
COMP1600, week 10:

Turing Machines
convenors: Dirk Pattinson, Pascal Bercher
lecturer: Pascal Bercher
slides based on those by: Dirk Pattinson
(with contributions by Victor Rivera and previous colleagues)

Semester 2, 2024



Overview of Week 10

▶ Introduction
▶ Turing Machines: Basic Definitions
▶ Examples for Turing Machines
▶ TMs vs. Programming and Common Idioms
▶ Languages of TMs and the Chomsky Hierarchy
▶ TM Expressivitiy, again
▶ Universal Turing Machines

1 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Introduction

2 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Computing as Profession

Photo c/o Early Office Museum Archives

(Curious? Search for “Computer (occupation)”)

3 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



A model for ‘computers’
Computing in 1936
▶ computers not machines, it was a profession.
▶ Alan Turing’s contribution: mathematical definition of what computers can

do (= of what computation is).
▶ In the 1936 paper “On computable numbers, with an application to the

Entscheidungsproblem”
▶ solved long standing open problem posed by D. Hilbert and W. Ackermann

in 1928: “the Entscheidungsproblem” (German for Decision Problem)
▶ changed the world (of mathematics, and computing)

Turing’s model today
▶ no computer has been built that is more powerful than Turing’s model
▶ no other formalism was ever found to be more expressive
▶ Turing has discovered the essence of computation

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



A model for ‘computers’
Computing in 1936
▶ computers not machines, it was a profession.
▶ Alan Turing’s contribution: mathematical definition of what computers can

do (= of what computation is).
▶ In the 1936 paper “On computable numbers, with an application to the

Entscheidungsproblem”
▶ solved long standing open problem posed by D. Hilbert and W. Ackermann

in 1928: “the Entscheidungsproblem” (German for Decision Problem)
▶ changed the world (of mathematics, and computing)

Turing’s model today
▶ no computer has been built that is more powerful than Turing’s model
▶ no other formalism was ever found to be more expressive
▶ Turing has discovered the essence of computation

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



TuringMachines:
BasicDefinitions

5 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Push Down Automata, reloaded

stack

memory
z2

z1

zk

Finite

Control

input taperead
head

a0 a1 a2 ... an. . . .

State

A PDA with its auxiliary store is almost a whole computer, except we can only
directly access the symbol on the top of the stack.

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Turing Machines

tape

memory

zk

z2

z1

Finite

Control

input taperead
head

a0 a1 a2 ... an. . . .

State

read
write 
head

zk

scratch space

z1z0

Finite

Control

a0

State

ana1

read / write
head

input data

Generalisation from PDA to Turing machine
▶ replace stack memory (previous slide) by tape memory (this slide)
▶ for simplicity, don’t use separate tape memory (cf. left graphic),

but re-use tape holding the input word (cf. right graphic)
▶ can access and change arbitrary symbols on tape by moving tape head

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Fundamental Properties
Basic Properties/Definitions
▶ For now: Deterministic Turing Machines (we add non-determinism later)

▶ If there is no transition possible in a state, the TM halts
▶ Notice how for other machines that implied rejection
▶ Here it could be both or neither, it just means we stop (“halt”)

▶ If a TM reaches a final state, it accepts the word (i.e., the original tape
content). Notice that:
▶ we don’t require anymore that the entire word was “processed” (as it’s not

fed letter by letter anymore but simply written on the tape initially).
▶ we don’t require halting after a word was accepted

▶ A word is rejected iff it is not accepted. Note that this implies:
▶ rejection can happen because it halts in a state without accepting the word
▶ it rejects because it loops forever (without accepting it)

Language Definitions.
▶ As always, the language of a Turing Machine is the words accepted by it.
▶ Languages accepted by a Turing Machine are called recursively enumerable.

