COMP3630 / COMP6363

week 12: Automated (Classical) Planning

(A subdiscipline of Artificial Intelligence)
slides created by: Pascal Bercher
convenor \& lecturer: Pascal Bercher
The Australian National University

Content of this Chapter

- Introduction to Classical Planning
- Complexity Studies

Disclaimer

Why do we have this week's content?
> I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to ≤ 2022 you will miss out on:

- Approximations: Being guaranteed to be within a factor of i to the optimum.
- Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)

Disclaimer

Why do we have this week's content?
> I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to ≤ 2022 you will miss out on:

- Approximations: Being guaranteed to be within a factor of i to the optimum.
- Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
> To make the point that this isn't just "theory for the sake of having theory", but:
- its used in disciplines other than Theoretical Computer Science and
- has actual applications/implications (e.g., algorithm and heuristic ideas/design)

Disclaimer

Why do we have this week's content?
> I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to ≤ 2022 you will miss out on:

- Approximations: Being guaranteed to be within a factor of i to the optimum.
- Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
> To make the point that this isn't just "theory for the sake of having theory", but:
- its used in disciplines other than Theoretical Computer Science and
- has actual applications/implications (e.g., algorithm and heuristic ideas/design)
> To promote this exciting discipline! For two purposes:

Disclaimer

Why do we have this week's content?
> I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to ≤ 2022 you will miss out on:

- Approximations: Being guaranteed to be within a factor of i to the optimum.
- Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
> To make the point that this isn't just "theory for the sake of having theory", but:
- its used in disciplines other than Theoretical Computer Science and
- has actual applications/implications (e.g., algorithm and heuristic ideas/design)
> To promote this exciting discipline! For two purposes:
- To spread the word! You (or your future boss or colleagues) might be able to use it. Everyboody knows Operations Research (SAT/SMT/ILP solving etc.) to tackle NP-complete problems. But only a fragment knows AI planning for tackling problems beyond NP.

Disclaimer

Why do we have this week's content?
> I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to ≤ 2022 you will miss out on:

- Approximations: Being guaranteed to be within a factor of i to the optimum.
- Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
> To make the point that this isn't just "theory for the sake of having theory", but:
- its used in disciplines other than Theoretical Computer Science and
- has actual applications/implications (e.g., algorithm and heuristic ideas/design)
> To promote this exciting discipline! For two purposes:
- To spread the word! You (or your future boss or colleagues) might be able to use it. Everyboody knows Operations Research (SAT/SMT/ILP solving etc.) to tackle NP-complete problems. But only a fragment knows AI planning for tackling problems beyond NP.
- To find PhD students! The ANU has at least 8 planning experts, and we are all internationally connected (in case you want to do research Overseas). But note that ANU's Foundations Cluster has just as much staff with theory-heavy topics!

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects', use functions?

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects', use functions?
> Is there time involved?

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects', use functions?
> Is there time involved?
>Any additional constraints on solution plans?

What it is about

We always have:
>An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects', use functions?
> Is there time involved?
>Any additional constraints on solution plans?
we: Yes
we: Yes
we: No
we: No
we: No
we: No

Classical Planning is the simplest form of planning!

What it is about

We always have:
> An initial world description (start state)
>A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
we: Yes
> Is it entirely clear what an action does?
we: Yes
> Are (other) agents involved?
> Can we produce 'objects', use functions?
> Is there time involved?
> Any additional constraints on solution plans?
we: No
we: No
we: No
we: No and Yes
Well... Yes for HTN planning!
Classical Planning is the simplest form of planning! But HTN Planning is more complex.

Artificial Toy Problems, e.g., Blocksworld

- Standard Planning Benchmark in the International Planning Competition

Artificial Toy Problems, e.g., Blocksworld

- Standard Planning Benchmark in the International Planning Competition
- ... and every planning lecture! (Like this and the one below.)
- Here (https://www.youtube.com/watch?v=pfNbOIAkbcQ\&t=308s) you find a 90 minute hands-on lecture by me on modeling Blocksword using planning. (I.e., you will actually model it during the lecture and use an online planner to solve it.)

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png
License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html
Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Games, e.g., Rush Hour (or: from practice to games to AI models)

Photo made out of Hanna Neumann (between HN, Birch, CSIT, December 2020).

Games, e.g., Rush Hour (or: from practice to games to AI models)

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

Games, e.g., Rush Hour (or: from practice to games to AI models)

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

Games, e.g., Rush Hour (or: from practice to games to AI models)

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

Modeling this, including the automated video creation was (is) a 6 pt. project in S1 2023.

Automated Factories (here: Greenhouse)

- Factory takes imagines of all plants, and decides on their further treatments.
- Factory controls their movements via the conveyor belts.

Source: https://www.lemnatec.com/
Copyright: With kind permission from LemnaTec GmbH
Further reading: - Malte Helmert and Hauke Lasinger. "The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem". In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010, pp. 234-237

- The IPC Scanalizer Domain in PDDL (see paper above).

Robotics (here: Mars Rovers Spirit and Opportunity)

Source:
left https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg
middle https://commons.wikimedia.org/wiki/File:
Curiosity_Self-Portrait_at_\%27Big_Sky\%27_Drilling_Site.jpg
right https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg
Copyright: public domain
Further reading: - Pascal Bercher and Daniel Höller. "Interview with David E. Smith". In: Künstliche Intelligenz 30.1 (2016). Special Issue on Companion Technologies, pp. 101-105. DOI: 10.1007/s13218-015-0403-y

- https://www.nasa.gov/ and papers about MAPGEN (for references, see also article above).

Informal Problem Introduction

We consider classical planning problems, which consist of:

- An initial state s_{l} - all "world properties" true in the beginning.
- A set of available actions - how world states can be changed.
- A goal description g - all properties we'd like to hold.

