COMP3630 / COMP6363

week 12: Automated (Classical) Planning

(A subdiscipline of Artificial Intelligence)

slides created by: Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2023

Content of this Chapter

- Introduction to Classical Planning
- Complexity Studies

2/22

- > I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to \leq 2022 you will miss out on:
 - Approximations: Being guaranteed to be within a factor of i to the optimum.
 - Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)

- > I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to \leq 2022 you will miss out on:
 - Approximations: Being guaranteed to be within a factor of *i* to the optimum.
 - Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
- > To make the point that this isn't just "theory for the sake of having theory", but:
 - its used in disciplines other than Theoretical Computer Science and
 - has actual applications/implications (e.g., algorithm and heuristic ideas/design)

- > I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to \leq 2022 you will miss out on:
 - Approximations: Being guaranteed to be within a factor of *i* to the optimum.
 - Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
- > To make the point that this isn't just "theory for the sake of having theory", but:
 - its used in disciplines other than Theoretical Computer Science and
 - has actual applications/implications (e.g., algorithm and heuristic ideas/design)
- > To promote this exciting discipline! For two purposes:

Why do we have this week's content?

- > I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to \leq 2022 you will miss out on:
 - Approximations: Being guaranteed to be within a factor of *i* to the optimum.
 - Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
- > To make the point that this isn't just "theory for the sake of having theory", but:
 - its used in disciplines other than Theoretical Computer Science and
 - has actual applications/implications (e.g., algorithm and heuristic ideas/design)
- > To promote this exciting discipline! For two purposes:
 - To spread the word! You (or your future boss or colleagues) might be able to use it. Everyboody knows <u>Operations Research</u> (SAT/SMT/ILP solving etc.) to tackle NP-complete problems. But only a fragment knows AI planning for tackling problems beyond NP.

3/22

- > I wanted to provide additional examples to strengthen your current understanding rather than including additional content. Compared to \leq 2022 you will miss out on:
 - Approximations: Being guaranteed to be within a factor of *i* to the optimum.
 - Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course this comes with language classes that we can relate again!)
- > To make the point that this isn't just "theory for the sake of having theory", but:
 - its used in disciplines other than Theoretical Computer Science and
 - has actual applications/implications (e.g., algorithm and heuristic ideas/design)
- > To promote this exciting discipline! For two purposes:
 - To spread the word! You (or your future boss or colleagues) might be able to use it. Everyboody knows <u>Operations Research</u> (SAT/SMT/ILP solving etc.) to tackle NP-complete problems. But only a fragment knows AI planning for tackling problems beyond NP.
 - To find PhD students! The ANU has at least 8 planning experts, and we are all internationally connected (in case you want to do research Overseas). But note that ANU's Foundations Cluster has just as much staff with theory-heavy topics!

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

There are tons of variants:

> Do we know/see everything?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

- > Do we know/see everything?
- > Is it entirely clear what an action does?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

- > Do we know/see everything?
- > Is it entirely clear what an action does?
- > Are (other) agents involved?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

- > Do we know/see everything?
- > Is it entirely clear what an action does?
- > Are (other) agents involved?
- > Can we produce 'objects', use functions?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

- > Do we know/see everything?
- > Is it entirely clear what an action does?
- > Are (other) agents involved?
- > Can we produce 'objects', use functions?
- > Is there time involved?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

- > Do we know/see everything?
- > Is it entirely clear what an action does?
- > Are (other) agents involved?
- > Can we produce 'objects', use functions?
- > Is there time involved?
- > Any additional constraints on solution plans?

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

There are tons of variants:

>	Do we know/see everything?	we:	Yes
>	Is it entirely clear what an action does?	we:	Yes
>	Are (other) agents involved?	we:	No
>	Can we produce 'objects', use functions?	we:	No
>	Is there time involved?	we:	No
>	Any additional constraints on solution plans?	we:	No

Classical Planning is the simplest form of planning!

We always have:

- > An initial world description (start state)
- > A desired world description (end state)
- > Actions (how can states be changed?)

There are tons of variants:

> Do we know/see everything?	we: Yes
> Is it entirely clear what an action does?	we: Yes
> Are (other) agents involved?	we: No
> Can we produce 'objects', use functions?	we: No
> Is there time involved?	we: No
> Any additional constraints on solution plans?	we: No and Yes
	Well Yes for HTN planning!

Classical Planning is the simplest form of planning! But HTN Planning is more complex.

Artificial Toy Problems, e.g., Blocksworld

• Standard Planning Benchmark in the International Planning Competition

Artificial Toy Problems, e.g., Blocksworld

- Standard Planning Benchmark in the International Planning Competition
- ... and every planning lecture! (Like this and the one below.)
- Here (https://www.youtube.com/watch?v=pfNb0IAkbcQ&t=308s) you find a 90 minute hands-on lecture by me on modeling Blocksword using planning. (I.e., you will actually model it during the lecture and use an online planner to solve it.)

Pascal Bercher

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

- License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html
- Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS

Pascal Bercher

week 12: Automated (Classical) Planning

Photo made out of Hanna Neumann (between HN, Birch, CSIT, December 2020).

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

- Start: any configuration of cars with an exit on one specific side.
- Goal: Get the red car out.

Modeling this, including the automated video creation was (is) a 6 pt. project in S1 2023.