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Fundamental Properties
Basic Properties/Definitions
▶ For now: Deterministic Turing Machines (we add non-determinism later)
▶ If there is no transition possible in a state, the TM halts

▶ Notice how for other machines that implied rejection
▶ Here it could be both or neither, it just means we stop (“halt”)

▶ If a TM reaches a final state, it accepts the word (i.e., the original tape
content). Notice that:
▶ we don’t require anymore that the entire word was “processed” (as it’s not

fed letter by letter anymore but simply written on the tape initially).
▶ we don’t require halting after a word was accepted

▶ A word is rejected iff it is not accepted. Note that this implies:
▶ rejection can happen because it halts in a state without accepting the word
▶ it rejects because it loops forever (without accepting it)

Language Definitions.
▶ As always, the language of a Turing Machine is the words accepted by it.
▶ Languages accepted by a Turing Machine are called recursively enumerable.

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Fundamental Properties
Basic Properties/Definitions
▶ For now: Deterministic Turing Machines (we add non-determinism later)
▶ If there is no transition possible in a state, the TM halts

▶ Notice how for other machines that implied rejection
▶ Here it could be both or neither, it just means we stop (“halt”)

▶ If a TM reaches a final state, it accepts the word (i.e., the original tape
content). Notice that:
▶ we don’t require anymore that the entire word was “processed” (as it’s not

fed letter by letter anymore but simply written on the tape initially).
▶ we don’t require halting after a word was accepted

▶ A word is rejected iff it is not accepted. Note that this implies:
▶ rejection can happen because it halts in a state without accepting the word
▶ it rejects because it loops forever (without accepting it)

Language Definitions.
▶ As always, the language of a Turing Machine is the words accepted by it.
▶ Languages accepted by a Turing Machine are called recursively enumerable.

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Fundamental Properties
Basic Properties/Definitions
▶ For now: Deterministic Turing Machines (we add non-determinism later)
▶ If there is no transition possible in a state, the TM halts

▶ Notice how for other machines that implied rejection
▶ Here it could be both or neither, it just means we stop (“halt”)

▶ If a TM reaches a final state, it accepts the word (i.e., the original tape
content). Notice that:
▶ we don’t require anymore that the entire word was “processed” (as it’s not

fed letter by letter anymore but simply written on the tape initially).
▶ we don’t require halting after a word was accepted

▶ A word is rejected iff it is not accepted. Note that this implies:
▶ rejection can happen because it halts in a state without accepting the word
▶ it rejects because it loops forever (without accepting it)

Language Definitions.
▶ As always, the language of a Turing Machine is the words accepted by it.
▶ Languages accepted by a Turing Machine are called recursively enumerable.

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Fundamental Properties
Basic Properties/Definitions
▶ For now: Deterministic Turing Machines (we add non-determinism later)
▶ If there is no transition possible in a state, the TM halts

▶ Notice how for other machines that implied rejection
▶ Here it could be both or neither, it just means we stop (“halt”)

▶ If a TM reaches a final state, it accepts the word (i.e., the original tape
content). Notice that:
▶ we don’t require anymore that the entire word was “processed” (as it’s not

fed letter by letter anymore but simply written on the tape initially).
▶ we don’t require halting after a word was accepted

▶ A word is rejected iff it is not accepted. Note that this implies:
▶ rejection can happen because it halts in a state without accepting the word
▶ it rejects because it loops forever (without accepting it)

Language Definitions.
▶ As always, the language of a Turing Machine is the words accepted by it.
▶ Languages accepted by a Turing Machine are called recursively enumerable.

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts.

.
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).

▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.

▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).

▶ Others can’t let the head stop (it always must move left or right).
We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Disclaimer
Many different definitions of TMs can be found, all of which are equivalent.
For example:
▶ It is common to assume that final states have no outgoing transitions.

This would imply that the machine always halts after accepting a word.
(We don’t make this restriction, but when creating a TM, it makes sense!)

▶ Other definitions accept a word iff the Turing Machine halts..
▶ Even “rejection”can be defined differently. In some definitions, rejection

implies termination (we do not define it that way). Then, acceptance and
rejection are not “complete”, i.e., there are more cases.

