COMP3630 / COMP6363

week 12: Automated (Classical) Planning
(A subdiscipline of Artificial Intelligence)

slides created by: Pascal Bercher
convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023



Content of this Chapter

o Introduction to Classical Planning

o Complexity Studies

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 2/22



Disclaimer

Why do we have this week's content?
> | wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to < 2022 you will miss out on:

o Approximations: Being guaranteed to be within a factor of i to the optimum.
o Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 3/22



Disclaimer

Why do we have this week's content?
> | wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to < 2022 you will miss out on:

o Approximations: Being guaranteed to be within a factor of i to the optimum.
o Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

> To make the point that this isn't just “theory for the sake of having theory”, but:

o its used in disciplines other than Theoretical Computer Science and
o has actual applications/implications (e.g., algorithm and heuristic ideas/design)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 3/22



Disclaimer

Why do we have this week's content?
> | wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to < 2022 you will miss out on:

o Approximations: Being guaranteed to be within a factor of i to the optimum.
o Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

> To make the point that this isn't just “theory for the sake of having theory”, but:

o its used in disciplines other than Theoretical Computer Science and
o has actual applications/implications (e.g., algorithm and heuristic ideas/design)

> To promote this exciting discipline! For two purposes:

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 3/22



Disclaimer

Why do we have this week's content?
> | wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to < 2022 you will miss out on:

o Approximations: Being guaranteed to be within a factor of i to the optimum.

o Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

> To make the point that this isn't just “theory for the sake of having theory”, but:

o its used in disciplines other than Theoretical Computer Science and

o has actual applications/implications (e.g., algorithm and heuristic ideas/design)

> To promote this exciting discipline! For two purposes:

o To spread the word! You (or your future boss or colleagues) might be able to use
it. Everyboody knows Operations Research (SAT/SMT/ILP solving etc.) to
tackle NP-complete problems. But only a fragment knows Al planning for
tackling problems beyond NP.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 3/22



Disclaimer

Why do we have this week's content?

> | wanted to provide additional examples to strengthen your current understanding
rather than including additional content. Compared to < 2022 you will miss out on:
o Approximations: Being guaranteed to be within a factor of i to the optimum.
o Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

> To make the point that this isn't just “theory for the sake of having theory”, but:

o its used in disciplines other than Theoretical Computer Science and

o has actual applications/implications (e.g., algorithm and heuristic ideas/design)

> To promote this exciting discipline! For two purposes:

o To spread the word! You (or your future boss or colleagues) might be able to use
it. Everyboody knows Operations Research (SAT/SMT/ILP solving etc.) to
tackle NP-complete problems. But only a fragment knows Al planning for
tackling problems beyond NP.

o To find PhD students! The ANU has at least 8 planning experts, and we are all
internationally connected (in case you want to do research Overseas). But note
that ANU's Foundations Cluster has just as much staff with theory-heavy topics!

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 3/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)

> A desired world description (end state)
> Actions (how can states be changed?)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)

> A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:

> Do we know/see everything?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)

> A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?

> Are (other) agents involved?

Pascal Bercher week 12: Automated (Classical) Planning

Semester 1, 2023

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects’, use functions?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)

> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects’, use functions?

> Is there time involved?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)
> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects’, use functions?
> Is there time involved?

> Any additional constraints on solution plans?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)

> Actions (how can states be changed?)

There are tons of variants:
> Do we know/see everything?
> Is it entirely clear what an action does?
> Are (other) agents involved?
> Can we produce 'objects’, use functions?
> Is there time involved?

> Any additional constraints on solution plans?

Classical Planning is the simplest form of planning!

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

We:

We:

we:

we!:

we!

we!

Yes
Yes
No
No
No
No

4/22



Automated Planning Introduction Overview

What it is about

We always have:
> An initial world description (start state)
> A desired world description (end state)

> Actions (how can states be changed?)

There are tons of variants:

> Do we know/see everything? we: Yes
> Is it entirely clear what an action does? we: Yes
> Are (other) agents involved? we: No
> Can we produce 'objects’, use functions? we: No
> Is there time involved? we: No
> Any additional constraints on solution plans? we: No and Yes

Well... Yes for HTN planning!
Classical Planning is the simplest form of planning! But HTN Planning is more complex.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 4/22



Automated Planning Introduction Examples

Artificial Toy Problems, e.g., Blocksworld

Start Configuration Desired Configuration

o Standard Planning Benchmark in the International Planning Competition

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 5/22


https://www.youtube.com/watch?v=pfNb0IAkbcQ&t=308s

Automated Planning Introduction Examples

Artificial Toy Problems, e.g., Blocksworld

Start Configuration Desired Configuration

o Standard Planning Benchmark in the International Planning Competition
o ... and every planning lecture! (Like this and the one below.)

