
COMP1600, week 11:

Turing Machines:

Limits of Decidability
convenors: Dirk Pattinson, Pascal Bercher
lecturer: Pascal Bercher
slides based on those by: Dirk Pattinson
(with contributions by Victor Rivera and previous colleagues)

Semester 2, 2024

Overview of Week 11

▶ Introduction
▶ Recap on Languages – Based on Haskell
▶ Proving Program Properties (Example)
▶ Recursively Enumerable Problems
▶ (Un)Decidable Problems

1 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Introduction

2 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Disclaimer

Many of the slides this week use Haskell
▶ You should be able to read them even if you can’t code Haskell!

Basically like pseudo code...
▶ What we say about Haskell transfers to TMs, it’s just a bit more

“practical” that way.
▶ You do not need to be able write Haskell code,

▶ neither to understand what’s going on (as long as you can read it),
▶ nor in the tutorial exercises or the assessments,
▶ or in the exam or quiz.

3 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!

▶ Even those problems (i.e., languages) that can be “expressed” by TMs
sometimes can’t be “decided” (i.e., they might not terminate).

▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms:

recursive/non-recursive, recursively enumerable

▶ how these properties of languages relate to properties of TMs.
Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).

▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms:

recursive/non-recursive, recursively enumerable

▶ how these properties of languages relate to properties of TMs.
Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms:

recursive/non-recursive, recursively enumerable
▶ how these properties of languages relate to properties of TMs.

Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)

▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive

/non-recursive, recursively enumerable
▶ how these properties of languages relate to properties of TMs.

Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)

▶ semi-decidable problems (can give “all yes-answers” in finite time)
(note: can be decidable and semi-decidable, in fact, one implies the other)

▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive/non-recursive,

recursively enumerable
▶ how these properties of languages relate to properties of TMs.

Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)

▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive/non-recursive, recursively enumerable

▶ how these properties of languages relate to properties of TMs.
Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive/non-recursive, recursively enumerable

▶ how these properties of languages relate to properties of TMs.
Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive/non-recursive, recursively enumerable
▶ how these properties of languages relate to properties of TMs.

Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What this Week is About
You should learn/understand:
▶ The limits of computation: some problems even TM’s can’t express

I.e., no matter how hard you try, the respective TM will make an error!
▶ Even those problems (i.e., languages) that can be “expressed” by TMs

sometimes can’t be “decided” (i.e., they might not terminate).
▶ More specifically, you should master the relationship between:

▶ decidable problems (can “answer the question” in finite time)
▶ undecidable problems (the opposite of decidable!)
▶ semi-decidable problems (can give “all yes-answers” in finite time)

(note: can be decidable and semi-decidable, in fact, one implies the other)
▶ not even semi-decidable (i.e., TMs can’t express them!)

equivalent terms: recursive/non-recursive, recursively enumerable
▶ how these properties of languages relate to properties of TMs.

Call for action: Please engage with all tutorial exercises!!
Check the sample solutions carefully.

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

RecaponLanguages
–BasedonHaskell

5 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs

Observation. Turing machines ’recognise’ strings. Haskell functions of type
String -> Bool also recognise strings. For a Haskell program

p :: String -> Bool

we can define L(p) = {w :: String | p w = True}.

Question. Given the Haskell programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
which of the following are true?
▶ L(p) and L(q) are the same, as non termination is non acceptance.
▶ L(p) and L(q) are not the same, as q does not always terminate.

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs, cont’d
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Recall. L(p) = {w :: String | p w = True}.

Q. If p w doesn’t terminate, does it make sense to say that p w = True?
Probbaly not. What about p w = False? Does it even matter?

Put differently:
▶ if p w does not terminate, then w is not in L(p).
▶ if p w does terminate, and evaluates to False, then w is not in L(p).
▶ The only way in which w can be in L(p) is if p w terminates and evaluates

to True.

Q. Now there’s a slight difference to TMs. Which?
A. TMs don’t need to terminate (=halt) to accept.

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs, cont’d
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Recall. L(p) = {w :: String | p w = True}.

Q. If p w doesn’t terminate, does it make sense to say that p w = True?
Probbaly not. What about p w = False? Does it even matter?

Put differently:
▶ if p w does not terminate, then w is not in L(p).
▶ if p w does terminate, and evaluates to False, then w is not in L(p).
▶ The only way in which w can be in L(p) is if p w terminates and evaluates

to True.