▶ Others even feature rejecting states (similar to accepting states).
▶ Others have multiple tapes: some with one head globally, some per tape.
▶ Others have a semi-infinite tape (infinite only to one side).
▶ Others can’t let the head stop (it always must move left or right).

We stick with the definitions provided before (without specific reason).

Interested in equivalence proofs (of some of these alternative definitions)?
→ Take Theory of Computation! (COMP3630/COMP6363)

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Output

Turing Machines as Computing Devices
▶ TMs can calculate any computable function. (So we think.)
▶ Input: a string written onto the tape before the machine starts.
▶ Output: whatever is left on the tape when the machine halts.

Note that we usually never care what’s written on the tape after accepting
(i.e., the “output”). We only care for the language accepted by a Turing
Machine.

10 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Output

Turing Machines as Computing Devices
▶ TMs can calculate any computable function. (So we think.)
▶ Input: a string written onto the tape before the machine starts.
▶ Output: whatever is left on the tape when the machine halts.

Note that we usually never care what’s written on the tape after accepting
(i.e., the “output”). We only care for the language accepted by a Turing
Machine.

10 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Turing Machine – Formal Definition

A Turing Machine has the form (S, s0, F , Γ, Σ, Λ, δ), where
▶ S is the set of states with s0 ∈ S the initial state;
▶ F ⊆ S are the final states;

▶ Γ is the set of tape symbols (everything that might ever be on the tape);
▶ Λ ∈ Γ \ Σ is the blank symbol;
▶ Σ ⊆ Γ is the set of input symbols;
▶ δ is a (partial) transition function

δ : S × Γ ⇀ S × Γ × {L, R, S}
(state, tape symbol) 7→ (new state, new tape symbol, direction)

The direction tells the read/write head which way to go next:
Left, Right, or Stay/Stop. (Stopping the head is different from halting.)

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Turing Machine – Formal Definition

A Turing Machine has the form (S, s0, F , Γ, Σ, Λ, δ), where
▶ S is the set of states with s0 ∈ S the initial state;
▶ F ⊆ S are the final states;
▶ Γ is the set of tape symbols (everything that might ever be on the tape);
▶ Λ ∈ Γ \ Σ is the blank symbol;

▶ Σ ⊆ Γ is the set of input symbols;
▶ δ is a (partial) transition function

δ : S × Γ ⇀ S × Γ × {L, R, S}
(state, tape symbol) 7→ (new state, new tape symbol, direction)

The direction tells the read/write head which way to go next:
Left, Right, or Stay/Stop. (Stopping the head is different from halting.)

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Turing Machine – Formal Definition

A Turing Machine has the form (S, s0, F , Γ, Σ, Λ, δ), where
▶ S is the set of states with s0 ∈ S the initial state;
▶ F ⊆ S are the final states;
▶ Γ is the set of tape symbols (everything that might ever be on the tape);
▶ Λ ∈ Γ \ Σ is the blank symbol;
▶ Σ ⊆ Γ is the set of input symbols;
▶ δ is a (partial) transition function

δ : S × Γ ⇀ S × Γ × {L, R, S}
(state, tape symbol) 7→ (new state, new tape symbol, direction)

The direction tells the read/write head which way to go next:
Left, Right, or Stay/Stop. (Stopping the head is different from halting.)

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Running a TM
Initialisation.
▶ Some input (a finite string over Σ) is written on the tape;
▶ all other infinitely many tape cells are blank – Λ;
▶ the read/write head sits over the left-most cell of the input

(or over any Λ if the input is ϵ);
▶ we start in the start state s0.

Running.
▶ In a cycle: read symbol and execute action (state-dependent): change

state / write / move head
▶ Until a final state is reached (or the machine gets stuck).

Wait, when can we stop? Depends on what you want to do:
▶ Compute some output? Stop once it halts.
▶ Accept a word? Stop after acceptance. (Usually, that’s what we want.)

To clarify: the machine continues until it halts, but “your job” is done!