o Here (https://www.youtube.com/watch?v=pfNbOIAkbcQ&t=308s) you find a 90
minute hands-on lecture by me on modeling Blocksword using planning. (l.e., you
will actually model it during the lecture and use an online planner to solve it.)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 5/22


https://www.youtube.com/watch?v=pfNb0IAkbcQ&t=308s

Automated Planning Introduction Examples

Games, e.g., Solitaire

Klondike

Game View Control Klondike Help

L =4 g B

Restart  Select Game Undo Move

Stock left: 23 Redeals left 2

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png
License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

Copyright:  Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Pascal Bercher week 12: Automated (Classical) Planning

6/22


https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png
https://www.gnu.org/licenses/gpl.html
https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Automated Planning Introduction Examples

Games, e.g., Rush Hour (or: from practice to games to Al models)

Photo made out of Hanna Neumann (between HN, Birch, CSIT, December 2020).

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 7/22



Automated Planning Introduction Examples

Games, e.g., Rush Hour (or: from practice to games to Al models)

o Start: any configuration of cars with an exit on one specific side.

o Goal: Get the red car out.

@
Thinkfon'

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 7/22



Automated Planning Introduction Examples

Games, e.g., Rush Hour (or: from practice to games to Al models)

o Start: any configuration of cars with an exit on one specific side.

o Goal: Get the red car out.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 7/22



Automated Planning Introduction Examples

Games, e.g., Rush Hour (or: from practice to games to Al models)

o Start: any configuration of cars with an exit on one specific side.

o Goal: Get the red car out.

Modeling this, including the automated video creation was (is) a 6 pt. project in S1 2023.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 7/22





Automated Planning Introduction Examples

Automated Factories (here: Greenhouse)

o Factory takes imagines of all plants, and decides on their further treatments.

o Factory controls their movements via the conveyor belts.

& = T — A <« N
T —
L e—
L —
! ———
LY - —l-)‘ - F — ‘—T
Source: https://www.lemnatec.com/
Copyright: With kind permission from LemnaTec GmbH
Further reading: @ Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”.

In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010).
AAAI Press, 2010, pp. 234-237
@ The IPC Scanalizer Domain in PDDL (see paper above).

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 8/22


https://www.lemnatec.com/

Automated Planning Introduction Examples

Robotics (here: Mars Rovers Spirit and Opportunity)

Source: left https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg
middle https://commons.wikimedia.org/wiki/File:
Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
right https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg

Copyright: public domain

Further reading: @ Pascal Bercher and Daniel Héller. “Interview with David E. Smith". In: Kiinstliche Intelligenz 30.1 (2016).
Special Issue on Companion Technologies, pp. 101-105. DOI: 10.1007/s13218-015-0403-y
O https://www.nasa.gov/ and papers about MAPGEN (for references, see also article above).

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

9/22


https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg
https://commons.wikimedia.org/wiki/File:Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
https://commons.wikimedia.org/wiki/File:Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg
https://www.nasa.gov/

Classical Planning Problem Definition

Informal Problem Introduction

We consider classical planning problems, which consist of:

o An initial state s; — all “world properties” true in the beginning.
o A set of available actions — how world states can be changed.

o A goal description g — all properties we'd like to hold.

What do we want?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 10/22



Classical Planning

Informal Problem Introduction

Problem Definition

We consider classical planning problems, which consist of:

o An initial state s; — all “world properties” true in the beginning.
o A set of available actions — how world states can be changed.

o A goal description g — all properties we'd like to hold.
What do we want?

— Find a plan that transforms s; into g.

intermediate states
s P AL o)
! /////‘\\\\\ s)g
-7 | S T
\ “” \ . \v t \\t \
70 70 7 ® 7 ® 70 4
plan

description of the description of desired
initial world situation world properties

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

10/22



Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem (V, A, s/, g) consists of:
o V is a finite set of state variables (also called: facts or propositions).

o States are collections of state variables.

o We assume the closed world assumption, i.e., all variables not mentioned in a state s
do not hold in that state (in contrast to: it's not known whether they hold or not).

o § =2V is called the state space.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 11/22



Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem (V, A, s/, g) consists of:
o V is a finite set of state variables (also called: facts or propositions).

o States are collections of state variables.
o We assume the closed world assumption, i.e., all variables not mentioned in a state s
do not hold in that state (in contrast to: it's not known whether they hold or not).

o § =2V is called the state space.
o AC2Y x2Y x 2" is a finite set of actions. Each action a € A is a tuple
(pre, add, del) consisting of a precondition pre, add list add, and delete list del.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 11/22



Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem (V, A, s/, g) consists of:
o V is a finite set of state variables (also called: facts or propositions).
o States are collections of state variables.
o We assume the closed world assumption, i.e., all variables not mentioned in a state s

do not hold in that state (in contrast to: it's not known whether they hold or not).
o § =2V is called the state space.

o AC2Y x2Y x 2" is a finite set of actions. Each action a € A is a tuple
(pre, add, del) consisting of a precondition pre, add list add, and delete list del.

o s; € S is the initial state (complete state description).

o g C V is the goal description (partial state description).