Q. Now there’s a slight difference to TMs. Which?
A. TMs don’t need to terminate (=halt) to accept.

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs, cont’d
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Recall. L(p) = {w :: String | p w = True}.

Q. If p w doesn’t terminate, does it make sense to say that p w = True?
Probbaly not. What about p w = False? Does it even matter?

Put differently:
▶ if p w does not terminate, then w is not in L(p).
▶ if p w does terminate, and evaluates to False, then w is not in L(p).
▶ The only way in which w can be in L(p) is if p w terminates and evaluates

to True.

Q. Now there’s a slight difference to TMs. Which?

A. TMs don’t need to terminate (=halt) to accept.

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs, cont’d
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Recall. L(p) = {w :: String | p w = True}.

Q. If p w doesn’t terminate, does it make sense to say that p w = True?
Probbaly not. What about p w = False? Does it even matter?

Put differently:
▶ if p w does not terminate, then w is not in L(p).
▶ if p w does terminate, and evaluates to False, then w is not in L(p).
▶ The only way in which w can be in L(p) is if p w terminates and evaluates

to True.

Q. Now there’s a slight difference to TMs. Which?
A. TMs don’t need to terminate (=halt) to accept.

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.

▶ In our definition, non-acceptance is the same as rejection.
Others might define rejection as non-accept plus halting. (We don’t!)

▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.
▶ The language of a TM is the words accepts.

▶ Rejection:

▶ can be explicit by halting without acceptance.
▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.
▶ In our definition, non-acceptance is the same as rejection.

Others might define rejection as non-accept plus halting. (We don’t!)

▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.
▶ The language of a TM is the words accepts.

▶ Rejection:

▶ can be explicit by halting without acceptance.
▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.
▶ In our definition, non-acceptance is the same as rejection.

Others might define rejection as non-accept plus halting. (We don’t!)
▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.

▶ The language of a TM is the words accepts.
▶ Rejection:

▶ can be explicit by halting without acceptance.
▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.
▶ In our definition, non-acceptance is the same as rejection.

Others might define rejection as non-accept plus halting. (We don’t!)
▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.
▶ The language of a TM is the words accepts.

▶ Rejection:

▶ can be explicit by halting without acceptance.
▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.
▶ In our definition, non-acceptance is the same as rejection.

Others might define rejection as non-accept plus halting. (We don’t!)
▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.
▶ The language of a TM is the words accepts.

▶ Rejection:
▶ can be explicit by halting without acceptance.

▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of Haskell Programs
p :: String -> Bool
p s = even (length s)

q :: String -> Bool
q s | even (length s) = True

| otherwise = q(s)
Slogan.

Non-Termination or Termination with value False = Non-Acceptance.

For the programs above, that means L(p) = L(q).

TM Recap.
▶ In our definition, non-acceptance is the same as rejection.

Others might define rejection as non-accept plus halting. (We don’t!)
▶ Acceptance:

▶ A TM accepts a word if we can reach an accepting state with it as input.
▶ The language of a TM is the words accepts.

▶ Rejection:
▶ can be explicit by halting without acceptance.
▶ can be implicit by looping forever (without accepting).

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

TM’s vs. Haskell Programs
Q. Can TMs do more or less than Haskell acceptors?
▶ for every TM M, we can write a Haskell function f :: String -> Bool

so that L(M) = L(f)?
▶ for every Haskell function f :: String -> Bool there is a TM M such

so that L(M) = L(f)?

Q. How would one prove them?
A.
First:
▶ write a universal TM in Haskell (just like in Power Point!)
▶ E.g., https://hackage.haskell.org/package/turing-machines-0.

1.0.1/src/src/Automaton/TuringMachine.hs
Second:
▶ write a Haskell interpreter in a TM (sigh!)
▶ or trust the Church-Turing thesis...

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs
https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs

TM’s vs. Haskell Programs
Q. Can TMs do more or less than Haskell acceptors?
▶ for every TM M, we can write a Haskell function f :: String -> Bool

so that L(M) = L(f)?
▶ for every Haskell function f :: String -> Bool there is a TM M such

so that L(M) = L(f)?

Q. How would one prove them?

A.
First:
▶ write a universal TM in Haskell (just like in Power Point!)
▶ E.g., https://hackage.haskell.org/package/turing-machines-0.