Examples

Automated Factories (here: Greenhouse)

- Factory takes imagines of all plants, and decides on their further treatments.
- Factory controls their movements via the conveyor belts.

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading:

 Malte Helmert and Hauke Lasinger. "The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem". In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010, pp. 234-237

The IPC Scanalizer Domain in PDDL (see paper above).

Robotics (here: Mars Rovers Spirit and Opportunity)

Source:	left	https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg
	middle	https://commons.wikimedia.org/wiki/File:
		Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
	right	https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg

Copyright: public domain

Further reading: Pascal Bercher and Daniel Höller. "Interview with David E. Smith". In: Künstliche Intelligenz 30.1 (2016). Special Issue on Companion Technologies, pp. 101-105. DOI: 10.1007/s13218-015-0403-y

https://www.nasa.gov/ and papers about MAPGEN (for references, see also article above).

Informal Problem Introduction

We consider classical planning problems, which consist of:

- An initial state s_l all "world properties" true in the beginning.
- A set of available actions how world states can be changed.
- A goal description g all properties we'd like to hold.

What do we want?

Informal Problem Introduction

We consider classical planning problems, which consist of:

- An initial state s_l all "world properties" true in the beginning.
- A set of available actions how world states can be changed.
- A goal description g all properties we'd like to hold.

What do we want?

 \rightarrow Find a <u>plan</u> that transforms s_l into g.

10/22

- V is a finite set of state variables (also called: facts or propositions).
 - <u>States</u> are collections of state variables.
 - We assume the <u>closed world assumption</u>, i.e., all variables not mentioned in a state *s* do not hold in that state (in contrast to: it's not known whether they hold or not).
 - $S = 2^V$ is called the state space.

- V is a finite set of state variables (also called: facts or propositions).
 - States are collections of state variables.
 - We assume the <u>closed world assumption</u>, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
 S = 2^V is called the state space.
- A ⊆ 2^V × 2^V × 2^V is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.

- V is a finite set of <u>state variables</u> (also called: <u>facts</u> or <u>propositions</u>).
 - States are collections of state variables.
 - We assume the <u>closed world assumption</u>, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
 S = 2^V is called the state space.
- A ⊆ 2^V × 2^V × 2^V is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_l \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).

- V is a finite set of state variables (also called: facts or propositions).
 - States are collections of state variables.
 - We assume the <u>closed world assumption</u>, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
 S = 2^V is called the state space.
- A ⊆ 2^V × 2^V × 2^V is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_l \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).
- Q. Something (extremely important) is still missing... What?

- V is a finite set of state variables (also called: facts or propositions).
 - States are collections of state variables.
 - We assume the <u>closed world assumption</u>, i.e., all variables not mentioned in a state s do not hold in that state (in contrast to: it's not known whether they hold or not).
 S = 2^V is called the state space.
- A ⊆ 2^V × 2^V × 2^V is a finite set of actions. Each action a ∈ A is a tuple (pre, add, del) consisting of a precondition pre, add list add, and delete list del.
- $s_l \in S$ is the initial state (complete state description).
- $g \subseteq V$ is the goal description (partial state description).
- ${\bf Q}.$ Something (extremely important) is still missing... What?
- A. What a solution is!

Action application:

An action a ∈ A is called applicable (or executable) in a state s ∈ S if and only if pre(a) ⊆ s. Often, this is given by a function: τ(a, s) ⇔ pre(a) ⊆ s.

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow pre(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \to S$ is called the state transition function.

Action application:

- An action $a \in A$ is called <u>applicable</u> (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow pre(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \to S$ is called the state transition function.
- An action sequence $\bar{a} = a_0, \ldots, a_{n-1}$ is applicable in a state s_0 if and only if for all $0 \le i \le n-1$ a_i is applicable in s_i , where for all $1 \le i \le n$ s_i is the resulting state of applying a_0, \ldots, a_i to $s_0 = s_i$. Often, the state transition function is extended to work on action sequences as well $\gamma : A^* \times S \to S$.

Action application:

- An action $a \in A$ is called <u>applicable</u> (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow pre(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \to S$ is called the state transition function.
- An action sequence $\bar{a} = a_0, \ldots, a_{n-1}$ is applicable in a state s_0 if and only if for all $0 \le i \le n-1$ a_i is applicable in s_i , where for all $1 \le i \le n$ s_i is the resulting state of applying a_0, \ldots, a_i to $s_0 = s_i$. Often, the state transition function is extended to work on action sequences as well $\gamma : A^* \times S \to S$.

Solution:

An action sequence $\bar{a} \in A^*$ consisting of 0 (empty sequence) or more actions is called a <u>plan</u> or <u>solution</u> to a planning problem $\langle V, A, s_I, g \rangle$ if and only if:

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow pre(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \to S$ is called the state transition function.
- An action sequence $\bar{a} = a_0, \ldots, a_{n-1}$ is applicable in a state s_0 if and only if for all $0 \le i \le n-1$ a_i is applicable in s_i , where for all $1 \le i \le n$ s_i is the resulting state of applying a_0, \ldots, a_i to $s_0 = s_l$. Often, the state transition function is extended to work on action sequences as well $\gamma : A^* \times S \to S$.