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 11/22



Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem (V, A, s/, g) consists of:
o V is a finite set of state variables (also called: facts or propositions).
o States are collections of state variables.
o We assume the closed world assumption, i.e., all variables not mentioned in a state s

do not hold in that state (in contrast to: it's not known whether they hold or not).
o § =2V is called the state space.

o AC2Y x2Y x 2" is a finite set of actions. Each action a € A is a tuple
(pre, add, del) consisting of a precondition pre, add list add, and delete list del.

o s; € S is the initial state (complete state description).

o g C V is the goal description (partial state description).

Q. Something (extremely important) is still missing... What?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 11/22



Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem (V, A, s/, g) consists of:
o V is a finite set of state variables (also called: facts or propositions).
o States are collections of state variables.
o We assume the closed world assumption, i.e., all variables not mentioned in a state s

do not hold in that state (in contrast to: it's not known whether they hold or not).
o § =2V is called the state space.

o AC2Y x2Y x 2" is a finite set of actions. Each action a € A is a tuple
(pre, add, del) consisting of a precondition pre, add list add, and delete list del.

o s; € S is the initial state (complete state description).

o g C V is the goal description (partial state description).

Q. Something (extremely important) is still missing... What?
A. What a solution is!

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 11/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:

o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:

o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

o If 7(a, s) holds, its application results into the successor state
~v(a,s) = (s\ del(a)) Uadd(a). v: Ax S — S is called the state transition function.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:
o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

o If 7(a, s) holds, its application results into the successor state
~v(a,s) = (s\ del(a)) Uadd(a). v: Ax S — S is called the state transition function.

o An action sequence 3 = ao, ..., an—1 is applicable in a state sy if and only if for all
0<i<n-—1 ais applicable in s;, where for all 1 < i < n s; is the resulting state of
applying ao, ..., a; to so = s;. Often, the state transition function is extended to
work on action sequences as well v: A* x S — S.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:
o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

o If 7(a, s) holds, its application results into the successor state
~v(a,s) = (s\ del(a)) Uadd(a). v: Ax S — S is called the state transition function.

o An action sequence 3 = ao, ..., an—1 is applicable in a state sy if and only if for all
0<i<n-—1 ais applicable in s;, where for all 1 < i < n s; is the resulting state of
applying ao, ..., a; to so = s;. Often, the state transition function is extended to
work on action sequences as well v: A* x S — S.

Solution:

An action sequence 3 € A" consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem (V, A, s, g) if and only if:

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:
o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

o If 7(a, s) holds, its application results into the successor state
~v(a,s) = (s\ del(a)) Uadd(a). v: Ax S — S is called the state transition function.

o An action sequence 3 = ao, ..., an—1 is applicable in a state sy if and only if for all
0<i<n-—1 ais applicable in s;, where for all 1 < i < n s; is the resulting state of
applying ao, ..., a; to so = s;. Often, the state transition function is extended to
work on action sequences as well v: A* x S — S.

Solution:

An action sequence 3 € A" consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem (V, A, s, g) if and only if:

o 3 is applicable in s;.

o 3 results into a goal state, i.e., ¥(a,s/) 2 g.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Problem Definition, cont'd (Solutions)

Action application:

o An action a € A is called applicable (or executable) in a state s € S if and only if
pre(a) C s. Often, this is given by a function: 7(a,s) < pre(a) C s.

o If 7(a, s) holds, its application results into the successor state
~v(a,s) = (s\ del(a)) Uadd(a). v: Ax S — S is called the state transition function.

o An action sequence 3 = ao, ..., an—1 is applicable in a state sy if and only if for all
0<i<n-—1 ais applicable in s;, where for all 1 < i < n s; is the resulting state of
applying ao, ..., a; to so = s;. Often, the state transition function is extended to
work on action sequences as well v: A* x S — S.

Solution:

An action sequence 3 € A" consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem (V, A, s, g) if and only if:

o 3 is applicable in s;.

o 3 results into a goal state, i.e., ¥(a,s/) 2 g.