What do we want?

Informal Problem Introduction

We consider classical planning problems, which consist of:

- An initial state s_{l} - all "world properties" true in the beginning.
- A set of available actions - how world states can be changed.
- A goal description g - all properties we'd like to hold.

What do we want?
\rightarrow Find a plan that transforms s_{l} into g.

Problem Definition

A classical (or STRIPS) planning problem $\left\langle V, A, s_{l}, g\right\rangle$ consists of:

- V is a finite set of state variables (also called: facts or propositions).
- States are collections of state variables.
- We assume the closed world assumption, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
- $S=2^{V}$ is called the state space.

Problem Definition

A classical (or STRIPS) planning problem $\left\langle V, A, s_{l}, g\right\rangle$ consists of:

- V is a finite set of state variables (also called: facts or propositions).
- States are collections of state variables.
- We assume the closed world assumption, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
- $S=2^{V}$ is called the state space.
- $A \subseteq 2^{V} \times 2^{V} \times 2^{V}$ is a finite set of actions. Each action $a \in A$ is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.

Problem Definition

A classical (or STRIPS) planning problem $\left\langle V, A, s_{l}, g\right\rangle$ consists of:

- V is a finite set of state variables (also called: facts or propositions).
- States are collections of state variables.
- We assume the closed world assumption, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
- $S=2^{V}$ is called the state space.
- $A \subseteq 2^{V} \times 2^{V} \times 2^{V}$ is a finite set of actions. Each action $a \in A$ is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_{l} \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).

Problem Definition

A classical (or STRIPS) planning problem $\left\langle V, A, s_{l}, g\right\rangle$ consists of:

- V is a finite set of state variables (also called: facts or propositions).
- States are collections of state variables.
- We assume the closed world assumption, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
- $S=2^{V}$ is called the state space.
- $A \subseteq 2^{V} \times 2^{V} \times 2^{V}$ is a finite set of actions. Each action $a \in A$ is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_{l} \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).
Q. Something (extremely important) is still missing... What?

Problem Definition

A classical (or STRIPS) planning problem $\left\langle V, A, s_{l}, g\right\rangle$ consists of:

- V is a finite set of state variables (also called: facts or propositions).
- States are collections of state variables.
- We assume the closed world assumption, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
- $S=2^{V}$ is called the state space.
- $A \subseteq 2^{V} \times 2^{V} \times 2^{V}$ is a finite set of actions. Each action $a \in A$ is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_{l} \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).
Q. Something (extremely important) is still missing... What?
A. What a solution is!

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s)=(s \backslash \operatorname{del}(a)) \cup \operatorname{add}(a) . \gamma: A \times S \rightarrow S$ is called the state transition function.

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s)=(s \backslash \operatorname{del}(a)) \cup \operatorname{add}(a) . \gamma: A \times S \rightarrow S$ is called the state transition function.
- An action sequence $\bar{a}=a_{0}, \ldots, a_{n-1}$ is applicable in a state s_{0} if and only if for all $0 \leq i \leq n-1 a_{i}$ is applicable in s_{i}, where for all $1 \leq i \leq n s_{i}$ is the resulting state of applying a_{0}, \ldots, a_{i} to $s_{0}=s_{l}$. Often, the state transition function is extended to work on action sequences as well $\gamma: A^{*} \times S \rightarrow S$.

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s)=(s \backslash \operatorname{del}(a)) \cup \operatorname{add}(a) . \gamma: A \times S \rightarrow S$ is called the state transition function.
- An action sequence $\bar{a}=a_{0}, \ldots, a_{n-1}$ is applicable in a state s_{0} if and only if for all $0 \leq i \leq n-1 a_{i}$ is applicable in s_{i}, where for all $1 \leq i \leq n s_{i}$ is the resulting state of applying a_{0}, \ldots, a_{i} to $s_{0}=s_{l}$. Often, the state transition function is extended to work on action sequences as well $\gamma: A^{*} \times S \rightarrow S$.

Solution:
An action sequence $\bar{a} \in A^{*}$ consisting of 0 (empty sequence) or more actions is called a plan or solution to a planning problem $\left\langle V, A, s_{l}, g\right\rangle$ if and only if:

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s)=(s \backslash \operatorname{del}(a)) \cup \operatorname{add}(a) . \gamma: A \times S \rightarrow S$ is called the state transition function.
- An action sequence $\bar{a}=a_{0}, \ldots, a_{n-1}$ is applicable in a state s_{0} if and only if for all $0 \leq i \leq n-1 \quad a_{i}$ is applicable in s_{i}, where for all $1 \leq i \leq n s_{i}$ is the resulting state of applying a_{0}, \ldots, a_{i} to $s_{0}=s_{l}$. Often, the state transition function is extended to work on action sequences as well $\gamma: A^{*} \times S \rightarrow S$.

Solution:
An action sequence $\bar{a} \in A^{*}$ consisting of 0 (empty sequence) or more actions is called a plan or solution to a planning problem $\left\langle V, A, s_{l}, g\right\rangle$ if and only if:

- \bar{a} is applicable in s_{l}.
- \bar{a} results into a goal state, i.e., $\gamma\left(\bar{a}, s_{l}\right) \supseteq g$.

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $\operatorname{pre}(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow p r e(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s)=(s \backslash \operatorname{del}(a)) \cup \operatorname{add}(a) . \gamma: A \times S \rightarrow S$ is called the state transition function.
- An action sequence $\bar{a}=a_{0}, \ldots, a_{n-1}$ is applicable in a state s_{0} if and only if for all $0 \leq i \leq n-1 a_{i}$ is applicable in s_{i}, where for all $1 \leq i \leq n s_{i}$ is the resulting state of applying a_{0}, \ldots, a_{i} to $s_{0}=s_{l}$. Often, the state transition function is extended to work on action sequences as well $\gamma: A^{*} \times S \rightarrow S$.