Solution:

An action sequence $\bar{a} \in A^*$ consisting of 0 (empty sequence) or more actions is called a <u>plan</u> or <u>solution</u> to a planning problem $\langle V, A, s_I, g \rangle$ if and only if:

- \bar{a} is applicable in s_l .
- \bar{a} results into a goal state, i.e., $\gamma(\bar{a}, s_l) \supseteq g$.

Problem Definition, cont'd (Solutions)

Action application:

- An action $a \in A$ is called applicable (or executable) in a state $s \in S$ if and only if $pre(a) \subseteq s$. Often, this is given by a function: $\tau(a, s) \Leftrightarrow pre(a) \subseteq s$.
- If $\tau(a, s)$ holds, its application results into the successor state $\gamma(a, s) = (s \setminus del(a)) \cup add(a)$. $\gamma : A \times S \to S$ is called the state transition function.
- An action sequence $\bar{a} = a_0, \ldots, a_{n-1}$ is applicable in a state s_0 if and only if for all $0 \le i \le n-1$ a_i is applicable in s_i , where for all $1 \le i \le n$ s_i is the resulting state of applying a_0, \ldots, a_i to $s_0 = s_l$. Often, the state transition function is extended to work on action sequences as well $\gamma : A^* \times S \to S$.

Solution:

An action sequence $\bar{a} \in A^*$ consisting of 0 (empty sequence) or more actions is called a <u>plan</u> or <u>solution</u> to a planning problem $\langle V, A, s_I, g \rangle$ if and only if:

- \bar{a} is applicable in s_l .
- \bar{a} results into a goal state, i.e., $\gamma(\bar{a}, s_l) \supseteq g$.

 $\mathsf{PLANEX} = \{ \langle \mathcal{P} \rangle : \mathcal{P} \text{ is a classical planning problem } \langle V, A, s_l, g \rangle \text{ that has a solution.} \}.$

Let $s_{l} = \{At_{LivingRoom,R}, At_{Garage,Remote}, At_{LivingRoom,Box}, TV_{Off}\}$

Rick's actions:

• $PushBox_R$: ({ $At_{LivingRoom,Box}, At_{LivingRoom,R}$ },{ $At_{LivingRoom,M}$ },Ø)

Meeseeks's actions:

$$g=\{\mathsf{T}\mathsf{V}_{\mathsf{On}}\}$$

Let $s_{l} = \{At_{LivingRoom,R}, At_{Garage,Remote}, At_{LivingRoom,Box}, TV_{Off}\}$

Rick's actions:

- $PushBox_R$: ({ $At_{LivingRoom,Box}, At_{LivingRoom,R}$ },{ $At_{LivingRoom,M}$ }, \emptyset)
- GoToGarage_R: $({At_{LivingRoom,R}}, {At_{Garage,R}}, {At_{LivingRoom,R}})$

Meeseeks's actions:

• GoToGarage_M: $({At_{LivingRoom,M}}, {At_{Garage,M}}, {At_{LivingRoom,M}})$

 $g = \{\mathsf{T} \mathsf{V}_{\mathsf{On}}\}$

Pascal Bercher

Let $s_{I} = \{At_{LivingRoom,R}, At_{Garage,Remote}, At_{LivingRoom,Box}, TV_{Off}\}$

Rick's actions:

- $PushBox_R$: ({ $At_{LivingRoom,Box}, At_{LivingRoom,R}$ },{ $At_{LivingRoom,M}$ }, \emptyset)
- GoToGarage_R: $({At_{LivingRoom,R}}, {At_{Garage,R}}, {At_{LivingRoom,R}})$
- GoToLivingRoom_R: $({At_{Garage,R}}, {At_{LivingRoom,R}}, {At_{Garage,R}})$

Meeseeks's actions:

- GoToGarage_M: $({At_{LivingRoom,M}}, {At_{Garage,M}}, {At_{LivingRoom,M}})$
- GoToLivingRoom_M: $({At_{Garage,M}}, {At_{LivingRoom,M}}, {At_{Garage,M}})$

 $g = \{\mathsf{T} \mathsf{V}_{\mathsf{On}}\}$

 $\mathsf{Let} \ \textit{s}_{\textit{I}} = \{\mathsf{At}_{\mathsf{LivingRoom},\mathsf{R}}, \mathsf{At}_{\mathsf{Garage},\mathsf{Remote}}, \mathsf{At}_{\mathsf{LivingRoom},\mathsf{Box}}, \mathsf{TV}_{\mathsf{Off}}\}$

Rick's actions:

- $PushBox_R$: ({ $At_{LivingRoom,Box}, At_{LivingRoom,R}$ },{ $At_{LivingRoom,M}$ }, \emptyset)
- GoToGarage_R: $({At_{LivingRoom,R}}, {At_{Garage,R}}, {At_{LivingRoom,R}})$
- GoToLivingRoom_R: $({At_{Garage,R}}, {At_{LivingRoom,R}}, {At_{Garage,R}})$
- $\ \ \, \bullet \ \ \, \mathsf{PickUpRemote}_{R}: \ (\{\mathsf{At}_{\mathsf{Garage},\mathsf{R}},\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}}\},\{\mathsf{Has}_{\mathsf{Remote},\mathsf{R}}\},\{\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}}\}) \\$