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Running a TM
Initialisation.
▶ Some input (a finite string over Σ) is written on the tape;
▶ all other infinitely many tape cells are blank – Λ;
▶ the read/write head sits over the left-most cell of the input

(or over any Λ if the input is ϵ);
▶ we start in the start state s0.

Running.
▶ In a cycle: read symbol and execute action (state-dependent): change

state / write / move head
▶ Until a final state is reached (or the machine gets stuck).

Wait, when can we stop?

Depends on what you want to do:
▶ Compute some output? Stop once it halts.
▶ Accept a word? Stop after acceptance. (Usually, that’s what we want.)

To clarify: the machine continues until it halts, but “your job” is done!

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Running a TM
Initialisation.
▶ Some input (a finite string over Σ) is written on the tape;
▶ all other infinitely many tape cells are blank – Λ;
▶ the read/write head sits over the left-most cell of the input

(or over any Λ if the input is ϵ);
▶ we start in the start state s0.

Running.
▶ In a cycle: read symbol and execute action (state-dependent): change

state / write / move head
▶ Until a final state is reached (or the machine gets stuck).

Wait, when can we stop? Depends on what you want to do:
▶ Compute some output? Stop once it halts.
▶ Accept a word? Stop after acceptance. (Usually, that’s what we want.)

To clarify: the machine continues until it halts, but “your job” is done!

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Graphical Representation of the
Transition Function

����
S0- -

Λ
1,L

6��1
1,L

����
S1 -

Λ
1,S ����

H�
��

(Like in FSAs and PDAs, annotate transition edges with commands for
accessing tape.)

Convention.
▶ Numerator: symbol read from tape.

▶ Λ means the tape is blank at that position.
▶ Denominator: symbol written / direction of head movement.

▶ direction one of L, R, S for Left, Right, Stay.
▶ There are also other conventions; but the meaning should always be clear.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Examples forTuring
Machines

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What does it do?

����
S0- -

Λ
1,L

6��1
1,L

����
S1 -

Λ
1,S ����

H�
��
�� @@head

1 1 1 1

▶ Adds two to a unary number!
▶ Assume the head starts over the input data. (Usually we assume we start

on the left-most symbol; this time we don’t for the example!).
▶ First phase scans left.
▶ Second phase writes two extra 1s.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What does it do?

����
S0- -

Λ
1,L

6��1
1,L

����
S1 -

Λ
1,S ����

H�
��
�� @@head

1 1 1 1 1 1

▶ Adds two to a unary number!
▶ Assume the head starts over the input data. (Usually we assume we start

on the left-most symbol; this time we don’t for the example!).
▶ First phase scans left.
▶ Second phase writes two extra 1s.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



The Convention for Errors
����

S0- -

Λ
1,L

6��1
1,L

����
S1 -

Λ
1,S ����

H�
��

TMs getting Stuck
▶ suppose head starts right-most and contains a token other than 1.
▶ TM would halt in state S0, as there is no arc telling us what to do if we

meet such a token (this job would be done by a rightwards scan).
▶ this is an error – the input is rejected.
▶ S0 not an accepting state!

Language. The TM accepts:
▶ precisely {1n | n ∈ N} if head starts right-most (we don’t!).
▶ precisely {ε} ∪ {1α | α ∈ Σ∗} if heads starts left-most (we do!).

Alternative Formulation (not used here)
▶ could add an error state that the machine transitions to
▶ error state not accepting

16 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What does this one do?

-��
��

S0 -

Λ
Λ,L

��
?

0
0,R

��61
1,R

��
��

S1 -

Λ
Λ,R

��
?

0
1,L

��61
0,L

��
��

H��
��

Q.
▶ Do you see two phases?
▶ What does each phase accomplish?

A.
▶ Phase 1: initialisation.
▶ Phase 2: computation, in this case, complement a binary number.

17 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What does this one do?

-��
��

S0 -

Λ
Λ,L

��
?

