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Disclaimer

Why do we have this week’s content?

∠ I wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to ≤ 2022 you will miss out on:

Approximations: Being guaranteed to be within a factor of i to the optimum.
Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

∠ To make the point that this isn’t just “theory for the sake of having theory”, but:

its used in disciplines other than Theoretical Computer Science and
has actual applications/implications (e.g., algorithm and heuristic ideas/design)

∠ To promote this exciting discipline! For two purposes:

To spread the word! You (or your future boss or colleagues) might be able to use
it. Everyboody knows Operations Research (SAT/SMT/ILP solving etc.) to
tackle NP-complete problems. But only a fragment knows AI planning for
tackling problems beyond NP.
To find PhD students! The ANU has at least 8 planning experts, and we are all
internationally connected (in case you want to do research Overseas). But note
that ANU’s Foundations Cluster has just as much staff with theory-heavy topics!
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Automated Planning Introduction Overview

What it is about

We always have:

∠ An initial world description (start state)

∠ A desired world description (end state)

∠ Actions (how can states be changed?)

There are tons of variants:

∠ Do we know/see everything?

∠ Is it entirely clear what an action does?

∠ Are (other) agents involved?

∠ Can we produce ’objects’, use functions?

∠ Is there time involved?

∠ Any additional constraints on solution plans?

Well... Yes for HTN planning!

Classical Planning is the simplest form of planning!

But HTN Planning is more complex.
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Automated Planning Introduction Examples

Artificial Toy Problems, e.g., Blocksworld

A

C

B

Start Configuration

C

B

A

Desired Configuration

Standard Planning Benchmark in the International Planning Competition

. . . and every planning lecture! (Like this and the one below.)

Here (https://www.youtube.com/watch?v=pfNb0IAkbcQ&t=308s) you find a 90
minute hands-on lecture by me on modeling Blocksword using planning. (I.e., you
will actually model it during the lecture and use an online planner to solve it.)
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Automated Planning Introduction Examples

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS
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Automated Planning Introduction Examples

Games, e.g., Rush Hour (or: from practice to games to AI models)

Start: any configuration of cars with an exit on one specific side.

Goal: Get the red car out.

Photo made out of Hanna Neumann (between HN, Birch, CSIT, December 2020).

Modeling this, including the automated video creation was (is) a 6 pt. project in S1 2023.
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Automated Planning Introduction Examples

Automated Factories (here: Greenhouse)

Factory takes imagines of all plants, and decides on their further treatments.

Factory controls their movements via the conveyor belts.

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading: Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”.
In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010).
AAAI Press, 2010, pp. 234-237
The IPC Scanalizer Domain in PDDL (see paper above).
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Automated Planning Introduction Examples

Robotics (here: Mars Rovers Spirit and Opportunity)

Source: left https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg

middle https://commons.wikimedia.org/wiki/File:

Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg

right https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg

Copyright: public domain

Further reading: Pascal Bercher and Daniel Höller. “Interview with David E. Smith”. In: Künstliche Intelligenz 30.1 (2016).
Special Issue on Companion Technologies, pp. 101-105. DOI: 10.1007/s13218-015-0403-y
https://www.nasa.gov/ and papers about MAPGEN (for references, see also article above).
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Classical Planning Problem Definition

Informal Problem Introduction

We consider classical planning problems, which consist of:

An initial state sI – all “world properties” true in the beginning.

A set of available actions – how world states can be changed.

A goal description g – all properties we’d like to hold.

What do we want?

→ Find a plan that transforms sI into g .

sI s⊇g

description of the
initial world situation

description of desired
world properties

︸ ︷︷ ︸
plan

intermediate states
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Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem ⟨V ,A, sI , g⟩ consists of:
V is a finite set of state variables (also called: facts or propositions).

States are collections of state variables.
We assume the closed world assumption, i.e., all variables not mentioned in a state s
do not hold in that state (in contrast to: it’s not known whether they hold or not).
S = 2V is called the state space.