Meeseeks's actions:

- GoToGarage_M: $({At_{LivingRoom,M}}, {At_{Garage,M}}, {At_{LivingRoom,M}})$
- GoToLivingRoom_M: $({At_{Garage,M}}, {At_{LivingRoom,M}}, {At_{Garage,M}})$
- PickUpRemote_M: ({At_{Garage,M}, At_{Garage,Remote}}, {Has_{Remote,M}}, {At_{Garage,Remote}})

 $g=\{\mathsf{T}\mathsf{V}_{\mathsf{On}}\}$

Let $\textit{s}_{\textit{l}} = \{\textit{At}_{\textit{LivingRoom},R}, \textit{At}_{\textit{Garage},\textit{Remote}}, \textit{At}_{\textit{LivingRoom},\textit{Box}}, \textit{TV}_{\textit{Off}}\}$

Rick's actions:

- $PushBox_R$: ({ $At_{LivingRoom,Box}, At_{LivingRoom,R}$ },{ $At_{LivingRoom,M}$ }, \emptyset)
- GoToGarage_R: $({At_{LivingRoom,R}}, {At_{Garage,R}}, {At_{LivingRoom,R}})$
- GoToLivingRoom_R: ({At_{Garage,R}}, {At_{LivingRoom,R}}, {At_{Garage,R}})
- $\ \ \, \bullet \ \ \, \mathsf{PickUpRemote}_{R} : \ (\{\mathsf{At}_{\mathsf{Garage},\mathsf{R}},\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}}\},\{\mathsf{Has}_{\mathsf{Remote},\mathsf{R}}\},\{\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}}\}) \\$
- TurnTVOn_R: ({Has_{Remote,R}, At_{LivingRoom,R}, TV_{Off}}, {TV_{On}}, {TV_{Off}})

Meeseeks's actions:

- GoToGarage_M: $({At_{LivingRoom,M}}, {At_{Garage,M}}, {At_{LivingRoom,M}})$
- GoToLivingRoom_M: $({At_{Garage,M}}, {At_{LivingRoom,M}}, {At_{Garage,M}})$
- GiveRemote_M: ({Has_{Remote,M}, At_{LivingRoom,M}, At_{LivingRoom,R}}, {Has_{Remote,R}}, {Has_{Remote,M}, At_{LivingRoom,M}})

 $g = \{\mathsf{TV}_{\mathsf{On}}\}$

Example Problem, Solutions

 $\mathsf{Recap:} \ \textit{s}_{\textit{I}} = \{\mathsf{At}_{\mathsf{LivingRoom},\mathsf{Box}},\mathsf{At}_{\mathsf{LivingRoom},\mathsf{R}},\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}},\mathsf{TV}_{\mathsf{Off}}\}.$

Solution 1 (Rick does it himself):

- 2 PickUpRemote_R: $s_2 = \{At_{LivingRoom,Box}, At_{Garage,R}, Has_{Remote,R}, TV_{Off}\}$
- 3 GoToLivingRoom_R: $s_3 = \{At_{LivingRoom,Box}, At_{LivingRoom,R}, Has_{Remote,R}, TV_{Off}\}$

Recap: $g = \{TV_{On}\}$.

Pascal Bercher

Example Problem, Solutions

 $\mathsf{Recap:} \ \textit{s}_{\textit{I}} = \{\mathsf{At}_{\mathsf{LivingRoom},\mathsf{Box}},\mathsf{At}_{\mathsf{LivingRoom},\mathsf{R}},\mathsf{At}_{\mathsf{Garage},\mathsf{Remote}},\mathsf{TV}_{\mathsf{Off}}\}.$

Solution 1 (Rick does it himself):

Solution 2 (Rick uses a Meeseeks):

Recap: $g = {\mathsf{TV}_{\mathsf{On}}}$.

Pascal Bercher

- Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be our plannig problem.
- Note that if a solution \overline{a} exists then one exists with $|\overline{a}| \leq 2^{|V|}$. This is because

- Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be our plannig problem.
- Note that if a solution \overline{a} exists then one exists with $|\overline{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...

General Case

- Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be our plannig problem.
- Note that if a solution \overline{a} exists then one exists with $|\overline{a}| < 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P(s_1, s_2, k)$ represent whether there exists a plan from state s_1 to state s_2 with size < k.
- We don't have a goal state, but a goal description, so we can't use $P(s_l, g, 2^{|V|})$, since g is just one of potentially exponentially many states.

General Case

- Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be our plannig problem.
- Note that if a solution \overline{a} exists then one exists with $|\overline{a}| < 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P(s_1, s_2, k)$ represent whether there exists a plan from state s_1 to state s_2 with size < k.
- We don't have a goal state, but a goal description, so we can't use $P(s_l, g, 2^{|V|})$, since g is just one of potentially exponentially many states. But we can:
 - put a new variable $v_1 \notin V$ into V, now V', and into all action preconditions,
 - create new action $(g, \{v_2\}, V)$, where $v_2 \notin V$ is new.
 - Now $g' = \{v_2\}$ is our unique goal and \mathcal{P} has a solution iff \mathcal{P}' has one.
 - We could also have iterated over all states s with $s \supset g$.