0
0,R

��61
1,R

��
��

S1 -

Λ
Λ,R

��
?

0
1,L

��61
0,L

��
��

H��
��

Q.
▶ Do you see two phases?
▶ What does each phase accomplish?

A.
▶ Phase 1: initialisation.
▶ Phase 2: computation, in this case, complement a binary number.

17 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Harder Problems?

▶ Incrementing a binary number

1 0 0 0 1 0 1 1
You should try this!

▶ Adding numbers - need terminators

# 1 1 0 0 0 1 # 1 1 1 0 1 1 #
Convenient to write the result before the data.

▶ Multiplication - and so on!

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Incrementing a binary number

Example. Number increment

1 0 0 0 1 0 1 1

Solution:

����
S0- -

Λ
Λ,L

6��1
1,R

?

��0
0,R

����
S1- -

0
1,S
Λ

1,S6��1
0,L

�����
��
H

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Incrementing a binary number

Example. Number increment

1 0 0 0 1 0 1 1

Solution:

����
S0- -

Λ
Λ,L

6��1
1,R

?

��0
0,R

����
S1- -

0
1,S
Λ

1,S6��1
0,L

�����
��
H

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Decrement
Example. Number decrement (similar)

1 0 0 0 1 0 1 1

����
S0- -

Λ
Λ,L

6��1
1,R

?

��0
0,R

����
S1- -

1
0,S

6��0
1,L

�����
��
H

Q. What happens if the input number is zero (e.g., 000)?

A.:
▶ First, it finds the right-most zero,
▶ then, the left-most one,
▶ then, for the blank on its left, no transition is defined.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Decrement
Example. Number decrement (similar)

1 0 0 0 1 0 1 1

����
S0- -

Λ
Λ,L

6��1
1,R

?

��0
0,R

����
S1- -

1
0,S

6��0
1,L

�����
��
H

Q. What happens if the input number is zero (e.g., 000)? A.:
▶ First, it finds the right-most zero,
▶ then, the left-most one,
▶ then, for the blank on its left, no transition is defined.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



How to add two numbers?

Input. Binary numbers separated by #, say
n︷ ︸︸ ︷

10100101 #
m︷ ︸︸ ︷

100101010

Operation.
▶ Go back and forth between m and n, decrementing one (until this fails)

and incrementing the other.
▶ decrement m, and increment n, because n will expand leftwards.
▶ m gets changed to 00 . . . 0, n is replaced by the sum.
▶ Finally, delete the #00 · · · 0 on the right.

21 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



How to add two numbers? cont’d

����
S0- -

Λ
Λ,L

?

��0
0,R

1
1,R #

#,R

����
S1- -

1
0,S

6
#

Λ,R

6��0
1,L

����
S2

6�� 0
0,L

1
1,L

�
�

�
�

�
�

�=

#
#,L

����
S3

6��1
0,L

Z
Z

Z
Z

Z
Z

Z}

Λ
1,S

0
1,S

����
S4

?

��1
Λ,R

-
Λ

Λ,S �����
��
H

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Increment:

Decrement:



How to add two numbers? cont’d –
again!
Just another short explanation on how the previous TM works:
▶ It works in phases. Before we start we have a tape n#m.

Then, after each round we have:
1. n + 1#m − 1 (after first pair of increment and decrement)
2. n + 2#m − 2 (after second pair of increment and decrement)
3. n + 3#m − 3 (after third...)
4. . . .
5. n + m#0 (after m pairs of increment and decrement)

▶ What happens in round m + 1? Since we start with decrement, the second
string is 0 . . . 0 before it gets decremented.

▶ So state S1 will eventually find a #, and then the string will be
n + m#1 . . . 1. Then enter state S4 to delete the right string #1 . . . 1.

▶ Now you can also see why we started to decrement instead of incrementing
first! (Otherwise we might have to decrement the first string again in case
m turns out to be 0.)