PLANEX = {(P) : P is a classical planning problem (V A, s, g) that has a solution.}.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 12/22



Classical Planning Problem Definition

Example Problem

Let S| = {AtLivingRoom,R7 AtGarage,Remote7 AtLivingRoom,Box, TVOFF}

Rick's actions:

o Push BOXR: ({AtLivingRoom,Box, AtLivingRoom,R}y{AtLivingRoom,M}yw)

Meeseeks's actions:

g ={TVon}

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 13 /22



Classical Planning Problem Definition

Example Problem

Let S| = {AtLivingRoom,R7 AtGarage,Remote7 AtLivingRoom,Box, TVOFF}

Rick's actions:
o PUShBOXR: ({AtLivingRoom,Box, AtLivingRoom,R}y{AtLivingRoom,M}yw)
] GOTOGarageR: ({AtLivingRoom,R}v{AtGarage,R}y{AtLivingRoom,R})

Meeseeks's actions:

o GoToGaragem: ({AtLivingRoomM }+{Atcarage,M },{ AtLivingRoom,M})

g ={TVon}

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 13/22



Classical Planning Problem Definition

Example Problem

Let S| = {AtLivingRoom,R7 AtGarage,Remote7 AtLivingRoom,Box, TVOFF}

Rick's actions:
o PushBoxg: ({AtLivingRoom,Box, AtLivingRoom R |11 AtLivingRoom,M },0)
o GoToGarager: ({AtLivingRoom,R }+{AtGarage,R } 1 { AtLivingRoom R })
o GoTolivingRoomg: ({Atcarage.R },{AtLivingRoom R }+{ AtGarage.R })

Meeseeks's actions:

o GoToGaragem: ({AtLivingRoomM }+{Atcarage,M },{ AtLivingRoom,M})
Qo GOTOLiVingRoomM: ({AtGarage,M}y{AtLivingRoom,M}y{AtGarage,M})

g ={TVon}

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 13/22



Classical Planning Problem Definition

Example Problem

Let S| = {AtLivingRoom,R7 AtGarage,Remote7 AtLivingRoom,Box, TVOFF}

Rick's actions:

PushBoxg: ({AtLivingRoom,Box, AtLivingRoom,R }+{ AtLivingRoom,M },0)
GoToGarager: ({AtLivingRoom R },{AtGarage,R }, { AtLivingRoom,R } )
GoToLivingRoomg: ({Atcarage.r },{AtLivingRoom R }+{ AtGarage.R })
PickUpRemotegr: ({Atcarage.R; AtGarage,Remote }{ HaSremote,R }1{ AtGarage,Remote })

©

©

©

©

Meeseeks's actions:
o GoToGaragem: ({AtLivingRoomM }+{Atcarage,M },{ AtLivingRoom,M})
o GoToLivingRoompu: ({Atcarage,m }{AtLivingRoom,M }{ AtGarage.M })
o PickUpRemotep: ({Atcarage,M, AtGarage,Remote }{ HaSremote,M }{ AtGarage,Remote } )

g ={TVon}

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 13/22



Classical Planning Problem Definition

Example Problem

Let S| = {AtLivingRoom,R7 AtGarage,Remote7 AtLivingRoom,Box, TVOFF}

Rick's actions:

PushBoxg: ({AtLivingRoom,Box, AtLivingRoom,R }+{ AtLivingRoom,M },0)
GoToGarager: ({AtLivingRoom R },{AtGarage,R }, { AtLivingRoom,R } )
GoToLivingRoomg: ({Atcarage.r },{AtLivingRoom R }+{ AtGarage.R })
PickUpRemotegr: ({Atcarage.R; AtGarage,Remote }{ HaSremote,R }1{ AtGarage,Remote })
TurnTVOng: ({Hasremote R, AtLivingRoom Rs TVort},{TVon}.{TVor})

©

©

©

©

©

Meeseeks's actions:
o GoToGaragem: ({AtLivingRoomM }+{Atcarage,M },{ AtLivingRoom,M})
o GoToLivingRoompu: ({Atcarage,m }{AtLivingRoom,M }{ AtGarage.M })
o PickUpRemotep: ({Atcarage,M, AtGarage,Remote }{ HaSremote,M }{ AtGarage,Remote } )

] GiveRemoteM: ({ HasRemote,M 5 AtLivingRoom,M ) AtLivingRoom,R}y{HaSRemote,R}y
{ HaSRemote,M 5 AtLivingRoom,M })

g ={TVon}

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 13 /22



Classical Planning Problem Definition

Example Problem, Solutions
REC3P3 S = {AtLivingRoom,BOX7 AtLivingRoom,R; AtGarage,Remote7 TVOfF}-

Solution 1 (Rick does it himself):
@ GoToGarager: s1={AtLivingRoom,Box; AtGarage,R, AtGarage,Remote, 1 VOt }
@ PickUpRemotegr: s ={AtLivingRoom,Box, AtGarage.R, HaSRemote,r, T VOff }
@ GoToLivingRoompg: s3={AtLivingRoom,Box; AtLivingRoom,R, HaSRemote,R; T Vorr}
@ TurnTVOng: ss = {AtLivingRoom,Box, AtLivingRoom,R; HaSremote,ks TVon }

Recap: g = {TVon}.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

14/22



Classical Planning Problem Definition

Example Problem, Solutions
REC3P3 S = {AtLivingRoom,BOX7 AtLivingRoom,R; AtGarage,Remote7 TVOfF}-