- Let $\mathcal{P} = \langle V, A, s_l, g \rangle$ be our plannig problem.
- Note that if a solution \overline{a} exists then one exists with $|\overline{a}| \leq 2^{|V|}$. This is because this is the maximal number of distinct states. If there is a plan that's longer, it "walks in a loop", which can be removed.
- Guess and verify would however be too expensive...
- We want to use recursive doubling! Let $P(s_1, s_2, k)$ represent whether there exists a plan from state s_1 to state s_2 with size $\leq k$.
- We don't have a goal <u>state</u>, but a goal <u>description</u>, so we can't use $P(s_l, g, 2^{|V|})$, since g is just one of potentially exponentially many states. But we can:
 - put a new variable $v_1 \notin V$ into V, now V', and into all action preconditions,
 - create new action $(g, \{v_2\}, V)$, where $v_2 \notin V$ is new.
 - Now $g' = \{v_2\}$ is our unique goal and \mathcal{P} has a solution iff \mathcal{P}' has one.
 - We could also have iterated over all states s with $s \supseteq g$.
- Now we can decide $P(s_1, g', 2^{|V|})$ in the usual way, i.e., $P(s_1, s_2, k)$ iff there exists an s, such that $P(s_1, s, k/2)$ and $P(s, s_2, k/2)$.
- Each state is only polynomially large, and we only need to do this split $\log(2^{|V|})$ often. So we only need poly space to do this search.
- Thus, $PLANEX \in \textbf{PSPACE}$.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q'.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q'. This is implemented by three actions, executed in order:
 - $(\{at_{i,q}, in_{i,x}\}, \{do_{i,q,x}\}, \{at_{i,q}\} \}$
 - 2 $(\{do_{i,q,x}, in_{i,x}\}, \{in_{i,y}\}, \{in_{i,x}\})$
 - $(\{do_{i,q,x}, in_{i,y}\}, \{at_{i+1,q'}\}, \{do_{i,q,x}\})$
 - 4 don't provide actions for $at_{-1,q}$ and $at_{pol(|w|),q}$ (for any q)
 - \rightarrow Uses the new variable(s) $do_{i,q,x}$. Provide the analogous action for left-movement.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q'. This is implemented by three actions, executed in order:
 - $(\{at_{i,q}, in_{i,x}\}, \{do_{i,q,x}\}, \{at_{i,q}\} \}$
 - 2 $(\{do_{i,q,x}, in_{i,x}\}, \{in_{i,y}\}, \{in_{i,x}\})$
 - $(\{do_{i,q,x}, in_{i,y}\}, \{at_{i+1,q'}\}, \{do_{i,q,x}\})$
 - 4 don't provide actions for $at_{-1,q}$ and $at_{pol(|w|),q}$ (for any q)
 - \rightarrow Uses the new variable(s) $do_{i,q,x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
 - Set $g = \{accept\}$ (using the new variable *accept*).
 - For all final states $q \in F$ and all *i*, define $(\{at_{i,q}\}, \{accept\}, \emptyset)$.

We reduce from a poly-space-bounded Turing Machine.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q'. This is implemented by three actions, executed in order:
 - $(\{ at_{i,q}, in_{i,x} \}, \{ do_{i,q,x} \}, \{ at_{i,q} \})$
 - 2 $(\{do_{i,q,x}, in_{i,x}\}, \{in_{i,y}\}, \{in_{i,x}\})$
 - $(\{do_{i,q,x}, in_{i,y}\}, \{at_{i+1,q'}\}, \{do_{i,q,x}\})$
 - (don't provide actions for $at_{-1,q}$ and $at_{pol(|w|),q}$ (for any q)
 - \rightarrow Uses the new variable(s) $do_{i,q,x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
 - Set $g = \{accept\}$ (using the new variable *accept*).
 - For all final states $q \in F$ and all *i*, define $(\{at_{i,q}\}, \{accept\}, \emptyset)$.

Thus, PLANEX is **PSPACE**-complete.

(Proof(s) by Bylander, 1994)

Q. Why do we have three actions? Why not just one (as in the live-lecture)?!

We reduce from a poly-space-bounded Turing Machine.

- We define $s_l = \{at_{1,q_0}, in_{0,B}, in_{1,w_1}, \dots in_{|w|,w_{|w|}}, in_{|w|+1,B}, \dots, in_{pol(|w|)-1,B}\}$ with
 - $in_{i,x}$ Symbol x is in tape position i.
 - $at_{i,q}^{\prime}$ TM's head is over position *i* and its state is *q*.
- For the actions, assume TM is in state q, head is over i and reads x, and it shall write y, move right, and transition into q'. This is implemented by three actions, executed in order:
 - $(\{at_{i,q}, in_{i,x}\}, \{do_{i,q,x}\}, \{at_{i,q}\} \})$
 - 2 $(\{do_{i,q,x}, in_{i,x}\}, \{in_{i,y}\}, \{in_{i,x}\})$
 - $(\{ do_{i,q,x}, in_{i,y} \}, \{ at_{i+1,q'} \}, \{ do_{i,q,x} \})$
 - ④ don't provide actions for $at_{-1,q}$ and $at_{pol(|w|),q}$ (for any q)
 - \rightarrow Uses the new variable(s) $do_{i,q,x}$. Provide the analogous action for left-movement.
- Whenever the TM is in an accepting state, the problem is solved:
 - Set $g = \{accept\}$ (using the new variable *accept*).
 - For all final states $q \in F$ and all *i*, define $(\{at_{i,q}\}, \{accept\}, \emptyset)$.