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



How to multiply two numbers?
Input. as for addition

︸︷︷︸
p

# 10100101︸ ︷︷ ︸
n

# 100101010︸ ︷︷ ︸
m

Operation.
▶ Repeatedly decrement m (until this fails) and add n to p (p is initially

blank)
▶ Must modify the addition routine to not erase the number n being added.

Modification of addition routine
▶ Two new tape symbols, 0′ and 1′.
▶ Before each addition stage, change all the 1s in n to 1′.
▶ When decrementing n, swap 0s and 1s as usual, but keep the primes.
▶ When finished adding n to p, go back and use the primes to restore n.

Observation.
▶ this is very tedious – but the model is simple and easy to analyse
▶ tricks that you see here are typical

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



TMsvs.Programming
andCommon Idioms

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Programming Issues – Data

Data Types and Gadgets
▶ not present in the model
▶ but can be simulated . . .

Numbers.
▶ Usually use unary or binary for integers.

Vocabulary.
▶ Can be arbitrary, but {0, 1} suffices. Characters are represented as strings

of bits.

Variables, Arrays, Files
▶ Use markers on the tape to separate values.

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Programming Issues – Control

Common Idioms.
▶ Scan to blank, or to find, insert, delete a symbol.
▶ Use control states to remember information

In particular, we often need to “remember” a symbol, to write it elsewhere:
this typically requires a set of states, one per symbol

▶ Composition
If you have a TM to multiply by 3 and one to multiply by 5, put them
together to multiply by 15.

▶ Decisions (conditional computation)
As we have seen, we can branch on 0 or 1 (or T or F).

▶ Loops — of course.

27 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Using States to Remember a Tape
Symbol

S T

U0

U1

Λ

Λ R,

0

Λ R,

1

Λ R,

Λ

0 L,

Λ

1 L,

0

0 R,

1

1 R,

0

0 R,

1

1 R,

1

1 L,

0

0 L,

Given a string of 0 or 1 surrounded
by blanks, this machine repeatedly
forever erases the leftmost bit,
and writes it on the right hand
end. (Not so useful, but illustrates
the point)

We use the choice of states
U0 or U1 to remember which
symbol has been erased and is to
be written

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Languages ofTMs
and theChomsky

Hierarchy

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



The Chomsky Hierarchy, Revisited

Each grammar is of a type: (There are lots of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions α → β

Context-sensitive: (type 1) the length of the left hand side of each production
must not exceed the length of the right∗, |α| ≤ |β|.
▶ Note 1: There are other equivalent definitions which don’t

restrict the length
▶ Note 2∗: If ϵ ∈ L should be allowed, we are allowed S → ϵ,

but then we don’t allow S to occur on any right-hand side.
Context-free: (type 2) the left of each production must be a single

non-terminal.
Regular: (type 3) As for type 2, but the right of each production is further

constrained (details to come).

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Expressivity of Turing Machines
Theorem. Any language that is generated by a grammar (i.e., type 0) can be
recognised by a Turing machine.

Proof (Sketch)
▶ write the start symbol S onto the tape (say, right of our input)
▶ search through all possible derivations from S
▶ each time we reach a word, check whether it matches the input

(recall that we want to check whether a word lies in L(G))

Acceptance.
▶ if the grammar generates the input, we accept
▶ if the grammar does not generate the input, we may loop forever (and not

accept); this can’t be prevented for some type 0 grammars (you should
understand why next week), for all others the non-termination can be
prevented

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Expressivity of Turing Machines cont’d
Unrestricted Grammars. Have productions of the form α → β, where β is
arbitrary, and α contains at least one non-terminal.

Theorem. For any TM, there exists a grammar that generates precisely the
words that the TM accepts. (With the last theorem, this makes TMs exactly as
expressive as type 0 grammars.)

Proof (Sketch)
▶ non-terminals (of the grammar) are states of the TM
▶ run TM “backwards” (we are interested in inputs, not outputs)

TM Transition. ����
T -

0
1,R ����

U

Grammar Production. 1U → T0.