1.0.1/src/src/Automaton/TuringMachine.hs
Second:
▶ write a Haskell interpreter in a TM (sigh!)
▶ or trust the Church-Turing thesis...

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs
https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs

TM’s vs. Haskell Programs
Q. Can TMs do more or less than Haskell acceptors?
▶ for every TM M, we can write a Haskell function f :: String -> Bool

so that L(M) = L(f)?
▶ for every Haskell function f :: String -> Bool there is a TM M such

so that L(M) = L(f)?

Q. How would one prove them?
A.
First:
▶ write a universal TM in Haskell (just like in Power Point!)
▶ E.g., https://hackage.haskell.org/package/turing-machines-0.

1.0.1/src/src/Automaton/TuringMachine.hs
Second:
▶ write a Haskell interpreter in a TM (sigh!)
▶ or trust the Church-Turing thesis...

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs
https://hackage.haskell.org/package/turing-machines-0.1.0.1/src/src/Automaton/TuringMachine.hs

ProvingProgram
Properties (Example)

10 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language Recogniser Hello World
Let’s implement our first string recogniser in Haskell:

simple :: String -> Bool
simple s = (s == "hello world")

Hello World Spec. p :: String -> Bool satisfies hello world spec, if:
▶ p ("hello world") = True
▶ p(s) = False, if s != "hello world".

Q. Can we (in principle) write a Haskell program
hello-world-check :: String -> Bool

such that:
▶ hello-world-check(code) = True if code is a syntactically correct

Haskell program that satisfies the hello world spec.
▶ hello-world-check(code) = False if code is either not syntactically

correct, or does not satisfy the hello world spec.

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Interlude: Weird Integer Sequences
This unrelated function just computes an infinite sequence of Integers

collatz :: Int -> [Int]
collatz n | even n = n:(collatz (n ‘div‘ 2))

| otherwise = n:(collatz (3 * n + 1))

This problem is also mentioned in a video by by Veritasium (again):
https://www.youtube.com/watch?v=094y1Z2wpJg

Conjecture For every initial value ≥ 1, the sequence ends in (4, 2, 1)∞.
(Has been confirmed/tested for all numbers until 268 ≈ 2.95 × 1020)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

https://www.youtube.com/watch?v=094y1Z2wpJg

Contrived and the Hello World Spec

Contrived Hello World Recogniser.

contrived :: String -> Bool
contrived s = 1 ‘elem‘ (collatz (1 + length s)) &&

(s == "hello world")

Q. Does contrived satisfy the hello world spec?

Hello Word Spec. A program should:
▶ return True if the argument is equal to "hello world"
▶ return False otherwise. (In particular, it should terminate.

In particular, it should always return something!

But does it?

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Sneaky

Again, does contrived specify the demanded specification?

contrived :: String -> Bool
contrived s = 1 ‘elem‘ (collatz (1 + length s)) &&

(s == "hello world")
Let’s see:
▶ If input is: “hello world”, we get:

▶ “s == ”hello world” is true, so no problem there.
▶ We call collatz with n = 12 (length of hello world + 1), which gives true.

▶ If the input is not “hello world” we get:
▶ “s == ”hello world” will be false (but it’s (probably) evaluated second),
▶ we call collatz with arbitrary length, so truth value is not known. But it’s

truth value doesn’t matter anyway, does it? It might diverge! And hence
never terminate.

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Sneaky

Again, does contrived specify the demanded specification?

contrived :: String -> Bool
contrived s = 1 ‘elem‘ (collatz (1 + length s)) &&

(s == "hello world")
Let’s see:
▶ If input is: “hello world”, we get:

▶ “s == ”hello world” is true, so no problem there.
▶ We call collatz with n = 12 (length of hello world + 1), which gives true.

▶ If the input is not “hello world” we get:
▶ “s == ”hello world” will be false (but it’s (probably) evaluated second),
▶ we call collatz with arbitrary length, so truth value is not known. But it’s

truth value doesn’t matter anyway, does it? It might diverge! And hence
never terminate.

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Bombshell Revelation

Collatz conjecture.

Does collatz n contain a 1 for every n ≥ 1?

This is an unsolved problem in mathematics, see, e.g.,

https://en.wikipedia.org/wiki/Collatz_conjecture/

Interpretation.
▶ this doesn’t make it impossible that we can write hello-world-check,
▶ but we would have to be more clever than generations of mathematicians.
▶ This did not show the limitations of computation, but shows that it might

be hard to prove termination.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

https://en.wikipedia.org/wiki/Collatz_conjecture/

Recursively
Enumerable
Problems

16 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

What problems can we solve in principle?
Definition. A problem over an alphabet Σ is a set of strings over Σ. For
Haskell, we consider Σ = Char.