A ⊆ 2V × 2V × 2V is a finite set of actions. Each action a ∈ A is a tuple
(pre, add , del) consisting of a precondition pre, add list add , and delete list del .

sI ∈ S is the initial state (complete state description).

g ⊆ V is the goal description (partial state description).

Q. Something (extremely important) is still missing... What?
A. What a solution is!
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Classical Planning Problem Definition

Problem Definition, cont’d (Solutions)

Action application:

An action a ∈ A is called applicable (or executable) in a state s ∈ S if and only if
pre(a) ⊆ s. Often, this is given by a function: τ(a, s)⇔ pre(a) ⊆ s.

If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a))∪ add(a). γ : A× S → S is called the state transition function.

An action sequence ā = a0, . . . , an−1 is applicable in a state s0 if and only if for all
0 ≤ i ≤ n− 1 ai is applicable in si , where for all 1 ≤ i ≤ n si is the resulting state of
applying a0, . . . , ai to s0 = sI . Often, the state transition function is extended to
work on action sequences as well γ : A∗ × S → S .

Solution:

An action sequence ā ∈ A∗ consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem ⟨V ,A, sI , g⟩ if and only if:

ā is applicable in sI .

ā results into a goal state, i.e., γ(ā, sI ) ⊇ g .

PLANEX = {⟨P⟩ : P is a classical planning problem ⟨V ,A, sI , g⟩ that has a solution.}.
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ā results into a goal state, i.e., γ(ā, sI ) ⊇ g .
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If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a))∪ add(a). γ : A× S → S is called the state transition function.

An action sequence ā = a0, . . . , an−1 is applicable in a state s0 if and only if for all
0 ≤ i ≤ n− 1 ai is applicable in si , where for all 1 ≤ i ≤ n si is the resulting state of
applying a0, . . . , ai to s0 = sI . Often, the state transition function is extended to
work on action sequences as well γ : A∗ × S → S .

Solution:

An action sequence ā ∈ A∗ consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem ⟨V ,A, sI , g⟩ if and only if:

ā is applicable in sI .

ā results into a goal state, i.e., γ(ā, sI ) ⊇ g .

PLANEX = {⟨P⟩ : P is a classical planning problem ⟨V ,A, sI , g⟩ that has a solution.}.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12 / 22



Classical Planning Problem Definition

Problem Definition, cont’d (Solutions)

Action application:

An action a ∈ A is called applicable (or executable) in a state s ∈ S if and only if
pre(a) ⊆ s. Often, this is given by a function: τ(a, s)⇔ pre(a) ⊆ s.

If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a))∪ add(a). γ : A× S → S is called the state transition function.
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Classical Planning Problem Definition

Example Problem

Let sI = {AtLivingRoom,R,AtGarage,Remote,AtLivingRoom,Box,TVOff}

Rick’s actions:

PushBoxR : ({AtLivingRoom,Box,AtLivingRoom,R},{AtLivingRoom,M},∅)

GoToGarageR : ({AtLivingRoom,R},{AtGarage,R},{AtLivingRoom,R})
GoToLivingRoomR : ({AtGarage,R},{AtLivingRoom,R},{AtGarage,R})
PickUpRemoteR : ({AtGarage,R,AtGarage,Remote},{HasRemote,R},{AtGarage,Remote})
TurnTVOnR : ({HasRemote,R,AtLivingRoom,R,TVOff},{TVOn},{TVOff})

Meeseeks’s actions:

GoToGarageM : ({AtLivingRoom,M},{AtGarage,M},{AtLivingRoom,M})
GoToLivingRoomM : ({AtGarage,M},{AtLivingRoom,M},{AtGarage,M})
PickUpRemoteM : ({AtGarage,M,AtGarage,Remote},{HasRemote,M},{AtGarage,Remote})
GiveRemoteM : ({HasRemote,M,AtLivingRoom,M,AtLivingRoom,R},{HasRemote,R},

{HasRemote,M,AtLivingRoom,M})

g = {TVOn}
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Classical Planning Problem Definition

Example Problem, Solutions

Recap: sI = {AtLivingRoom,Box,AtLivingRoom,R,AtGarage,Remote,TVOff}.