Solution 1 (Rick does it himself):
@ GoToGarager: s1={AtLivingRoom,Box; AtGarage,R, AtGarage,Remote, 1 VOt }
@ PickUpRemotegr: s ={AtLivingRoom,Box, AtGarage.R, HaSRemote,r, T VOff }
@ GoToLivingRoompg: s3={AtLivingRoom,Box; AtLivingRoom,R, HaSRemote,R; T Vorr}
@ TurnTVOng: ss = {AtLivingRoom,Box, AtLivingRoom,R; HaSremote,ks TVon }

Solution 2 (Rick uses a Meeseeks):
@ PushBoxg: s1={AtLivingRoom,Box; AtLivingRoom,R; AtGarage,Remote; AtLivingRoomM; T Vorr }
@ GoToGaragen: s»={AtLivingRoom BMSox;, AtLivingRoom, R, AtGarage,Remote; AtGarage.M; T Vorr}
@ PickUpRemotep: s3={AtLivingRoom,Box, AtLivingRoom R AtGarage,Ms HaSRemote,M, TVort}
@ GoTolivingRoomp: 4= {AtLivingRoom Box, AtLivingRoom, R AtLivingRoom M, HaSRemote, M, TVorr}
® GiveRemotep: s5 = {AtLivingRoom,Boxs AtLivingRoom R; HaSRemote,r, T VoOft }
® TurnTVOng: s6={AtLivingRoom,Boxs AtLivingRoom R, HaSRemote.R, TVon }

Recap: g = {TVon}.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 14 /22



Complexity Results General Case

Classical Planning is in PSPACE

o Let P =(V,A, s, g) be our plannig problem.

o Note that if a solution 3 exists then one exists with [3] < 2IVI. This is because

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 15 /22



Complexity Results General Case

Classical Planning is in PSPACE

o Let P =(V,A, s, g) be our plannig problem.

o Note that if a solution 3 exists then one exists with [3] < 2IVI. This is because this
is the maximal number of distinct states. If there is a plan that’s longer, it “walks in
a loop”, which can be removed.

o Guess and verify would however be too expensive...

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 15 /22



Complexity Results General Case

Classical Planning is in PSPACE

o Let P =(V,A, s, g) be our plannig problem.

Note that if a solution 3 exists then one exists with |3| < 2!Vl This is because this
is the maximal number of distinct states. If there is a plan that’s longer, it “walks in
a loop”, which can be removed.

©

o Guess and verify would however be too expensive...

o We want to use recursive doubling! Let P(s1, s, k) represent whether there exists a
plan from state s; to state s, with size < k.

o We don’t have a goal state, but a goal description, so we can’t use P(s, g, 2“/'),
since g is just one of potentially exponentially many states.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 15 /22



Complexity Results General Case

Classical Planning is in PSPACE

o Let P =(V,A, s, g) be our plannig problem.

Note that if a solution 3 exists then one exists with |3| < 2!Vl This is because this
is the maximal number of distinct states. If there is a plan that’s longer, it “walks in
a loop”, which can be removed.

©

o Guess and verify would however be too expensive...

o We want to use recursive doubling! Let P(s1, s, k) represent whether there exists a
plan from state s; to state s, with size < k.

o We don't have a goal state, but a goal description, so we can’t use P(s, g, 2“/'),
since g is just one of potentially exponentially many states. But we can:
o put a new variable vi ¢ V into V, now V’, and into all action preconditions,
o create new action (g,{v2}, V), where v» ¢ V is new.
o Now g’ = {w} is our unique goal and P has a solution iff P’ has one.
o We could also have iterated over all states s with s D g.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 15 /22



Complexity Results General Case

Classical Planning is in PSPACE

©

Let P = (V, A, s, g) be our plannig problem.

Note that if a solution 3 exists then one exists with |3| < 2!Vl This is because this

is the maximal number of distinct states. If there is a plan that’s longer, it “walks in
a loop”, which can be removed.

Guess and verify would however be too expensive...

We want to use recursive doubling! Let P(si, s, k) represent whether there exists a
plan from state s; to state s, with size < k.

We don't have a goal state, but a goal description, so we can’t use P(s, g, 2“/'),
since g is just one of potentially exponentially many states. But we can:

o put a new variable vi ¢ V into V, now V’, and into all action preconditions,

o create new action (g,{v2}, V), where v» ¢ V is new.

o Now g’ = {w} is our unique goal and P has a solution iff P’ has one.

o We could also have iterated over all states s with s D g.

Now we can decide P(s;,g’,2!V!) in the usual way, i.e., P(s1, s, k) iff there exists an
s, such that P(si,s,%/2) and P(s, s, k/2).

Each state is only polynomially large, and we only need to do this split log(2‘v‘)
often. So we only need poly space to do this search.