A problem P is recursively enumerable if there is a Haskell function
f :: String -> Bool such that

P = L(f) = {w :: String | f w = True}

(recall that this doesn’t imply termination on the False values.)

Definition. If a language is recognised by a Turing machine, then it is called
recursively enumerable. We also call this semi-decidable.

Vocabulary:
▶ Recognition is the same as acceptance.
▶ a problem is the same as a language.

17 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example
L = { w :: String | w is syntactically correct Haskell

and defines a function String -> Bool that
accepts at least one string }

Is L recursively enumerable?

To see that L is recursively enumerable: given
w :: String
▶ Check whether w is syntactically correct by running it through a Haskell

compiler. Then use a type checker for input/output types.
▶ Now, consider the infinite list of pairs

(0, 0) -- all pairs that add to 0
(0, 1), (1, 0) -- all pairs that add to 1
(0, 2), (1, 1), (2, 0) -- all pairs that add to 2
...

and walk through the list of all pairs. Whenever we see (i , j), run w for i
computation steps on all strings s of length j , i.e., run w for
▶ 0 steps on ϵ
▶ 0 steps on a, . . . , Z , 1 step on ϵ
▶ 0 steps on aa, . . . , ZZ , 1 step on a, . . . , Z , 2 steps on ϵ
▶ . . .

If this gives ‘True’, terminate and return True, otherwise continue.

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for Recursive Enumerability
L = { w :: String | w is syntactically correct Haskell

and defines a function String -> Bool that
accepts at least one string }

To see that L is recursively enumerable: given w :: String
▶ Check whether w is syntactically correct by running it through a Haskell

compiler. Then use a type checker for input/output types.
▶ Now, consider the infinite list of pairs

(0, 0) -- all pairs that add to 0
(0, 1), (1, 0) -- all pairs that add to 1
(0, 2), (1, 1), (2, 0) -- all pairs that add to 2
...

and walk through the list of all pairs. Whenever we see (i , j), run w for i
computation steps on all strings s of length j , i.e., run w for
▶ 0 steps on ϵ
▶ 0 steps on a, . . . , Z , 1 step on ϵ
▶ 0 steps on aa, . . . , ZZ , 1 step on a, . . . , Z , 2 steps on ϵ
▶ . . .

If this gives ‘True’, terminate and return True, otherwise continue.
18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Discussion on Recursive Enumerability
Observation.
▶ We never returned False (in the example), so rejection was by

non-termination.
▶ At runtime, we cannot distinguish between not yet accepted, or rejected.

Conclusion.
▶ Recursive enumerability is weak, and comparatively easy: just need to

terminate on positive instances, can ignore negative instances.
▶ This doesn’t imply that we need to loop forever, but we can if we must.

(For some problems, we indeed cannot terminate.
▶ Stronger, and more difficult: require that acceptor String -> Bool

always terminates.
▶ Such an acceptor is called decider or decision procedure
▶ Languages that have an acceptor are called decidable (others undecidable)

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Discussion on Recursive Enumerability
Observation.
▶ We never returned False (in the example), so rejection was by

non-termination.
▶ At runtime, we cannot distinguish between not yet accepted, or rejected.

Conclusion.
▶ Recursive enumerability is weak, and comparatively easy: just need to

terminate on positive instances, can ignore negative instances.
▶ This doesn’t imply that we need to loop forever, but we can if we must.

(For some problems, we indeed cannot terminate.

▶ Stronger, and more difficult: require that acceptor String -> Bool
always terminates.
▶ Such an acceptor is called decider or decision procedure
▶ Languages that have an acceptor are called decidable (others undecidable)

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Discussion on Recursive Enumerability
Observation.
▶ We never returned False (in the example), so rejection was by

non-termination.
▶ At runtime, we cannot distinguish between not yet accepted, or rejected.

Conclusion.
▶ Recursive enumerability is weak, and comparatively easy: just need to

terminate on positive instances, can ignore negative instances.
▶ This doesn’t imply that we need to loop forever, but we can if we must.