Solution 1 (Rick does it himself):

1 GoToGarageR : s1={AtLivingRoom,Box,AtGarage,R,AtGarage,Remote,TVOff}
2 PickUpRemoteR : s2={AtLivingRoom,Box,AtGarage,R,HasRemote,R,TVOff}
3 GoToLivingRoomR : s3={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOff}
4 TurnTVOnR : s4={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOn}

Solution 2 (Rick uses a Meeseeks):

1 PushBoxR : s1={AtLivingRoom,Box,AtLivingRoom,R,AtGarage,Remote,AtLivingRoom,M,TVOff}
2 GoToGarageM : s2={AtLivingRoom,BMSox,AtLivingRoom,R,AtGarage,Remote,AtGarage,M,TVOff}
3 PickUpRemoteM : s3={AtLivingRoom,Box,AtLivingRoom,R,AtGarage,M,HasRemote,M,TVOff}
4 GoToLivingRoomM : s4={AtLivingRoom,Box,AtLivingRoom,R,AtLivingRoom,M,HasRemote,M,TVOff}
5 GiveRemoteM : s5={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOff}
6 TurnTVOnR : s6={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOn}

Recap: g = {TVOn}.
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Complexity Results General Case

Classical Planning is in PSPACE

Let P = ⟨V ,A, sI , g⟩ be our plannig problem.

Note that if a solution a exists then one exists with |a| ≤ 2|V |. This is because

this
is the maximal number of distinct states. If there is a plan that’s longer, it “walks in
a loop”, which can be removed.

Guess and verify would however be too expensive...

We want to use recursive doubling! Let P(s1, s2, k) represent whether there exists a
plan from state s1 to state s2 with size ≤ k.

We don’t have a goal state, but a goal description, so we can’t use P(sI , g , 2
|V |),

since g is just one of potentially exponentially many states. But we can:
put a new variable v1 /∈ V into V , now V ′, and into all action preconditions,
create new action (g , {v2},V ), where v2 /∈ V is new.
Now g ′ = {v2} is our unique goal and P has a solution iff P ′ has one.
We could also have iterated over all states s with s ⊇ g .

Now we can decide P(sI , g
′, 2|V |) in the usual way, i.e., P(s1, s2, k) iff there exists an

s, such that P(s1, s, k/2) and P(s, s2, k/2).

Each state is only polynomially large, and we only need to do this split log(2|V |)
often. So we only need poly space to do this search.

Thus, PLANEX ∈ PSPACE.
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Complexity Results General Case

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

We define sI = {at1,q0 , in0,B , in1,w1 , . . . in|w|,w|w| , in|w|+1,B , . . . , inpol(|w|)−1,B} with
ini,x – Symbol x is in tape position i .
ati,q – TM’s head is over position i and its state is q.

For the actions, assume TM is in state q, head is over i and reads x , and it shall
write y , move right, and transition into q′. This is implemented by three actions,
executed in order:

1 ({ati,q , ini,x}, {doi,q,x}, {ati,q})
2 ({doi,q,x , ini,x}, {ini,y}, {ini,x})
3 ({doi,q,x , ini,y}, {ati+1,q′}, {doi,q,x})
4 don’t provide actions for at−1,q and atpol(|w|),q (for any q)

→ Uses the new variable(s) doi,q,x . Provide the analogous action for left-movement.

Whenever the TM is in an accepting state, the problem is solved:
Set g = {accept} (using the new variable accept).
For all final states q ∈ F and all i , define ({ati,q}, {accept}, ∅).