Thus, PLANEX € PSPACE.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 15 /22



Complexity Results General Case
Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.
o We define s; = {atl,qo, I'no,[g7 I.nl,w17 c.. in\W|vW|w\ s in‘w‘+1_’B, Ceey inpo/(‘w‘),lyg} with

o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case
Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.
o We define s; = {atl,qo, I'no,[g7 I.nl,w17 c.. in\W|vW|w\ s in‘w‘+1_’B, Ceey inpo/(‘w‘),lyg} with
o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

o For the actions, assume TM is in state g, head is over i and reads x, and it shall
write y, move right, and transition into q’.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case
Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.
o We define s; = {atl,qo, I'no,[g7 I.nl,w17 c.. in\W|vW|w\ s in‘w‘+1_’B, Ceey inpo/(‘w‘),lyg} with
o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

o For the actions, assume TM is in state g, head is over i and reads x, and it shall
write y, move right, and transition into ¢’. This is implemented by three actions,
executed in order:

@ ({ati,q,ini x}, {doi q.x}{atiq})
@ ({dol q,x> in; x} {Inl y}: {Inl x})

(<) ({dol,q,X7 ’”l,y} {atl+1,q/ } {doi,q,x})
@ don't provide actions for at_1 q and at,e(|w|),q (for any q)

— Uses the new variable(s) do;j q,«. Provide the analogous action for left-movement.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.
o We define s; = {at1,qy, ino,B, int,w, - - - i”\leW|W\ iy 41,8, -
o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

o For the actions, assume TM is in state g, head is over i and reads x, and it shall
write y, move right, and transition into ¢’. This is implemented by three actions,
executed in order:

@ ({atiq, injx}, {doi,q,x},{ati,q})

@ ({dol q,x> in; x} {Inl y}: {Inl x})

(<) ({dol,q,X7 ’”l,y} {atl+1,q/ } {doi,q,x})

@ don't provide actions for at_1 q and at,e(|w|),q (for any q)

— Uses the new variable(s) do;j q,«. Provide the analogous action for left-movement.

o Whenever the TM is in an accepting state, the problem is solved:

o Set g = {accept} (using the new variable accept).
o For all final states g € F and all /, define ({at; 4}, {accept}, 0).

s iMpoi(jw))—1,6} with

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

o We define s; = {at1,qy, ino,B, int,w, - - - il 0wl 41,85 - - iNpoi(jw])—1,8} With

o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

o For the actions, assume TM is in state g, head is over i and reads x, and it shall
write y, move right, and transition into ¢’. This is implemented by three actions,
executed in order:

@ ({ati,q,ini x}, {doi q.x}{atiq})

@ ({dor q,x> in; x} {Inl y}: {Inl x})

Q ({dol,q,x7 ml,y} {atf+1,q’ }7 {doiaQaX})

@ don't provide actions for at_1 q and at,e(|w|),q (for any q)

— Uses the new variable(s) do;j q,«. Provide the analogous action for left-movement.

o Whenever the TM is in an accepting state, the problem is solved:

o Set g = {accept} (using the new variable accept).
o For all final states g € F and all /, define ({at; 4}, {accept}, 0).

Thus, PLANEX is PSPACE-complete. (Proof(s) by Bylander, 1994)

Q. Why do we have three actions? Why not just one (as in the live-lecture)?!

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

o We define s; = {at1,qy, ino,B, int,w, - - - il 0wl 41,85 - - iNpoi(jw])—1,8} With

o injx — Symbol x is in tape position i.
o atj ; — TM's head is over position i and its state is q.

o For the actions, assume TM is in state g, head is over i and reads x, and it shall
write y, move right, and transition into ¢’. This is implemented by three actions,
executed in order:

@ ({ati,q,ini x}, {doi q.x}{atiq})

@ ({dor q,x> in; x} {Inl y}: {Inl x})

Q ({dol,q,x7 ml,y} {atf+1,q’ }7 {doiaQaX})

@ don't provide actions for at_1 q and at,e(|w|),q (for any q)

— Uses the new variable(s) do;j q,«. Provide the analogous action for left-movement.

o Whenever the TM is in an accepting state, the problem is solved:

o Set g = {accept} (using the new variable accept).
o For all final states g € F and all /, define ({at; 4}, {accept}, 0).

Thus, PLANEX is PSPACE-complete. (Proof(s) by Bylander, 1994)

Q. Why do we have three actions? Why not just one (as in the live-lecture)?!
A. So that we can say: Planning is even PSPACE-hard if we have only 2 preconditions
and 2 effects! Think of 2-SAT vs. 3-SAT! (Here, the 2 precs/effs correspond to the 3!)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 16 /22



Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEX, = {(P, k) : P is a planning problem with a solution 3,

3 <k}

Note that the k in the index here is a String, i.e., literally the letter k, not a number.

So the k in the set is (clearly) different, since one is a number, the other a letter.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

17/22



Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEX, = {(P, k) : P is a planning problem with a solution 3,

3 <k}

Note that the k in the index here is a String, i.e., literally the letter k, not a number.