(For some problems, we indeed cannot terminate.
▶ Stronger, and more difficult: require that acceptor String -> Bool

always terminates.
▶ Such an acceptor is called decider or decision procedure
▶ Languages that have an acceptor are called decidable (others undecidable)

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example 2
W = { w :: String | w is syntactically correct haskell

and defines f :: String -> Bool
and f w doesn’t evaluate to True }

Q. Is W recursively enumerable, i.e. can we write a Haskell function
f :: String -> Bool such that W = L(f)?

A. Assume the answer is yes and let sc :: String be the source code of f.
Case 1: sc ∈ W .
▶ Since W = L(f) = {w :: String | f w = True} we get f sc = True
▶ Because f sc = True, sc /∈ W (contradiction!)

So case 1 cannot apply.
Case 2: sc /∈ W .
▶ Either sc is not syntactically correct or f sc doesn’t eval to True
▶ Since sc is syntactically correct, it must be that f sc = True
▶ By definition of W , this means that sc ∈ W (contradiction!)

So case 2 can’t apply either! Thus, W is not recursively enumerable.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example 2
W = { w :: String | w is syntactically correct haskell

and defines f :: String -> Bool
and f w doesn’t evaluate to True }

Q. Is W recursively enumerable, i.e. can we write a Haskell function
f :: String -> Bool such that W = L(f)?

A. Assume the answer is yes and let sc :: String be the source code of f.
Case 1: sc ∈ W .
▶ Since W = L(f) = {w :: String | f w = True} we get f sc = True
▶ Because f sc = True, sc /∈ W (contradiction!)

So case 1 cannot apply.

Case 2: sc /∈ W .
▶ Either sc is not syntactically correct or f sc doesn’t eval to True
▶ Since sc is syntactically correct, it must be that f sc = True
▶ By definition of W , this means that sc ∈ W (contradiction!)

So case 2 can’t apply either! Thus, W is not recursively enumerable.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example 2
W = { w :: String | w is syntactically correct haskell

and defines f :: String -> Bool
and f w doesn’t evaluate to True }

Q. Is W recursively enumerable, i.e. can we write a Haskell function
f :: String -> Bool such that W = L(f)?

A. Assume the answer is yes and let sc :: String be the source code of f.
Case 1: sc ∈ W .
▶ Since W = L(f) = {w :: String | f w = True} we get f sc = True
▶ Because f sc = True, sc /∈ W (contradiction!)

So case 1 cannot apply.
Case 2: sc /∈ W .
▶ Either sc is not syntactically correct or f sc doesn’t eval to True
▶ Since sc is syntactically correct, it must be that f sc = True

▶ By definition of W , this means that sc ∈ W (contradiction!)
So case 2 can’t apply either! Thus, W is not recursively enumerable.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for not being Rec. Enumerable
W = { w :: String | w is syntactically correct haskell

and defines f :: String -> Bool
and f w doesn’t evaluate to True }

Q. Is W recursively enumerable, i.e. can we write a Haskell function
f :: String -> Bool such that W = L(f)?

A. Assume the answer is yes and let sc :: String be the source code of f.
Case 1: sc ∈ W .
▶ Since W = L(f) = {w :: String | f w = True} we get f sc = True
▶ Because f sc = True, sc /∈ W (contradiction!)

So case 1 cannot apply.
Case 2: sc /∈ W .
▶ Either sc is not syntactically correct or f sc doesn’t eval to True
▶ Since sc is syntactically correct, it must be that f sc = True
▶ By definition of W , this means that sc ∈ W (contradiction!)

So case 2 can’t apply either! Thus, W is not recursively enumerable.

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Back to Turing Machines

We now switch back to TMs. Why?
▶ Haskell code was just for motivation; to show it’s “not just theory”
▶ TMs are a nice, simple framework (confirm early motivation).

Now what?
▶ Recall that we are able to encode each TM as a string.
▶ That way, we can put TM codes into TMs! (Just like Haskell code can

analyze Haskell code)
▶ So we can (t)ask a TM to analyze a TM – hence even itself!

21 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Recursively Enumerable Language,
Revisited

Definition. Ld = {w | w is a code of a Turing Machine M that rejects w }
is the d iagonal language. (In analogy to Cantor’s diagonal argument.)

Theorem. Ld is not recursively enumerable, i.e., no TM can accepts it.

Proof
▶ Suppose for contradiction that TM M exists with L(M) = Ld .
▶ M has a binary encoding C (pick one of them)
▶ Question: is C ∈ Ld?