Solution:
An action sequence $\bar{a} \in A^{*}$ consisting of 0 (empty sequence) or more actions is called a plan or solution to a planning problem $\left\langle V, A, s_{l}, g\right\rangle$ if and only if:

- \bar{a} is applicable in s_{l}.
- \bar{a} results into a goal state, i.e., $\gamma\left(\bar{a}, s_{l}\right) \supseteq g$.

PLANEX $=\left\{\langle\mathcal{P}\rangle: \mathcal{P}\right.$ is a classical planning problem $\left\langle V, A, s_{l}, g\right\rangle$ that has a solution. $\}$.

Example Problem

Let $s_{l}=\left\{\right.$ At $\left._{\text {LivingRoom,R }}, A t_{\text {Garage,Remote }}, A t_{\text {LivingRoom,Box }}, \mathrm{TV}_{\text {Off }}\right\}$
Rick's actions:

- PushBox : ($\left\{\right.$ At $\left._{\text {LivingRoom, Box }}, A t_{\text {LivingRoom }, R}\right\},\{$ At LivingRoom,$\left.M\}, \emptyset\right)$

Meeseeks's actions:

$$
g=\left\{T V_{O n}\right\}
$$

Example Problem

Let $s_{l}=\left\{\right.$ At $\left._{\text {LivingRoom,R }}, A t_{\text {Garage,Remote }}, A t_{\text {LivingRoom,Box }}, \mathrm{TV}_{\text {Off }}\right\}$
Rick's actions:

- PushBox ${ }_{R}$: $\left(\left\{\right.\right.$ At LivingRoom, Box,$\left.A t_{\text {LivingRoom }, R}\right\},\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}, \emptyset\right)$
- GoToGarage ${ }_{R}:\left(\left\{\mathrm{At}_{\text {LivingRoom }, \mathrm{R}}\right\},\left\{\mathrm{At}_{\left.\left.\text {Garage }, R^{R}\right\},\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\}\right)}\right.\right.$)

Meeseeks's actions:

- GoToGarage ${ }_{M}$: $\left(\left\{\right.\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}\right)$

$$
g=\left\{T V_{O n}\right\}
$$

Example Problem

Let $s_{l}=\left\{\right.$ At $\left._{\text {LivingRoom,R }}, A t_{\text {Garage,Remote }}, A t_{\text {LivingRoom,Box }}, \mathrm{TV}_{\text {Off }}\right\}$
Rick's actions:

- GoToGarage ${ }_{R}:\left(\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\},\left\{\mathrm{At}_{\left.\left.\text {Garage }, R^{R}\right\},\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\}\right)}\right.\right.$)
- GoToLivingRoom ${ }_{R}:\left(\left\{\mathrm{At}_{\left.\left.\text {Garage }, R^{R}\right\},\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\},\left\{\mathrm{At}_{\text {Garage }, \mathrm{R}}\right\}\right)}\right.\right.$)

Meeseeks's actions:

- GoToGarage M : $\left(\left\{\right.\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left._{\text {Garage }, M}\right\},\{$ At LivingRoom,$\left.M\}\right)$
- GoToLivingRoom M : $\left(\left\{\right.\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\},\left\{\operatorname{At}_{\text {Garage }, M}\right\}\right)$

$$
g=\left\{T V_{O n}\right\}
$$

Example Problem

Let $s_{l}=\left\{\right.$ At $\left._{\text {LivingRoom,R }}, A t_{\text {Garage,Remote }}, A t_{\text {LivingRoom,Box }}, \mathrm{TV}_{\text {Off }}\right\}$
Rick's actions:

- PushBox ${ }_{R}$: (\{At LivingRoom,Box, At LivingRoom, R \}, $\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}, \emptyset\right)$
- GoToGarage ${ }_{R}:\left(\left\{\mathrm{At}_{\text {LivingRoom }, \mathrm{R}}\right\},\left\{\mathrm{At}_{\left.\left.\text {Garage }, R^{R}\right\},\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\}\right)}\right.\right.$)
- GoToLivingRoom ${ }_{R}$: $\left(\left\{\right.\right.$ At $\left._{\text {Garage }, R}\right\},\left\{\right.$ At $\left._{\text {LivingRoom }, R}\right\},\left\{\right.$ At $\left.\left._{\text {Garage }, R}\right\}\right)$

Meeseeks's actions:

- GoToGarage M : $\left(\left\{\right.\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}\right)$
- GoToLivingRoom M : $\left(\left\{\right.\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left.\left._{\text {Garage }, M}\right\}\right)$

$g=\left\{T V_{O_{n}}\right\}$

Example Problem

Let $s_{l}=\left\{\right.$ At $\left._{\text {LivingRoom,R }}, A t_{\text {Garage,Remote }}, A t_{\text {LivingRoom,Box }}, \mathrm{TV}_{\text {Off }}\right\}$

Rick's actions:

- PushBox ${ }_{R}$: (\{At LivingRoom,Box, At LivingRoom, R \}, $\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}, \emptyset\right)$
- GoToGarage ${ }_{R}:\left(\left\{\mathrm{At}_{\text {LivingRoom }, \mathrm{R}}\right\},\left\{\mathrm{At}_{\left.\left.\text {Garage }, R^{R}\right\},\left\{\mathrm{At}_{\text {LivingRoom }, R}\right\}\right)}\right.\right.$)
- GoToLivingRoom ${ }_{R}$: $\left(\left\{\right.\right.$ At $\left._{\text {Garage }, R}\right\},\left\{\right.$ At $\left._{\text {LivingRoom }, R}\right\},\left\{\right.$ At $\left.\left._{\text {Garage }, R}\right\}\right)$