So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX is PSPACE-complete:
o PSPACE membership:

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

17/22



Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEX, = {(P, k) : P is a planning problem with a solution 3, |3| < k.}

Note that the k in the index here is a String, i.e., literally the letter k, not a number.
So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX is PSPACE-complete:
o PSPACE membership:

o We know that if a solution exists at all, then one exists up to length 2!V,
Recap: This is because there is no point in repeating any of the 2!V| states.

o We can thus check for plan existence up to the number min(k,2|v‘).

o We already have a decision procedure for bound 2!V!, which runs in PSPACE.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 17 /22



Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEX, = {(P, k) : P is a planning problem with a solution 3,

al <k}
Note that the k in the index here is a String, i.e., literally the letter k, not a number.
So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX is PSPACE-complete:
o PSPACE membership:
o We know that if a solution exists at all, then one exists up to length 2!V,

Recap: This is because there is no point in repeating any of the 2!V| states.
o We can thus check for plan existence up to the number min(k,2|v‘).

o We already have a decision procedure for bound 2!V!, which runs in PSPACE.
o We now show PSPACE-hardness:

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 17 /22



Complexity Results General Case

Optimal (or: Cost-Bounded) Classical Planning is PSPACE-complete

PLANEX, = {(P, k) : P is a planning problem with a solution 3, |3| < k.}

Note that the k in the index here is a String, i.e., literally the letter k, not a number.
So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX is PSPACE-complete:
o PSPACE membership:
o We know that if a solution exists at all, then one exists up to length 2!V,
Recap: This is because there is no point in repeating any of the 2!V| states.
o We can thus check for plan existence up to the number min(k,2|v‘).
o We already have a decision procedure for bound 2!V!, which runs in PSPACE.
o We now show PSPACE-hardness:
o We again exploit that if there exists a plan at all, there is one up to length 2/V!.
o We thus reduce from PLANEX: We take an arbitrary problem P € PLANEX and
create a cost-bounded one by choosing k = 2IVI, where V are the variables of P. Note
that this construction is polytime because we can encode k using only log(k) bits.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 17 /22



Complexity Results Delete Relaxation

Disclaimer / Recap

o We know that — no matter which instance — planning problems are in PSPACE.
o But is every instance PSPACE-hard?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 18 /22



Complexity Results Delete Relaxation

Disclaimer / Recap

o We know that — no matter which instance — planning problems are in PSPACE.
o But is every instance PSPACE-hard?

o Clearly not! What about the problem (0, 0,0, 0)?
o Think of SAT — which is NP-complete. How about 2-CNF-SAT?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 18 /22



Complexity Results Delete Relaxation

Disclaimer / Recap

o We know that — no matter which instance — planning problems are in PSPACE.
o But is every instance PSPACE-hard?

o Clearly not! What about the problem (0,0, 0, 0)?

o Think of SAT — which is NP-complete. How about 2-CNF-SAT?
o So, which factor(s) make planning hard? And what if they were not there?

o If we identify such a special case in a given instance we could use a more efficient
algorithm than one designed for the general case.

o If we can establish a special case we can solve the easier case and use its solution as
approximation to the solution of the actual problem. (E.g., as heuristic in a search.)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 18 /22



Complexity Results Delete Relaxation

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s/, g).

o A problem (V, A, s, g) is called delete-free if the following holds:

for all (pre, add, del) € A holds: del = ()

Pascal Bercher week 12: Automated (Classical) Planning

Semester 1, 2023

19/22



Complexity Results Delete Relaxation

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s/, g).

o A problem (V, A, s, g) is called delete-free if the following holds:
for all (pre, add, del) € A holds: del = ()

o Given a problem P = (VA s/, g), we call P’ = (V', A", s/, g’) delete-relaxed version
of Pif V=V' s =s,g =g and A = {(pre,add,D) : (pre, add, del) € A}.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 19/22



Complexity Results Delete Relaxation

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s/, g).

o A problem (V, A, s, g) is called delete-free if the following holds:
for all (pre, add, del) € A holds: del = ()

o Given a problem P = (VA s/, g), we call P’ = (V', A", s/, g’) delete-relaxed version
of Pif V=V' s =s,g =g and A = {(pre,add,D) : (pre, add, del) € A}.
o PLANEXpr = {(P) : P is a solvable classical delete-free planning problem.}

Now, what's true?
o PLANEXpr is PSPACE-complete (?)
o PLANEXpr is NP-complete (?)
o PLANEXpg is in NP, not NP-hard, and not in P (?)
o PLANEXpg is in P (?)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 19/22



Complexity Results Delete Relaxation

Delete-free Planning is in P

Observations:

o Applying an action twice is pointless, so we can delete each applied action.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 20/22