(Language and proof are identical to before for Haskell; next slide for TMs.)

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Recursively Enumerable Language,
Revisited cont’d
Two Possibilities. (recall: C is the code of M)

Option 1. C ∈ Ld
▶ then M accepts C because M accepts all strings in Ld
▶ but Ld contains only those TM (codes) w that reject w
▶ hence c /∈ Ld – contradiction!

Option 2. C /∈ Ld .
▶ then M rejects C because M rejects all strings not in Ld .
▶ but Ld contains all the encodings w for TMs that reject w
▶ so C ∈ Ld – contradiction!

As we get a contradiction either way, our assumption that Ld can be recognised
by a TM must be false.

In Short. There cannot exist a TM whose language is Ld .

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Summary

Some reflections on recursive enumerability:
▶ We saw (just now!) problems which are not recursively enumerable! But it

was a bit artificial...
▶ There are other – less weird – problems that also can’t be solved by a TM.
▶ Some are on the current exercise sheet!

▶ We saw problems that are recursively enumerable, but they required
unbounded runtime.

▶ So ... are there problems that are recursively enumerable (i.e., can be
expressed by a TM) but that can’t be solved by a terminating TM?
(Maybe even one we have seen before?)

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

(Un)Decidable
Problems

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem

Halting Problem.
▶ Given a Turing machine M and input w , does M halt on w?

(We don’t mind whether M accepts or rejects.)

Blue Screen of Death
▶ answering this question could lead to auto-testing
▶ programs that don’t get stuck in infinite loops . . .

Partial Answers.
▶ can give an answer for some pairs M, w
▶ e.g., if M accepts straight away, or has no loops
▶ difficulty: answer for all M, w .

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem – a First Stab

First Attempt at solving the halting problem
▶ Feed M the input w , sit back, and see if it halts!

Critique.
▶ this is a partial decision procedure
▶ if M halts on w , will get an answer
▶ will get no answer if M doesn’t halt!

Comparison with Ld

▶ this is better than Ld

▶ for Ld , we cannot guarantee any answer at all!
▶ in contrast, the above procedure proves that H is at least semi-decidable.

27 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Recursive Languages
Definition.
A language L is recursive if there is a Turing machine that halts on all inputs
and accepts the language, L = L(M).
▶ always gives a yes/no answer
▶ also called decidable. Now, undecidable just means not decidable!

Alternative Definition.
Note that we could have also defined recursive as being recursively enumarable
plus the extra requirement that the recognising TM halts on all inputs. (Which
also highlights that semi-decidability does not imply undecidability.)

Example.
▶ the language Ld is not recursively enumerable (or not semi-decidable)
▶ the halting problem is recursively enumerable, but not recursive

(i.e., semi-decidable but not decidable)

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Recursive Problems in Haskell
Recall. A problem P ⊆ Σ∗ is recursively enumerable if

P = {w :: String | f w = True}

for some function f :: String -> Bool.

(The formal definition is the one via Turing machines.)

Criticism. We may never know that a string is rejected (since we can also
reject by non-acceptance, i.e., by looping forever).

Definition. A problem P ⊆ Σ∗ is recursive if

P = {w :: String | f w = True}

for some function f :: String -> Bool that always terminates.

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Examples

Encoding.
▶ We have seen how Turing machines can be encoded as strings.
▶ Similarly, DFAs can be encoded as strings (we don’t make this explicit).
▶ This means that we can used DFAs and TMs as inputs to. problems.

Q. Which of the following problems is recursive? Recursively enumerable?
1. {s | s is a code of a DFA that accepts ϵ}
2. {s | s is a code of a DFA that accepts at least one string}
3. {s | s is a code of a TM that accepts ϵ}
4. {s | s is a code of a TM that accepts at least one string}

A. First two: recursive! Last two: see tutorials.

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Examples

Encoding.
▶ We have seen how Turing machines can be encoded as strings.
▶ Similarly, DFAs can be encoded as strings (we don’t make this explicit).
▶ This means that we can used DFAs and TMs as inputs to. problems.