- TurnTVOn ${ }_{R}:\left(\left\{\right.\right.$ Has $_{\text {Remote }, R}$, At $_{\text {LivingRoom }, R}$, TV $\left._{\text {Off }}\right\},\left\{\right.$ TV $\left._{\text {On }}\right\},\left\{\right.$ TV $\left.\left._{\text {Off }}\right\}\right)$

Meeseeks's actions:

- GoToGarage M : $\left(\left\{\right.\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left.\left._{\text {LivingRoom }, M}\right\}\right)$
- GoToLivingRoom M : $\left(\left\{\right.\right.$ At $\left._{\text {Garage }, M}\right\},\left\{\right.$ At $\left._{\text {LivingRoom }, M}\right\},\left\{\right.$ At $\left.\left._{\text {Garage }, M}\right\}\right)$
- PickUpRemote ${ }_{M}:\left(\left\{\operatorname{At}_{\text {Garage, }^{M},}\right.\right.$, At $\left._{\text {Garage,Remote }}\right\},\left\{\right.$ Has $\left._{\text {Remote }, M}\right\},\left\{\right.$ At $\left.\left._{\text {Garage, Remote }}\right\}\right)$
- GiveRemote ${ }_{M}$: $\left(\left\{\operatorname{Has}_{\text {Remote, }, ~}\right.\right.$, At $_{\text {LivingRoom, }, ~}$, At $\left._{\text {LivingRoom, } R}\right\},\left\{\right.$ Has $\left._{\text {Remote }, R}\right\}$, $\left\{\right.$ Has $_{\text {Remote, }, ~}$, At LivingRoom, $\left.^{\text {M }}\right\}$)
$g=\left\{T V_{O_{n}}\right\}$

Example Problem, Solutions

Solution 1 (Rick does it himself):
(1) GoToGarage ${ }_{R}: s_{1}=\left\{\right.$ At $_{\text {LivingRoom, Box }}$, At $_{\text {Garage,R }^{R}}$, At $\left._{\text {Garage, Remote },}, \mathrm{TV}_{\text {Off }}\right\}$
(2) PickUpRemote ${ }_{R}: s_{2}=\left\{\right.$ At $_{\text {LivingRoom, Box }}, A t_{\text {Garage,R }}$, Has $_{\text {Remote, }, R}$, TV $\left._{\text {Off }}\right\}$
(3) GoToLivingRoom ${ }_{R}: s_{3}=\left\{\right.$ At $_{\text {LivingRoom,Box }}$, At $_{\text {LivingRoom,R }}$, Has Remote, $^{\text {R }}$, TV $\left._{\text {Off }}\right\}$
(4) TurnTVOn ${ }_{R}: s_{4}=\left\{\right.$ At $_{\text {LivingRoom, }}$ Box,$~ A t_{\text {LivingRoom, } R}$, Has $\left._{\text {Remote }, R}, \mathrm{TV}_{\text {On }}\right\}$

Recap: $g=\left\{\mathrm{TV}_{\mathrm{On}_{\mathrm{n}}}\right\}$.

Example Problem, Solutions

Solution 1 (Rick does it himself):
(1) GoToGarage ${ }_{R}: s_{1}=\left\{\right.$ At $_{\text {LivingRoom, Box }}$, At $_{\text {Garage }, R^{R}}$, At $\left._{\text {Garage, Remote },} \mathrm{TV}_{\text {Off }}\right\}$
(2) PickUpRemote ${ }_{R}: s_{2}=\left\{\right.$ At $_{\text {LivingRoom, Box }}, A t_{\text {Garage,R }}$, Has $_{\text {Remote, }, R}$, TV $\left._{\text {Off }}\right\}$
(3) GoToLivingRoom ${ }_{R}: s_{3}=\left\{\right.$ At $_{\text {LivingRoom,Box }}$, At $_{\text {LivingRoom,R }}$, Has Remote,,$~$, TV $\left.V_{\text {Off }}\right\}$
(4) TurnTVOn ${ }_{R}: s_{4}=\left\{\right.$ At $_{\text {LivingRoom, }}$ Box,$~ A t_{\text {LivingRoom, } R}$, Has $\left._{\text {Remote }, R}, \mathrm{TV}_{\text {On }}\right\}$

Solution 2 (Rick uses a Meeseeks):
(1) PushBox ${ }_{R}: s_{1}=\left\{\right.$ At $_{\text {LivingRoom, Box }}$, At $_{\text {LivingRoom }, R}$, At $\left._{\left.\text {Garage, Remote }, A t_{\text {LivingRoom }, \mathrm{M}}, \text { TV }_{\text {Off }}\right\}}\right\}$

(3) PickUpRemote ${ }_{M}: s_{3}=\left\{\right.$ At $_{\text {LivingRoom,Box }}$, At $_{\text {LivingRoom, }, ~}$, At $\left._{\left.\text {Garage, }^{M}, \text { Has }_{\text {Remote, }}, \mathrm{TV}_{\text {Off }}\right\}}\right\}$

(5) GiveRemote ${ }_{M}: s_{5}=\left\{\right.$ At $_{\text {LivingRoom,Box }}$, At $_{\text {LivingRoom, }, ~}$, Has $\left._{\text {Remote, }, ~}, T V_{\text {Off }}\right\}$
(6) TurnTVOn ${ }_{R}: s_{6}=\left\{\right.$ At $_{\text {LivingRoom, Box }}$, At $_{\text {LivingRoom, } R}$, Has $\left._{\text {Remote }, \mathrm{R}}, \mathrm{TV}_{\text {On }}\right\}$

Recap: $g=\left\{T V_{\text {On }}\right\}$.

