > Since MPCP is undecidable, PCP is also undecidable. [following Theorem 9.6.1]

So the hard work is to solve/model $\langle M \rangle 111w \in L_u$ via MPCP!

(More detailed proof at the end)

(More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

> A TM ID looks as: $X_1 \dots, X_{i-1}qX_i \dots X_\ell$ where X_i is below the head.

Now, with TM's start state q_0 and initial tape $w = s_1 s_2 s_3$ let:

- > Word in line 1: \diamond
- > Word in line 2: $\diamond q_0 s_1 s_2 s_3 \diamond$

We get this by our first pair, created by Rule A:

- > First entry in 1st list: \diamond
- > First entry in 2nd list: $\diamond q_0 s_1 s_2 s_3 \diamond$

What's next? Create the transitions! (Via Rules in B)

- > Assume $\delta(q_0, s_1) = (p, t_1, R)$, then $q_0 s_1 s_2 s_3 \vdash t_1 p s_2 s_3$
- > So we put this into a new pair!

(More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

> A TM ID looks as: $X_1 \dots, X_{i-1}qX_i \dots X_\ell$ where X_i is below the head.

Now, with TM's start state q_0 and initial tape $w = s_1 s_2 s_3$ let:

- > Word in line 1: $\diamond q_0 s_1$
- > Word in line 2: $\diamond q_0 s_1 s_2 s_3 \diamond t_1 p$

We get this by another pair, created by Rule B:

- > Entry in 1st list: $q_0 s_1$
- > Entry in 2nd list: t_1p

since $\delta(q_0, s_1) = (p, t_1, R)$ and thus $q_0 s_1 s_2 s_3 \vdash_M t_1 p s_2 s_3$

What's next? The remaining symbols from last configuration are missing...

```
> We add a pair (s, s) for all s \in \Gamma (Rule I)
```

> and one pair (\diamond, \diamond) (Rule I)

(More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

> A TM ID looks as: $X_1 \dots, X_{i-1}qX_i \dots X_\ell$ where X_i is below the head.

Now, with TM's start state q_0 and initial tape $w = s_1 s_2 s_3$ let:

- > Word in line 1: $\diamond q_0 s_1 s_2 s_3 \diamond$
- > Word in line 2: $\diamond q_0 s_1 s_2 s_3 \diamond t_1 p s_2 s_3 \diamond$

We get this by several new pairs, created by Rule I:

- > $(s_0, s_0), (s_1, s_1), (s_2, s_2), \dots$ (for all $s \in \Gamma$)
- > and the pair (\diamond, \diamond)

What's next? We continue! Next transition!

> Assume $\delta(p, s_2) = (r, t_2, L)$, then $t_1 p s_2 s_3 \vdash r t_1 t_2 s_3$

> So we put this into a new pair!

(More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

> A TM ID looks as: $X_1 \dots, X_{i-1}qX_i \dots X_\ell$ where X_i is below the head.

Now, with TM's start state q_0 and initial tape $w = s_1 s_2 s_3$ let:

- > Word in line 1: $\diamond q_0 s_1 s_2 s_3 \diamond t_1 p s_2$
- > Word in line 2: $\diamond q_0 s_1 s_2 s_3 \diamond t_1 p s_2 s_3 \diamond r t_1 t_2$

We get this by another pair, created by Rule B:

- > Entry in 1st list: t1ps2
- > Entry in 2nd list: rt_1t_2

What's next?

> First, we again add the missing symbols, until

> eventually we find a final state. We have more rules for that (see appendix).

since $\delta(p, s_2) = (r, t_2, L)$ and thus $t_1 p s_2 s_3 \vdash r t_1 t_2 s_3$ > We'll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a CFG is ambiguous is undecidable.

Outline of Proof of Theorem 9.8.2

- > We'll reduce every instance of a PCP problem to a CFG.
- > Given a PCP problem with $A = (w_1, \ldots, w_k)$ and $B = (x_1, \ldots, x_k)$, pick symbols a_1, \ldots, a_k that don't appear in any string in list A or B.
- > Now define a grammar G with production rules

$$S \longrightarrow A \mid B$$

$$A \longrightarrow w_1 A a_1 \mid \dots \mid w_k A a_k \mid w_1 a_1 \mid \dots \mid w_k a_k$$

$$B \longrightarrow x_1 B a_1 \mid \dots \mid x_k B a_k \mid x_1 a_1 \mid \dots \mid x_k a_k$$

- > If there are two leftmost derivations of a string in L(G), one must use $S \longrightarrow A$ and $S \longrightarrow B$, respectively.
- > Every solution to the PCP leads to 2 leftmost derivations of some string in L(G) and vice versa. (Note how the solution indices are encoded in the end of each word.)
- \succ Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]

Overview of (Some) Undecidable Problems Concerning CFGs

- > Given a CFG G, is it ambiguous? (We just had that.)
- > Given CFL L, is it inherently ambiguous?
- > Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2) = \emptyset$? (As mentioned before, this is used to show that HTN planning is undeciable)
- > Given CFGs G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?
- > Given CFGs G_1 and G_2 , is $L(G_1) = L(G_2)$?
- > Given CFG G and regular language L, is L(G) = L?
- > Given CFG G and regular language L, is $L \subseteq L(G)$?
- > Given CFG G, is $L(G) = \Sigma^*$?

Pascal Bercher

Proof Details of Theorem 9.8.2 (Rule Definitions)

> For the proof we construct an MPCP for each TM M and input w.

Rule A: Construct two lists A and B whose first entries are \diamond and $\diamond q_0 w \diamond$, respectively.

Rule I: Add corresponding pairs (X, X) (for all $X \in \Gamma$) and (\diamond, \diamond)

Rule B: Suppose q is not a final state. Then, append to the list the following entries:

Rule C: For $q \in F$, let (XqY, q), (Xq, q), and (qY, Y) be corresponding pairs for $X, Y \in \Gamma$

Rule D: For $q \in F$ $(q \diamond \diamond, \diamond)$ is a corresponding pair.

Proof Details of Theorem 9.8.2 (Construction/Explanation)

- Suppose there is a solution to the MPCP problem. The solution starts with the first corresponding pair, and the string constructed from List B is already an ID of TM M ahead of the string from List A.
- > As we select strings from List A (corresponding to Rule B) to match the last ID, the string from List B adds to its string another valid ID.
- > The sequence of IDs constructed are valid sequences of IDs for M starting from $q_0 w$.
- > Suppose the last ID constructed in the string constructed from List *B* corresponds to a final state, then we can gobble up one neighboring symbol at a time using Rule C.
- > Once we are done gobbling up all tape symbols, the string from List B is still one final state symbol ahead of List A's string.
- > We then use Rule D to match and complete.