Complexity Results Delete Relaxation

Delete-free Planning is in P

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set A of delete-free actions, initial state s;, goal description g
Result: Whether the delete-free problem is solvable
S < sp;
repeat
foreach action a € A do
if pre(a) C s then
s =sUadd(a);
delete a from A;

until A is not modified;
return s O g;

Observations:

o Applying an action twice is pointless, so we can delete each applied action.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

20/22



Complexity Results Delete Relaxation

Delete-free Planning is in P

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set A of delete-free actions, initial state s;, goal description g
Result: Whether the delete-free problem is solvable
S < sp;
repeat
foreach action a € A do
if pre(a) C s then
s =sUadd(a);
delete a from A;

until A is not modified;
return s O g;

Observations:

o Applying an action twice is pointless, so we can delete each applied action.

o Each iteration costs at most O(]A|) and we can delete at most |A| times.
o Thus, runtime is in O(]A|?), so PLANEXpr € P.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

20/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is in NP

PLANEXk_pr = {(P, k) : P is a delete-free planning problem with a solution 3, |3| < k.}

As before: The k in the index is a String, not a number. (To name this problem class.)

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 21/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is in NP

PLANEXk_pr = {(P, k) : P is a delete-free planning problem with a solution 3, |3| < k.}

As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEXx_pr € NP
o Let P (delete-free problem) and number k be given.
o Guess up to k actions and an order among them.

o Return true if sequence is executable and makes goal true.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 21/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is in NP

PLANEXk_pr = {(P, k) : P is a delete-free planning problem with a solution 3, |3| < k.}

As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEXx_pr € NP
o Let P (delete-free problem) and number k be given.
o Guess up to k actions and an order among them.

o Return true if sequence is executable and makes goal true. Right?

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 21/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is in NP

PLANEXk_pr = {(P, k) : P is a delete-free planning problem with a solution 3, |3| < k.}

As before: The k in the index is a String, not a number. (To name this problem class.)

We can show PLANEXx_pr € NP

Qo

Qo
Qo
Qo

©

Let P (delete-free problem) and number k be given.
Guess up to k actions and an order among them.
Return true if sequence is executable and makes goal true. Right?

No! That's a NEXPTIME-procedure! k is encoded binarily...
Instead, we limit the number of actions that we guess.

No action has to be executed twice! So we only guess up to |A| (distinct) actions.
Thus, we perform the above procedure for the number min (k, |A]).

This results in an NP membership procedure/proof.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 21/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX_pr is NP-hard.
o We reduce from CNF-SAT.
o let p={C,...,GC}, G={ej, -, i}, and V ={x1,..., xm}.
—_——

clauses literals variables

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

22/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX_pr is NP-hard.
o We reduce from CNF-SAT.
o let p={C,...,GC}, G={ej, -, i}, and V ={x1,..., xm}.
—_——

clauses literals variables

o For each boolean variable x; € V add two actions to A:

X —T xp—1
X.iset X.iset

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

22/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX_pr is NP-hard.
o We reduce from CNF-SAT.
o let p={C,...,GC}, G={ej, -, i}, and V ={x1,..., xm}.
—_——

clauses literals variables

o For each boolean variable x; € V add two actions to A:

X —T xp—1
X.iset X.iset

o For each positive ¢j, = X;; or negative ¢; = —x; add

at| =T ot o uet| e=1" |gor
G—T G—T

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 22/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX_pr is NP-hard.
o We reduce from CNF-SAT.
o let p={C,...,GC}, G={ej, -, i}, and V ={x1,..., xm}.
—_——

clauses literals variables

o For each boolean variable x; € V add two actions to A:

X —T xp—1
X.iset X.iset

o For each positive ¢j, = X;; or negative ¢; = —x; add

=T X =T" |lg_71 or Xi—L X =L" gt
G—T G—T

o g={xi—set|1<i<m}U{G-T|1<j<n}

o ¢ is satisfiable if and only if a plan of size n + m exists.

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023 22/22



Complexity Results Delete Relaxation

Cost-bound Delete-Free Planning is NP-hard

We show that PLANEX_pr is NP-hard.
o We reduce from CNF-SAT.
o let p={C,...,GC}, G={ej, -, i}, and V ={x1,..., xm}.
—_——

clauses literals variables

o For each boolean variable x; € V add two actions to A:

X —T xp—1
X.iset X.iset

o For each positive ¢j, = X;; or negative ¢; = —x; add

L G=L" g7
G—T

xj. — T Xj; = T C—T or i
G—T

o g={xi—set|1<i<m}U{G-T|1<j<n}

o ¢ is satisfiable if and only if a plan of size n + m exists.

You are not done yet! Don't forget to show this is a reduction!

Pascal Bercher week 12: Automated (Classical) Planning Semester 1, 2023

22/22



	Automated Planning Introduction
	Overview
	Examples

	Classical Planning
	Problem Definition

	Complexity Results
	General Case
	Delete Relaxation


	fd@rm@0: 