Thus, PLANEX is PSPACE-complete. (Proof(s) by Bylander, 1994)

Q. Why do we have three actions? Why not just one (as in the live-lecture)?!
A. So that we can say: Planning is even PSPACE-hard if we have only 2 preconditions

and 2 effects! Think of 2-SAT vs. 3-SAT! (Here, the 2 precs/effs correspond to the 3!)
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Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEXk = {⟨P, k⟩ : P is a planning problem with a solution ā, |ā| ≤ k.}
Note that the k in the index here is a String, i.e., literally the letter k, not a number.
So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEXk is PSPACE-complete:

PSPACE membership:

We know that if a solution exists at all, then one exists up to length 2|V |.
Recap: This is because there is no point in repeating any of the 2|V | states.
We can thus check for plan existence up to the number min(k, 2|V |).

We already have a decision procedure for bound 2|V |, which runs in PSPACE.

We now show PSPACE-hardness:
We again exploit that if there exists a plan at all, there is one up to length 2|V |.
We thus reduce from PLANEX: We take an arbitrary problem P ∈ PLANEX and
create a cost-bounded one by choosing k = 2|V |, where V are the variables of P. Note
that this construction is polytime because we can encode k using only log(k) bits.
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Complexity Results Delete Relaxation

Disclaimer / Recap

We know that – no matter which instance – planning problems are in PSPACE.

But is every instance PSPACE-hard?

Clearly not! What about the problem (∅, ∅, ∅, ∅)?
Think of SAT – which is NP-complete. How about 2-CNF -SAT?

So, which factor(s) make planning hard? And what if they were not there?
If we identify such a special case in a given instance we could use a more efficient
algorithm than one designed for the general case.
If we can establish a special case we can solve the easier case and use its solution as
approximation to the solution of the actual problem. (E.g., as heuristic in a search.)
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Complexity Results Delete Relaxation

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V ,A, sI , g).

A problem (V ,A, sI , g) is called delete-free if the following holds:
for all (pre, add , del) ∈ A holds: del = ∅

Given a problem P = (V ,A, sI , g), we call P ′ = (V ′,A′, s ′I , g
′) delete-relaxed version

of P if V = V ′, s ′I = si , g
′ = g , and A′ = {(pre, add , ∅) : (pre, add , del) ∈ A}.

PLANEXDR = {⟨P⟩ : P is a solvable classical delete-free planning problem.}

Now, what’s true?

PLANEXDR is PSPACE-complete (?)

PLANEXDR is NP-complete (?)

PLANEXDR is in NP, not NP-hard, and not in P (?)

PLANEXDR is in P (?)
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Complexity Results Delete Relaxation

Delete-free Planning is in P

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set A of delete-free actions, initial state sI , goal description g
Result: Whether the delete-free problem is solvable
s ← sI ;
repeat

foreach action a ∈ A do
if pre(a) ⊆ s then

s = s ∪ add(a);
delete a from A;

until A is not modified;
return s ⊇ g ;

Observations:

Applying an action twice is pointless, so we can delete each applied action.

Each iteration costs at most O(|A|) and we can delete at most |A| times.

Thus, runtime is in O(|A|2), so PLANEXDR ∈ P.
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Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is in NP

PLANEXk−DR = {⟨P, k⟩ : P is a delete-free planning problem with a solution ā, |ā| ≤ k.}
As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEXk−DR ∈ NP

Let P (delete-free problem) and number k be given.

Guess up to k actions and an order among them.

Return true if sequence is executable and makes goal true. Right?

No! That’s a NEXPTIME-procedure! k is encoded binarily...
Instead, we limit the number of actions that we guess.

No action has to be executed twice! So we only guess up to |A| (distinct) actions.
Thus, we perform the above procedure for the number min (k, |A|).
This results in an NP membership procedure/proof.
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Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEXk−DR is NP-hard.

We reduce from CNF-SAT.

Let φ = {C1, . . . ,Cn}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk }︸ ︷︷ ︸
literals

, and V = {x1, . . . , xm}︸ ︷︷ ︸
variables

.

For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji
−⊤ or

“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji
−⊥

g = {xi−set | 1 ≤ i ≤ m} ∪ {Cj−⊤ | 1 ≤ j ≤ n}
φ is satisfiable if and only if a plan of size n +m exists.

You are not done yet! Don’t forget to show this is a reduction!
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