Classical Planning is in PSPACE

- Let $\mathcal{P}=\left\langle V, A, s_{l}, g\right\rangle$ be our plannig problem.
- Note that if a solution \bar{a} exists then one exists with $|\bar{a}| \leq 2^{|V|}$. This is because

Classical Planning is in PSPACE

- Let $\mathcal{P}=\left\langle V, A, s_{l}, g\right\rangle$ be our plannig problem.
- Note that if a solution \bar{a} exists then one exists with $|\bar{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...

Classical Planning is in PSPACE

- Let $\mathcal{P}=\left\langle V, A, s_{l}, g\right\rangle$ be our plannig problem.
- Note that if a solution \bar{a} exists then one exists with $|\bar{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P\left(s_{1}, s_{2}, k\right)$ represent whether there exists a plan from state s_{1} to state s_{2} with size $\leq k$.
- We don't have a goal state, but a goal description, so we can't use $P\left(s_{l}, g, 2^{|V|}\right)$, since g is just one of potentially exponentially many states.

Classical Planning is in PSPACE

- Let $\mathcal{P}=\left\langle V, A, s_{I}, g\right\rangle$ be our plannig problem.
- Note that if a solution \bar{a} exists then one exists with $|\bar{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P\left(s_{1}, s_{2}, k\right)$ represent whether there exists a plan from state s_{1} to state s_{2} with size $\leq k$.
- We don't have a goal state, but a goal description, so we can't use $P\left(s_{l}, g, 2^{|V|}\right)$, since g is just one of potentially exponentially many states. But we can:
- put a new variable $v_{1} \notin V$ into V, now V^{\prime}, and into all action preconditions,
- create new action ($g,\left\{v_{2}\right\}, V$), where $v_{2} \notin V$ is new.
- Now $g^{\prime}=\left\{v_{2}\right\}$ is our unique goal and \mathcal{P} has a solution iff \mathcal{P}^{\prime} has one.
- We could also have iterated over all states s with $s \supseteq g$.

Classical Planning is in PSPACE

- Let $\mathcal{P}=\left\langle V, A, s_{I}, g\right\rangle$ be our plannig problem.
- Note that if a solution \bar{a} exists then one exists with $|\bar{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P\left(s_{1}, s_{2}, k\right)$ represent whether there exists a plan from state s_{1} to state s_{2} with size $\leq k$.
- We don't have a goal state, but a goal description, so we can't use $P\left(s_{l}, g, 2^{|V|}\right)$, since g is just one of potentially exponentially many states. But we can:
- put a new variable $v_{1} \notin V$ into V, now V^{\prime}, and into all action preconditions,
- create new action ($g,\left\{v_{2}\right\}, V$), where $v_{2} \notin V$ is new.
- Now $g^{\prime}=\left\{v_{2}\right\}$ is our unique goal and \mathcal{P} has a solution iff \mathcal{P}^{\prime} has one.
- We could also have iterated over all states s with $s \supseteq g$.
- Now we can decide $P\left(s_{l}, g^{\prime}, 2^{|V|}\right)$ in the usual way, i.e., $P\left(s_{1}, s_{2}, k\right)$ iff there exists an s, such that $P\left(s_{1}, s, k / 2\right)$ and $P\left(s, s_{2}, k / 2\right)$.
- Each state is only polynomially large, and we only need to do this split $\log \left(2^{|V|}\right)$ often. So we only need poly space to do this search.
- Thus, PLANEX \in PSPACE.

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q^{\prime}.

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q^{\prime}. This is implemented by three actions, executed in order:
(1) $\left(\left\{a t_{i, q}, i n_{i, x}\right\},\left\{d o_{i, q, x}\right\},\left\{a t_{i, q}\right\}\right)$
(2) $\left(\left\{d o_{i, q, x}, i i_{i, x}\right\},\left\{i i_{i, y}\right\},\left\{i i_{i, x}\right\}\right)$
(3) $\left(\left\{d o_{i, q, x}, i i_{i, y}\right\},\left\{a t_{i+1, q^{\prime}}\right\},\left\{d o_{i, q, x}\right\}\right)$
(4) don't provide actions for $a t_{-1, q}$ and $a t_{p o l(|w|), q}$ (for any q)
\rightarrow Uses the new variable(s) $d o_{i, q, x}$. Provide the analogous action for left-movement.

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q^{\prime}. This is implemented by three actions, executed in order:
(1) $\left(\left\{a t_{i, q}, i n_{i, x}\right\},\left\{d o_{i, q, x}\right\},\left\{a t_{i, q}\right\}\right)$
(2) $\left(\left\{d o_{i, q, x}, i i_{i, x}\right\},\left\{i i_{i, y}\right\},\left\{i i_{i, x}\right\}\right)$
(3) $\left(\left\{d o_{i, q, x}, i i_{i, y}\right\},\left\{a t_{i+1, q^{\prime}}\right\},\left\{d o_{i, q, x}\right\}\right)$
(4) don't provide actions for $a t_{-1, q}$ and $a t_{p o l(|w|), q}$ (for any q)
\rightarrow Uses the new variable(s) do $o_{i, q, x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
- Set $g=\{$ accept $\}$ (using the new variable accept).
- For all final states $q \in F$ and all i, define ($\left\{a t_{i, q}\right\}$, $\{a c c e p t\}, \emptyset$).