(Details missing, e.g., how to handle blanks)

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Expressivity of Turing Machines cont’d
Unrestricted Grammars. Have productions of the form α → β, where β is
arbitrary, and α contains at least one non-terminal.

Theorem. For any TM, there exists a grammar that generates precisely the
words that the TM accepts. (With the last theorem, this makes TMs exactly as
expressive as type 0 grammars.)

Proof (Sketch)
▶ non-terminals (of the grammar) are states of the TM
▶ run TM “backwards” (we are interested in inputs, not outputs)

TM Transition. ����
T -

0
1,R ����

U

Grammar Production. 1U → T0.

(Details missing, e.g., how to handle blanks)

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



TMExpressivity,
again

33 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Can real computers simulate Turing
Machines?

Differences between computers and Turing machines
▶ A Turing Machine has an infinite tape.
▶ “real” computers have finite memory
▶ physical devices necessarily have finite memory. They’re more like finite

automata. (Though “programmable” like universal TMs.)
▶ . . . but the number of states can be very, very large.

How big is 24294967296? (The exponent equals 232)
(FYI: there are approx 1080 ≈ 2265 atoms in the observable universe)

▶ physical computers are an approximation of TMs.
(It works as long as the memory is not insufficient.)

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Computers & Programming Languages
Observation.
▶ no computer ever invented could do things that a TM can’t do
▶ no programming language (PL) can do more than a TM
▶ back-and-forth translation TM ↔ PL

Common Terminology.
A programming language that can compute every function that can be
computed by a Turing machine is called Turing complete.

Examples.
▶ The languages that you know: Haskell, Java, Python, . . .
▶ even the simple while language that we used for Hoare logic
▶ implement TM simulator in your favourite programming language

Or online! https://turingmachinesimulator.com
Invitation: construct some of ours and share the URL with us!

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Church-Turing Thesis
Church-Turing Thesis.

If a function is computable, then it can be calculated by a Turing
machine.

Equivalent Formulation.
▶ if a problem can be solved by an algorithm, then it can be solved by a

Turing machine.

This is a Thesis.
▶ could also be regarded a definition (of computation/computability)
▶ can never be proved: what does “computable” mean?
▶ however, there’s lots of evidence

Evidence.
▶ all other definitions of the term computable give the same class of

computable functions
▶ there are many: λ-calculus, register machines, while programs, etc.

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Church-Turing Thesis
Church-Turing Thesis.

If a function is computable, then it can be calculated by a Turing
machine.

Equivalent Formulation.
▶ if a problem can be solved by an algorithm, then it can be solved by a

Turing machine.

This is a Thesis.
▶ could also be regarded a definition (of computation/computability)
▶ can never be proved: what does “computable” mean?
▶ however, there’s lots of evidence

Evidence.
▶ all other definitions of the term computable give the same class of

computable functions
▶ there are many: λ-calculus, register machines, while programs, etc.

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Argument 1: More power is useless
Stability of the TM Model.
▶ adding ‘features’ doesn’t make more functions computable

Multi-tape.
▶ have extra tapes to store data
▶ easier to program, but no extra “power”
▶ (single-tape can simulate multi-tape)

Multi-head.
▶ have more than one head, heads can move independently
▶ heads can access multiple symbols at once
▶ again, no extra power

Non-determinism. (as for NFAs)
▶ tm can make one of several possible next moves
▶ tm can “guess” the right next move
▶ may make it faster, but cannot compute more functions.

37 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Argument 2: Other Models are not more
Powerful
Many Models of Computation
▶ plenty of different definitions of what computable may mean
▶ different purposes, different contexts

Main Insight.
▶ any (reasonable) model of computation can compute precisely the same

functions as the TM model.
▶ “reasonable” in the sense of modelled on mechanical computation

Examples. Grammars, Lambda-Calculus (Church, 1932), Post-Systems (Post,
1939), Register Machines, . . .

Doesn’t include
▶ models based on physical phenomena
▶ . . . or biology, or . . .