Thus, PLANEX is **PSPACE**-complete.

(Proof(s) by Bylander, 1994)

- **Q.** Why do we have three actions? Why not just one (as in the live-lecture)?!
- **A.** So that we can say: Planning is even **PSPACE**-hard if we have only 2 preconditions and 2 effects! Think of 2-SAT vs. 3-SAT! (Here, the 2 precs/effs correspond to the 3!)

Pascal Bercher

 $\mathsf{PLANEX}_{k} = \{ \langle \mathcal{P}, k \rangle : \mathcal{P} \text{ is a planning problem with a solution } \bar{a}, |\bar{a}| \leq k. \}$

Note that the k in the index here is a <u>String</u>, i.e., literally the <u>letter k</u>, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

 $\mathsf{PLANEX}_k = \{ \langle \mathcal{P}, k \rangle : \mathcal{P} \text{ is a planning problem with a solution } \bar{a}, |\bar{a}| \leq k. \}$

Note that the k in the index here is a <u>String</u>, i.e., literally the <u>letter k</u>, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX_k is **PSPACE**-complete:

• **PSPACE** membership:

 $\mathsf{PLANEX}_k = \{ \langle \mathcal{P}, k \rangle : \mathcal{P} \text{ is a planning problem with a solution } \bar{a}, |\bar{a}| \leq k. \}$

Note that the k in the index here is a <u>String</u>, i.e., literally the <u>letter k</u>, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX_k is **PSPACE**-complete:

- **PSPACE** membership:
 - We know that if a solution exists at all, then one exists up to length 2^{|V|}. Recap: This is because there is no point in repeating any of the 2^{|V|} states.
 - We can thus check for plan existence up to the number $\min(k, 2^{|V|})$.
 - We already have a decision procedure for bound $2^{|V|}$, which runs in **PSPACE**.

 $\mathsf{PLANEX}_k = \{ \langle \mathcal{P}, k \rangle : \mathcal{P} \text{ is a planning problem with a solution } \bar{a}, |\bar{a}| \leq k. \}$

Note that the k in the index here is a <u>String</u>, i.e., literally the <u>letter k</u>, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX_k is **PSPACE**-complete:

- **PSPACE** membership:
 - We know that if a solution exists at all, then one exists up to length 2^{|V|}. Recap: This is because there is no point in repeating any of the 2^{|V|} states.
 - We can thus check for plan existence up to the number $\min(k, 2^{|V|})$.
 - We already have a decision procedure for bound $2^{|V|}$, which runs in **PSPACE**.
- We now show **PSPACE**-hardness:

 $\mathsf{PLANEX}_k = \{ \langle \mathcal{P}, k \rangle : \mathcal{P} \text{ is a planning problem with a solution } \bar{a}, |\bar{a}| \leq k. \}$

Note that the k in the index here is a <u>String</u>, i.e., literally the <u>letter k</u>, not a number. So the k in the set is (clearly) different, since one is a number, the other a letter.

PLANEX_k is **PSPACE**-complete:

- **PSPACE** membership:
 - We know that if a solution exists at all, then one exists up to length 2^{|V|}. Recap: This is because there is no point in repeating any of the 2^{|V|} states.
 - We can thus check for plan existence up to the number $\min(k, 2^{|V|})$.
 - We already have a decision procedure for bound $2^{|V|}$, which runs in **PSPACE**.
- We now show **PSPACE**-hardness:
 - We again exploit that if there exists a plan at all, there is one up to length $2^{|V|}$.
 - We thus reduce from PLANEX: We take an arbitrary problem $\mathcal{P} \in \mathsf{PLANEX}$ and create a cost-bounded one by choosing $k = 2^{|V|}$, where V are the variables of \mathcal{P} . Note that this construction is polytime because we can encode k using only $\log(k)$ bits.

Disclaimer / Recap

- We know that no matter which instance planning problems are in PSPACE.
- But is every instance **PSPACE**-hard?

Disclaimer / Recap

- We know that no matter which instance planning problems are in **PSPACE**.
- But is every instance **PSPACE**-hard?
 - Clearly not! What about the problem $(\emptyset, \emptyset, \emptyset, \emptyset)$?
 - Think of SAT which is NP-complete. How about 2-CNF-SAT?

Disclaimer / Recap

- We know that no matter which instance planning problems are in PSPACE.
- But is every instance **PSPACE**-hard?
 - Clearly not! What about the problem $(\emptyset, \emptyset, \emptyset, \emptyset)$?
 - Think of SAT which is NP-complete. How about 2-CNF-SAT?
- So, which factor(s) make planning hard? And what if they were not there?
 - If we identify such a special case in a given instance we could use a more efficient algorithm than one designed for the general case.
 - If we can <u>establish</u> a special case we can solve the easier case and use its solution as approximation to the solution of the actual problem. (E.g., as heuristic in a search.)

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s_I, g) .

• A problem (V, A, s_l, g) is called <u>delete-free</u> if the following holds: for all $(pre, add, del) \in A$ holds: $\overline{del} = \emptyset$

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s_l, g) .

- A problem (V, A, s_l, g) is called <u>delete-free</u> if the following holds: for all $(pre, add, del) \in A$ holds: $\overline{del} = \emptyset$
- Given a problem P = (V, A, s_l, g), we call P' = (V', A', s'_l, g') delete-relaxed version of P if V = V', s'_l = s_i, g' = g, and A' = {(pre, add, ∅) : (pre, add, del) ∈ A}.

Delete-free (or Delete-relaxed) Problems, Definition

Reminder: Classical planning problems have the form (V, A, s_I, g) .

- A problem (V, A, s_l, g) is called <u>delete-free</u> if the following holds: for all $(pre, add, del) \in A$ holds: $del = \emptyset$
- Given a problem $\mathcal{P} = (V, A, s_l, g)$, we call $\mathcal{P}' = (V', A', s'_l, g')$ delete-relaxed version of \mathcal{P} if V = V', $s'_l = s_i$, g' = g, and $A' = \{(pre, add, \emptyset) : (pre, add, del) \in A\}$.
- $\mathsf{PLANEX}_{\mathit{DR}} = \{ \langle \mathcal{P} \rangle : \mathcal{P} \text{ is a solvable classical delete-free planning problem.} \}$

Now, what's true?

- PLANEX_{DR} is **PSPACE**-complete (?)
- PLANEX_{DR} is **NP**-complete (?)
- PLANEX_{DR} is in NP, not NP-hard, and not in P (?)
- PLANEX_{DR} is in **P** (?)

Delete-free Planning is in **P**

Observations:

• Applying an action twice is pointless, so we can delete each applied action.

Delete-free Planning is in ${\boldsymbol{\mathsf{P}}}$

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set *A* of delete-free actions, initial state s_l , goal description *g* **Result:** Whether the delete-free problem is solvable

 $s \leftarrow s_l;$

repeat

```
foreach action a \in A do

if \underline{pre(a) \subseteq s} then

s = s \cup add(a);

delete a from A;

until A is not modified;
```

return $s \supseteq g$;

Observations:

• Applying an action twice is pointless, so we can delete each applied action.

Delete-free Planning is in ${\boldsymbol{\mathsf{P}}}$

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set *A* of delete-free actions, initial state s_l , goal description *g* **Result:** Whether the delete-free problem is solvable

 $s \leftarrow s_l;$

repeat

```
foreach action a \in A do

if \underline{pre(a) \subseteq s} then

s = s \cup add(a);

delete a from A;

until <u>A is not modified;</u>
```

return $s \supseteq g$;

Observations:

- Applying an action twice is pointless, so we can delete each applied action.
- ${\scriptstyle \circ}\,$ Each iteration costs at most $\mathcal{O}(|{\it A}|)$ and we can delete at most $|{\it A}|$ times.
- Thus, runtime is in $\mathcal{O}(|A|^2)$, so $\mathsf{PLANEX}_{DR} \in \mathbf{P}$.

PLANEX_{*k*-*DR*} = { $\langle \mathcal{P}, k \rangle$: \mathcal{P} is a delete-free planning problem with a solution \bar{a} , $|\bar{a}| \leq k$.} As before: The *k* in the index is a String, not a number. (To name this problem class.)

PLANEX_{*k*-*DR*} = { $\langle \mathcal{P}, k \rangle$: \mathcal{P} is a delete-free planning problem with a solution \bar{a} , $|\bar{a}| \leq k$.} As before: The *k* in the index is a String, not a number. (To name this problem class.)

We can show $PLANEX_{k-DR} \in \mathbf{NP}$

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true.

PLANEX_{*k*-*DR*} = { $\langle \mathcal{P}, k \rangle$: \mathcal{P} is a delete-free planning problem with a solution \bar{a} , $|\bar{a}| \leq k$.} As before: The *k* in the index is a String, not a number. (To name this problem class.)

We can show $PLANEX_{k-DR} \in \mathbf{NP}$

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true. Right?

PLANEX_{*k*-*DR*} = { $\langle \mathcal{P}, k \rangle$: \mathcal{P} is a delete-free planning problem with a solution \bar{a} , $|\bar{a}| \leq k$.} As before: The *k* in the index is a String, not a number. (To name this problem class.)

We can show $PLANEX_{k-DR} \in \mathbf{NP}$

- Let \mathcal{P} (delete-free problem) and number k be given.
- Guess up to k actions and an order among them.
- Return true if sequence is executable and makes goal true. Right?
- No! That's a **NEXPTIME**-procedure! *k* is encoded binarily... Instead, we limit the number of actions that we guess.
- No action has to be executed twice! So we only guess up to |A| (distinct) actions.
- Thus, we perform the above procedure for the number $\min(k, |A|)$.
- This results in an NP membership procedure/proof.

We show that $PLANEX_{k-DR}$ is **NP**-hard.

• We reduce from CNF-SAT.

• Let
$$\varphi = \underbrace{\{C_1, \ldots, C_n\}}_{\text{clauses}}$$
, $C_j = \underbrace{\{\varphi_{j_1}, \ldots, \varphi_{j_k}\}}_{\text{literals}}$, and $V = \underbrace{\{x_1, \ldots, x_m\}}_{\text{variables}}$.

Cost-bound Delete-Free Planning is $\ensuremath{\textbf{NP}}\xspace$ -hard

We show that $PLANEX_{k-DR}$ is **NP**-hard.

• We reduce from CNF-SAT.

• Let
$$\varphi = \underbrace{\{C_1, \dots, C_n\}}_{\text{clauses}}$$
, $C_j = \underbrace{\{\varphi_{j_1}, \dots, \varphi_{j_k}\}}_{\text{literals}}$, and $V = \underbrace{\{x_1, \dots, x_m\}}_{\text{variables}}$.
• For each boolean variable $x_i \in V$ add two actions to A :
 $\boxed{x_i \mapsto \top} \xrightarrow{x_i - \top}_{x_i - set}$, $\boxed{x_i \mapsto \bot} \xrightarrow{x_i - \bot}_{x_i - set}$.

Cost-bound Delete-Free Planning is $\ensuremath{\textbf{NP}}\xspace$ -hard

We show that $PLANEX_{k-DR}$ is **NP**-hard.

• We reduce from CNF-SAT.

• Let
$$\varphi = \underbrace{\{C_1, \dots, C_n\}}_{\text{clauses}}$$
, $C_j = \underbrace{\{\varphi_{j_1}, \dots, \varphi_{j_k}\}}_{\text{literals}}$, and $V = \underbrace{\{x_1, \dots, x_m\}}_{\text{variables}}$
• For each boolean variable $x_i \in V$ add two actions to A :
 $\hline x_i \mapsto \top \quad x_{i-\top} \quad x_i \mapsto \bot \quad x_{i-\perp} \quad x_{i-\perp}$
• For each positive $\varphi_{j_i} = x_{j_i}$ or negative $\varphi_{j_i} = \neg x_{j_i}$ add
 $\underbrace{x_{j_i} - \top}_{C_j \mapsto \top} \quad C_{j-\top} \quad \text{or} \quad \underline{x_{j_i} - \bot}_{C_j \mapsto \top} \quad C_{j-\top} \quad C_{j-\top}$

Cost-bound Delete-Free Planning is $\ensuremath{\textbf{NP}}\xspace$ -hard

We show that $PLANEX_{k-DR}$ is **NP**-hard.

• We reduce from CNF-SAT.

• Let
$$\varphi = \underbrace{\{C_1, \dots, C_n\}}_{\text{clauses}}$$
, $C_j = \underbrace{\{\varphi_{j_1}, \dots, \varphi_{j_k}\}}_{\text{literals}}$, and $V = \underbrace{\{x_1, \dots, x_m\}}_{\text{variables}}$
• For each boolean variable $x_i \in V$ add two actions to A :
 $x_i \mapsto \top \qquad x_{i-\overline{x_i}} \qquad x_i \mapsto \bot \qquad x_{i-\overline{x_i}} \qquad x_{i-\overline{x_i}}$
• For each positive $\varphi_{j_i} = x_{j_i}$ or negative $\varphi_{j_i} = \neg x_{j_i}$ add

$$\underbrace{\begin{array}{c} x_{j_i} - \top \\ C_j \mapsto \top \end{array}}^{"} \underbrace{\begin{array}{c} x_{j_i} = \top \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \quad \text{or} \quad \underbrace{\begin{array}{c} x_{j_i} - \bot \\ C_j \mapsto \top \end{array}}^{"} \underbrace{\begin{array}{c} x_{j_i} = \bot \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top \end{array}}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \top}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \cdots}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \cdots}_{C_j \to \top} \underbrace{\begin{array}{c} c_{j-\top} \\ C_j \mapsto \underbrace{\begin{array}{c} c_{j-$$

• $g = \{x_i - set \mid 1 \le i \le m\} \cup \{C_j - \top \mid 1 \le j \le n\}$

• φ is satisfiable if and only if a plan of size n + m exists.

We show that $PLANEX_{k-DR}$ is **NP**-hard.

• We reduce from CNF-SAT.

• Let
$$\varphi = \underbrace{\{C_1, \dots, C_n\}}_{\text{clauses}}$$
, $C_j = \underbrace{\{\varphi_{j_1}, \dots, \varphi_{j_k}\}}_{\text{literals}}$, and $V = \underbrace{\{x_1, \dots, x_m\}}_{\text{variables}}$
• For each boolean variable $x_i \in V$ add two actions to A :
 $\boxed{x_i \mapsto \top}_{\substack{x_i - \top \\ x_i - set}}$
• For each positive $\varphi_{j_i} = x_{j_i}$ or negative $\varphi_{j_i} = \neg x_{j_i}$ add
 $\underbrace{x_{j_i} - \top}_{C_j \mapsto \top} \underbrace{c_{j-\top}}_{C_j \to \top}$ or $\underbrace{x_{j_i} - \bot}_{C_j \mapsto \top} \underbrace{c_{j-\top}}_{C_j \mapsto \top} \underbrace{c_{j-\top}}_{C_j \mapsto \top}$
• $g = \{x_i - set \mid 1 \le i \le m\} \cup \{C_i - \top \mid 1 \le j \le n\}$

• φ is satisfiable if and only if a plan of size n + m exists.

You are not done yet! Don't forget to show this is a reduction!