Q. Which of the following problems is recursive? Recursively enumerable?
1. {s | s is a code of a DFA that accepts ϵ}
2. {s | s is a code of a DFA that accepts at least one string}
3. {s | s is a code of a TM that accepts ϵ}
4. {s | s is a code of a TM that accepts at least one string}

A. First two: recursive! Last two: see tutorials.

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

H is recursively enumerable
H = {(w :: String, i :: String) | w valid Haskell

and defines f :: String -> Bool
and f i terminates }

Algorithm to check whether (w, i) is in H:
▶ check whether w is correct Haskell
▶ check whether w defines f :: String -> Bool
▶ run the function f on input i.
▶ (We had the same proof already for TMs)

Meta Programming.
▶ need to write a Haskell interpreter in Haskell
▶ can be done! (Glasgow Haskell Compiler (ghc) is written in Haskell)

Or via Church Turing Thesis.
▶ we know that we can write a Haskell interpreter (there are some!)
▶ by Church-Turing, this can also be done in a TM
▶ as Haskell is Turing-complete, this can be done in Haskell

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

H is not recursive
H = {(w :: String, i :: String) | w valid Haskell

and defines f :: String -> Bool
and f i terminates }

Impossibility Argument assume total t exists with L(t) = H . . .

Detour. If we can define t, then we can define P.

P :: String -> Bool
P w = if t (w, w) then P w else True

(infinite recursion whenever t (w, w) = True)

Let sc be the source code of P.

Case 1. P sc terminates.
▶ then (sc, sc) is in H. (Due to H’s definition!)
▶ then t (sc, sc) returns True. (Since L(t) = H)
▶ then P sc doesn’t terminate. But this can’t be!

As a conclusion, the function t (that decides H) cannot exist.

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

H is not recursive
H = {(w :: String, i :: String) | w valid Haskell

and defines f :: String -> Bool
and f i terminates }

Impossibility Argument assume total t exists with L(t) = H . . .

Detour. If we can define t, then we can define P.

P :: String -> Bool
P w = if t (w, w) then P w else True

(infinite recursion whenever t (w, w) = True)

Let sc be the source code of P.

Case 2. P sc does not terminate.
▶ then (sc, sc) is not in H. (Again due to H’s definition!)
▶ then t (sc, sc) returns False (Again since L(t) = H)
▶ then P sc does terminate. This can’t be either!

As a conclusion, the function t (that decides H) cannot exist.

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem

General Formulation

There is no program that always terminates, and determines whether (another)
program terminates on a given input.‘

Interpretation.

There are problems that cannot be solved (decided) algorithmically.

▶ ‘solve’ means by a program that doesn’t get stuck
▶ Halting problem is one example.

(We have argued in terms of Haskell programs. Will do this via TMs next)

33 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Hello World Spec

Flashback. p :: String -> Bool satisfies hello world spec, if:
▶ p ("hello world") = True
▶ p(s) = False, if s != "hello world".

Earlier.
▶ checking whether p satisfies hello world spec is hard.

Now.
▶ checking whether p satisfies hello world spec is impossible.

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Hello World Spec
Recall. p :: String -> Bool satisfies hello world spec, if:
▶ p ("hello world") = True
▶ p(s) = False, if s != "hello world".

Impossibility argument. If there was

hello-world-check :: String -> Bool

Define
halt :: String * String -> Bool
halt w i = hello-world-check aux
where aux s = (s == "hello world") &&

(w i = True || w i = False).
Observation
▶ if hello-world-check were to exist, we could solve the Halting problem
▶ general technique: reduction, i.e., use a hypothetical solution to a problem

to solve one that is unsolvable.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Total Functions
Question. Consider the set

T = { w :: String |
w is valid Haskell
and defines f :: String -> Bool,
and f x terminates for all x :: String }

Q. Is T recursively enumerable? Even recursive?
A. We will see:
▶ It’s not recursive (just like the Halting problem.)
▶ It’s not even recursively enumerable!

▶ Intuitively: We can’t give a semi-decision procedure for the yes-instances
because there’s no criterion to terminate with “yes” as there are infinitely
many inputs which we have to test. This is different from the standard
version of the halting problem where we can return “yes” as soon as the
respected program terminates.

▶ More formally: Our tutorials!

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Back to TMs: The Universal TM
TMs that simulate other TMs
▶ given a TM M, it’s easy to work out what M does, given some input
▶ it is an algorithm. If we believe the Church-Turing thesis, this can be

accomplished by (another) TM. (People actually did this.)

Universal TM
▶ is a TM that accepts two inputs: the coding of a TM Ms and a string
▶ it simulates the execution of Ms on w
▶ and accepts if and only if Ms accepts w .