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: λ-calculus is not more
powerful

Example. The (untyped) λ-calculus
▶ proposed by Alonzo Church (the Church in the Church-Turing thesis)
▶ in 1932, even before Turing’s paper
▶ Rosser showed that both notions are equivalent

Equivalence. (Rosser, 1939)
▶ if a function is computable by a Turing machine, then it is computable in

the λ-calculus
▶ . . . and vice versa
▶ simulation of the respective formalism in the other approach.

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: John Conway’s Game of Life
(GoL)
Game of Life.
▶ infinite 2D grid, finitely many cells marked alive, all others are dead

Rules of the Game. iterate through generations
▶ live cells with < 2 alive neighbours die (under-population);
▶ live cells with > 3 alive neighbours die (over-population);
▶ dead cells with = 3 alive neighbours come alive (reproduction);
▶ all other cells stay as they are.

Emergent Behaviour.
▶ analogy of complex behaviour emerging from simple rules
▶ Visualization of GoL (and TMs and more) in ≈30 minute video

“Math’s Fundamental Flaw” by Veritasium:
https://www.youtube.com/watch?v=HeQX2HjkcNo (from 0:58)
I also recommend this video for Logic and undecidability!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: John Conway’s Game of Life
(GoL) cont’d

From TM’s to Conway’s Game
▶ can implement Game of Life on a Turing machine
▶ lots of coding, in particular 2D grid onto 1D tape

From Conway’s Game to TMs (Paul Rendell, 2011)
▶ showed that GoL can simulate Turing machines
▶ comes down to clever choice of initial configurations see

http://rendell-attic.org/gol/turing_js_r.gif or, again,
https://www.youtube.com/watch?v=HeQX2HjkcNo

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

http://rendell-attic.org/gol/turing_js_r.gif


UniversalTuring
Machines

42 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Universal Turing Machines and Turing
Completeness

▶ So far, TMs were “one job computers”, i.e., not programmable!

▶ We can construct a TM that first reads a description of some other TM
and then simulates it. This is a universal TM.

▶ Any computing device which can simulate a universal Turing Machine is
also called universal or Turing Complete.

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Universal Turing Machines and Turing
Completeness

▶ So far, TMs were “one job computers”, i.e., not programmable!
▶ We can construct a TM that first reads a description of some other TM

and then simulates it. This is a universal TM.
▶ Any computing device which can simulate a universal Turing Machine is

also called universal or Turing Complete.

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Coding a TM onto tape
Coding of a TM as binary strings
▶ can be written onto a tape
▶ just code the transition function

States are ordered S1, S2, . . . , Sn, where S1 is the start state and S2 the unique
final state (this works for our example, but in general we had to specify which
states are final states, e.g., by listing their numbers).

Tape Symbols are ordered X1, X2, X3 where X1 is 0, X2 is 1, and X3 is Λ.
(Can be extended if we have more symbols.)

Directions L, R, S as D1, D2, D3 respectively.

Transitions δ(Si , Xj) = (Sk , Xl , Dm) mapped to
0i 1 0j 1 0k 1 0l 1 0m

(i ∈ {1, . . . , n}, j , l , m ∈ {1, 2, 3})
(the 0s carry information, the 1s act as separators.)

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Coding a TM onto tape ctd.

Coding of all transitions. A TM with transitions C1, . . . , Cn is coded as

C1 11 C2 11 · · · 11 Cn

(11 is used as a separator for transitions)

Additional Input.
▶ code for a TM, and additional string
▶ use 111 to separate TM and string input

45 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Coding a TM onto tape – example

����
S1- -

Λ
1,R

6��1
1,R

����
S3 -

Λ
1,S ����

S2�
��

The transitions are
0 1 00 1 0 1 00 1 00
0 1 000 1 000 1 00 1 00
000 1 000 1 00 1 00 1 000

Recall: States, Symbols, Directions.
So the TM as a whole is encoded by the binary string

010010100100 11 010001000100100 11 00010001001001000

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher