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q^{\prime}. This is implemented by three actions, executed in order:
(1) $\left(\left\{a t_{i, q}, i n_{i, x}\right\},\left\{d o_{i, q, x}\right\},\left\{a t_{i, q}\right\}\right)$
(2) $\left(\left\{d o_{i, q, x}, i i_{i, x}\right\},\left\{i i_{i, y}\right\},\left\{i i_{i, x}\right\}\right)$
(3) $\left(\left\{d o_{i, q, x}, i i_{i, y}\right\},\left\{a t_{i+1, q^{\prime}}\right\},\left\{d o_{i, q, x}\right\}\right)$
(4) don't provide actions for $a t_{-1, q}$ and $a t_{p o l(|w|), q}$ (for any q)
\rightarrow Uses the new variable(s) do $o_{i, q, x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
- Set $g=\{$ accept $\}$ (using the new variable accept).
- For all final states $q \in F$ and all i, define ($\left\{a t_{i, q}\right\}$, $\{$ accept $\}, \emptyset$).

Thus, PLANEX is PSPACE-complete.
(Proof(s) by Bylander, 1994)
Q. Why do we have three actions? Why not just one (as in the live-lecture)?!

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

- We define $s_{l}=\left\{a t_{1, q_{0}}, i n_{0, B}, i n_{1, w_{1}}, \ldots i n_{|w|, w_{|w|}}, i n_{|w|+1, B}, \ldots, i n_{p o l(|w|)-1, B}\right\}$ with
- $i n_{i, x}$ - Symbol x is in tape position i.
- $a t_{i, q}$ - TM's head is over position i and its state is q.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q^{\prime}. This is implemented by three actions, executed in order:
(1) $\left(\left\{a t_{i, q}, i n_{i, x}\right\},\left\{d o_{i, q, x}\right\},\left\{a t_{i, q}\right\}\right)$
(2) $\left(\left\{d o_{i, q, x}, i n_{i, x}\right\},\left\{i i_{i, y}\right\},\left\{i i_{i, x}\right\}\right)$
(3) $\left(\left\{d o_{i, q, x}, i i_{i, y}\right\},\left\{a t_{i+1, q^{\prime}}\right\},\left\{d o_{i, q, x}\right\}\right)$
(4) don't provide actions for $a t_{-1, q}$ and $a t_{p o l(|w|), q}$ (for any q)
\rightarrow Uses the new variable(s) do $i_{i, q, x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
- Set $g=\{$ accept $\}$ (using the new variable accept).
- For all final states $q \in F$ and all i, define ($\left\{a t_{i, q}\right\}$, $\{$ accept $\}, \emptyset$).

Thus, PLANEX is PSPACE-complete.
(Proof(s) by Bylander, 1994)
Q. Why do we have three actions? Why not just one (as in the live-lecture)?!
A. So that we can say: Planning is even PSPACE-hard if we have only 2 preconditions and 2 effects! Think of 2-SAT vs. 3-SAT! (Here, the 2 precs/effs correspond to the 3!)

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

$\operatorname{PLANEX}_{k}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a planning problem with a solution $\bar{a},|\bar{a}| \leq k$. Note that the k in the index here is a String, i.e., literally the letter k, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

$\operatorname{PLANEX}_{k}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a planning problem with a solution $\bar{a},|\bar{a}| \leq k$. Note that the k in the index here is a String, i.e., literally the letter k, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX $_{k}$ is PSPACE-complete:

- PSPACE membership:

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

$\operatorname{PLANEX}_{k}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a planning problem with a solution $\bar{a},|\bar{a}| \leq k$.
Note that the k in the index here is a String, i.e., literally the letter k, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX $_{k}$ is PSPACE-complete:

- PSPACE membership:
- We know that if a solution exists at all, then one exists up to length $2^{|V|}$. Recap: This is because there is no point in repeating any of the $2^{|V|}$ states.
- We can thus check for plan existence up to the number $\min \left(k, 2^{|V|}\right)$.
- We already have a decision procedure for bound $2^{|V|}$, which runs in PSPACE.

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

$\operatorname{PLANEX}_{k}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a planning problem with a solution $\bar{a},|\bar{a}| \leq k$.
Note that the k in the index here is a String, i.e., literally the letter k, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX $_{k}$ is PSPACE-complete:

- PSPACE membership:
- We know that if a solution exists at all, then one exists up to length $2^{|V|}$. Recap: This is because there is no point in repeating any of the $2^{|V|}$ states.
- We can thus check for plan existence up to the number $\min \left(k, 2^{|V|}\right)$.
- We already have a decision procedure for bound $2^{|V|}$, which runs in PSPACE.
- We now show PSPACE-hardness:

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

$\operatorname{PLANEX}_{k}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a planning problem with a solution $\bar{a},|\bar{a}| \leq k$.
Note that the k in the index here is a String, i.e., literally the letter k, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX $_{k}$ is PSPACE-complete:

- PSPACE membership:
- We know that if a solution exists at all, then one exists up to length $2^{|V|}$. Recap: This is because there is no point in repeating any of the $2^{|V|}$ states.
- We can thus check for plan existence up to the number $\min \left(k, 2^{|V|}\right)$.
- We already have a decision procedure for bound $2^{|V|}$, which runs in PSPACE.
- We now show PSPACE-hardness:
- We again exploit that if there exists a plan at all, there is one up to length $2^{|V|}$.
- We thus reduce from PLANEX: We take an arbitrary problem $\mathcal{P} \in$ PLANEX and create a cost-bounded one by choosing $k=2^{|V|}$, where V are the variables of \mathcal{P}. Note that this construction is polytime because we can encode k using only $\log (k)$ bits.

Disclaimer / Recap

- We know that - no matter which instance - planning problems are in PSPACE.
- But is every instance PSPACE-hard?

Disclaimer / Recap

- We know that - no matter which instance - planning problems are in PSPACE.
- But is every instance PSPACE-hard?
- Clearly not! What about the problem $(\emptyset, \emptyset, \emptyset, \emptyset)$?
- Think of SAT - which is NP-complete. How about 2-CNF-SAT?

Disclaimer / Recap

- We know that - no matter which instance - planning problems are in PSPACE.
- But is every instance PSPACE-hard?
- Clearly not! What about the problem $(\emptyset, \emptyset, \emptyset, \emptyset)$?
- Think of SAT - which is NP-complete. How about 2-CNF-SAT?
- So, which factor(s) make planning hard? And what if they were not there?
- If we identify such a special case in a given instance we could use a more efficient algorithm than one designed for the general case.
- If we can establish a special case we can solve the easier case and use its solution as approximation to the solution of the actual problem. (E.g., as heuristic in a search.)

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form $\left(V, A, s_{l}, g\right)$.

- A problem $\left(V, A, s_{l}, g\right)$ is called delete-free if the following holds: for all $($ pre, add, del $) \in A$ holds: $d e l=\emptyset$

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form $\left(V, A, s_{l}, g\right)$.

- A problem $\left(V, A, s_{l}, g\right)$ is called delete-free if the following holds: for all (pre, add, del) $\in A$ holds: del $=\emptyset$
- Given a problem $\mathcal{P}=\left(V, A, s_{l}, g\right)$, we call $\mathcal{P}^{\prime}=\left(V^{\prime}, A^{\prime}, s_{l}^{\prime}, g^{\prime}\right)$ delete-relaxed version of \mathcal{P} if $V=V^{\prime}, s_{I}^{\prime}=s_{i}, g^{\prime}=g$, and $A^{\prime}=\{($ pre, add,$\emptyset):($ pre, add, del $) \in A\}$.

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form $\left(V, A, s_{l}, g\right)$.

- A problem $\left(V, A, s_{l}, g\right)$ is called delete-free if the following holds: for all (pre, add, del) $\in A$ holds: del $=\emptyset$
- Given a problem $\mathcal{P}=\left(V, A, s_{l}, g\right)$, we call $\mathcal{P}^{\prime}=\left(V^{\prime}, A^{\prime}, s_{l}^{\prime}, g^{\prime}\right)$ delete-relaxed version of \mathcal{P} if $V=V^{\prime}, s_{l}^{\prime}=s_{i}, g^{\prime}=g$, and $A^{\prime}=\{($ pre, add, $\emptyset):($ pre, add, del $) \in A\}$.
- PLANEX $_{D R}=\{\langle\mathcal{P}\rangle: \mathcal{P}$ is a solvable classical delete-free planning problem. $\}$

Now, what's true?

- PLANEX ${ }_{D R}$ is PSPACE-complete (?)
- PLANEX $_{D R}$ is NP-complete (?)
- PLANEX $_{D R}$ is in NP, not NP-hard, and not in \mathbf{P} (?)
- PLANEX $_{D R}$ is in \mathbf{P} (?)

Delete-free Planning is in \mathbf{P}

Observations:

- Applying an action twice is pointless, so we can delete each applied action.

Delete-free Planning is in \mathbf{P}

```
Algorithm 1: Decision-procedure for delete-free planning.
Data: Set A of delete-free actions, initial state s/, goal description g
Result: Whether the delete-free problem is solvable
s}\leftarrow\mp@subsup{s}{l}{\prime}
repeat
    foreach action a\inA do
        if pre(a)\subseteqs}\mathrm{ then
                        s=s\cupadd(a);
            delete a from A;
until }A\mathrm{ is not modified;
return s}\supseteqg
```

Observations:

- Applying an action twice is pointless, so we can delete each applied action.

Delete-free Planning is in \mathbf{P}

```
Algorithm 1: Decision-procedure for delete-free planning.
Data: Set \(A\) of delete-free actions, initial state \(s_{l}\), goal description \(g\)
Result: Whether the delete-free problem is solvable
\(s \leftarrow s_{i}\);
repeat
    foreach action \(a \in A\) do
        if \(p r e(a) \subseteq s\) then
                        \(s=s \cup \operatorname{add}(a) ;\)
                delete a from \(A\);
until \(A\) is not modified;
return \(s \supseteq g\);
```

Observations:

- Applying an action twice is pointless, so we can delete each applied action.
- Each iteration costs at most $\mathcal{O}(|A|)$ and we can delete at most $|A|$ times.
- Thus, runtime is in $\mathcal{O}\left(|A|^{2}\right)$, so PLANEX $_{D R} \in \mathbf{P}$.

Cost-bound Delete-Free Planning is in NP

$\operatorname{PLANEX}_{k-D R}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a delete-free planning problem with a solution $\bar{a},|\bar{a}| \leq k$. As before: The k in the index is a String, not a number. (To name this problem class.)

Cost-bound Delete-Free Planning is in NP

$\operatorname{PLANEX}_{k-D R}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a delete-free planning problem with a solution $\bar{a},|\bar{a}| \leq k$. As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEX $_{k-D R} \in$ NP

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true.

Cost-bound Delete-Free Planning is in NP

$\operatorname{PLANEX}_{k-D R}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a delete-free planning problem with a solution $\bar{a},|\bar{a}| \leq k$. As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEX $_{k-D R} \in$ NP

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true. Right?

Cost-bound Delete-Free Planning is in NP

PLANEX $_{k-D R}=\{\langle\mathcal{P}, k\rangle: \mathcal{P}$ is a delete-free planning problem with a solution $\bar{a},|\bar{a}| \leq k$. As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEX $_{k-D R} \in$ NP

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true. Right?
- No! That's a NEXPTIME-procedure! k is encoded binarily... Instead, we limit the number of actions that we guess.
- No action has to be executed twice! So we only guess up to $|A|$ (distinct) actions.
- Thus, we perform the above procedure for the number $\min (k,|A|)$.
- This results in an NP membership procedure/proof.

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX ${ }_{k-D R}$ is NP-hard.

- We reduce from CNF-SAT.
- Let $\varphi=\underbrace{\left\{C_{1}, \ldots, C_{n}\right\}}_{\text {clauses }}, C_{j}=\underbrace{\left\{\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}\right\}}_{\text {literals }}$, and $V=\underbrace{\left\{x_{1}, \ldots, x_{m}\right\}}_{\text {variables }}$.

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX ${ }_{k-D R}$ is NP-hard.

- We reduce from CNF-SAT.
- Let $\varphi=\underbrace{\left\{C_{1}, \ldots, C_{n}\right\}}_{\text {clauses }}, C_{j}=\underbrace{\left\{\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}\right\}}_{\text {literals }}$, and $V=\underbrace{\left\{x_{1}, \ldots, x_{m}\right\}}_{\text {variables }}$.
- For each boolean variable $x_{i} \in V$ add two actions to A :

$$
x_{i} \mapsto \top \quad \begin{aligned}
& x_{i}-T \\
& x_{i}-\text { set } \\
& \hline
\end{aligned}
$$

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX ${ }_{k-D R}$ is NP-hard.

- We reduce from CNF-SAT.
- Let $\varphi=\underbrace{\left\{C_{1}, \ldots, C_{n}\right\}}_{\text {clauses }}, C_{j}=\underbrace{\left\{\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}\right\}}_{\text {literals }}$, and $V=\underbrace{\left\{x_{1}, \ldots, x_{m}\right\}}_{\text {variables }}$.
- For each boolean variable $x_{i} \in V$ add two actions to A :

$$
\begin{array}{|l|l}
\hline x_{i} \mapsto \perp & \begin{array}{l}
x_{i}-\perp \\
x_{i}-\text { set } \\
\hline
\end{array} \\
\hline
\end{array}
$$

- For each positive $\varphi_{j_{i}}=x_{j_{i}}$ or negative $\varphi_{j_{i}}=\neg x_{j_{i}}$ add

$$
\begin{gathered}
x_{j_{i}}-T \\
" x_{j_{i}}=T " \\
C_{j} \mapsto T
\end{gathered} c_{j}-T \text { or } \begin{aligned}
& x_{j_{i}}-\perp \\
& " x_{j_{i}}=\perp " \\
& C_{j} \mapsto T
\end{aligned} c_{j-T}
$$

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX ${ }_{k-D R}$ is NP-hard.

- We reduce from CNF-SAT.
- Let $\varphi=\underbrace{\left\{C_{1}, \ldots, C_{n}\right\}}_{\text {clauses }}, C_{j}=\underbrace{\left\{\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}\right\}}_{\text {literals }}$, and $V=\underbrace{\left\{x_{1}, \ldots, x_{m}\right\}}_{\text {variables }}$.
- For each boolean variable $x_{i} \in V$ add two actions to A :

$$
\begin{array}{|c|c}
\hline x_{i} \mapsto \perp & \begin{array}{l}
x_{i}-\perp \\
x_{i}-\text { set } \\
\hline
\end{array} \\
\hline
\end{array}
$$

- For each positive $\varphi_{j_{i}}=x_{j_{i}}$ or negative $\varphi_{j_{i}}=\neg x_{j_{i}}$ add

$$
\begin{array}{c|c}
x_{j_{i}}-T \\
" x_{j_{i}}=T " \\
C_{j} \mapsto T
\end{array} c_{j}-T \text { or } \xrightarrow[x_{j}-\perp]{" x_{j_{i}}=\perp "} \begin{gathered}
c_{j}-T \\
C_{j} \mapsto T
\end{gathered}
$$

- $g=\left\{x_{i}-\right.$ set $\left.\mid 1 \leq i \leq m\right\} \cup\left\{C_{j}-\top \mid 1 \leq j \leq n\right\}$
- φ is satisfiable if and only if a plan of size $n+m$ exists.

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX ${ }_{k-D R}$ is NP-hard.

- We reduce from CNF-SAT.
- Let $\varphi=\underbrace{\left\{C_{1}, \ldots, C_{n}\right\}}_{\text {clauses }}, C_{j}=\underbrace{\left\{\varphi_{j_{1}}, \ldots, \varphi_{j_{k}}\right\}}_{\text {literals }}$, and $V=\underbrace{\left\{x_{1}, \ldots, x_{m}\right\}}_{\text {variables }}$.
- For each boolean variable $x_{i} \in V$ add two actions to A :

$$
\begin{array}{|c|c}
\hline x_{i} \mapsto \perp & \begin{array}{l}
x_{i}-\perp \\
x_{i}-\text { set } \\
\hline
\end{array} \\
\hline
\end{array}
$$

- For each positive $\varphi_{j_{i}}=x_{j_{i}}$ or negative $\varphi_{j_{i}}=\neg x_{j_{i}}$ add

$$
\begin{gathered}
x_{j_{i}}-T \\
" x_{j_{i}}=T " \\
C_{j} \mapsto T
\end{gathered} c_{j}-T \text { or } \begin{aligned}
& x_{j_{i}}-\perp \\
& " x_{j_{i}}=\perp " \\
& C_{j} \mapsto T
\end{aligned} c_{j-T}
$$

- $g=\left\{x_{i}-\right.$ set $\left.\mid 1 \leq i \leq m\right\} \cup\left\{C_{j}-\top \mid 1 \leq j \leq n\right\}$
- φ is satisfiable if and only if a plan of size $n+m$ exists.

You are not done yet! Don't forget to show this is a reduction!