Construction of a universal TM
▶ keep track of current state and head position of Ms

▶ scan the TM instructions of Ms and follow them
▶ (this requires lots of coding but is possible/was done)

37 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem is Undecidable
Theorem. H = {(m, w) | m is the code of a TM M, and M halts on w}
(Note that we might sometimes just write M instead of m as it’s clear that we
put the encoding (m) of M into that set, not the actual TM.)

Proof (Sketch).
▶ suppose we had a TM TH that always terminates so that L(TH) = H
▶ construct a new TM P (for paradox)

Construction of P: P takes one input, an encoding of a TM
▶ If TH accepts (m, m) (i.e. if M halts on its own encoding m), loop forever.
▶ If TH rejects (m, m), halt.

Q. does P halt on input (an encoding of) P?
▶ No – then TH accepted (P, P), so P should have halted on input P.
▶ Yes – then TH rejected (P, P), so P should not have halted on P.

Contradiction in both cases, so TH cannot exist.

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem is Undecidable
Theorem. H = {(m, w) | m is the code of a TM M, and M halts on w}
(Note that we might sometimes just write M instead of m as it’s clear that we
put the encoding (m) of M into that set, not the actual TM.)

Proof (Sketch).
▶ suppose we had a TM TH that always terminates so that L(TH) = H
▶ construct a new TM P (for paradox)

Construction of P: P takes one input, an encoding of a TM
▶ If TH accepts (m, m) (i.e. if M halts on its own encoding m), loop forever.
▶ If TH rejects (m, m), halt.

Q. does P halt on input (an encoding of) P?

▶ No – then TH accepted (P, P), so P should have halted on input P.
▶ Yes – then TH rejected (P, P), so P should not have halted on P.

Contradiction in both cases, so TH cannot exist.

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Halting Problem is Undecidable
Theorem. H = {(m, w) | m is the code of a TM M, and M halts on w}
(Note that we might sometimes just write M instead of m as it’s clear that we
put the encoding (m) of M into that set, not the actual TM.)

Proof (Sketch).
▶ suppose we had a TM TH that always terminates so that L(TH) = H
▶ construct a new TM P (for paradox)

Construction of P: P takes one input, an encoding of a TM
▶ If TH accepts (m, m) (i.e. if M halts on its own encoding m), loop forever.
▶ If TH rejects (m, m), halt.

Q. does P halt on input (an encoding of) P?
▶ No – then TH accepted (P, P), so P should have halted on input P.
▶ Yes – then TH rejected (P, P), so P should not have halted on P.

Contradiction in both cases, so TH cannot exist.

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Total Turing Machines

We know that it’s undecidable to check whether a TM halts on a given input.
But maybe it’s easier for all inputs?

Q. Is there a TM MT (for total) that
▶ always terminates (=total),
▶ takes an encoding m of a TM M as input, and
▶ accepts if M terminates on all inputs?

Or phrased differently,

is the following set recursive?
T = {m | m is the encoding of a TM M that halts on all inputs}

A. No! It’s not recursive (i.e., it’s undecidable).
(Proof on next slide.)

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Total Turing Machines

We know that it’s undecidable to check whether a TM halts on a given input.
But maybe it’s easier for all inputs?

Q. Is there a TM MT (for total) that
▶ always terminates (=total),
▶ takes an encoding m of a TM M as input, and
▶ accepts if M terminates on all inputs?

Or phrased differently, is the following set recursive?
T = {m | m is the encoding of a TM M that halts on all inputs}

A. No! It’s not recursive (i.e., it’s undecidable).
(Proof on next slide.)

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Total Turing Machines

We know that it’s undecidable to check whether a TM halts on a given input.
But maybe it’s easier for all inputs?

Q. Is there a TM MT (for total) that
▶ always terminates (=total),
▶ takes an encoding m of a TM M as input, and
▶ accepts if M terminates on all inputs?

Or phrased differently, is the following set recursive?
T = {m | m is the encoding of a TM M that halts on all inputs}

A. No! It’s not recursive (i.e., it’s undecidable).
(Proof on next slide.)

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Proof that T is undecidable
Reduction Strategy.
▶ Suppose we had such a TM MT that decides T .

▶ We know: For an arbitrary TM M and an arbitrary string w , we can’t
decide whether M halts on w . So let’s “solve” it anyway! (By using MT ,
so we obtain a contradiction.)

▶ Given such (M, w), create a new TM Mw , that executes M on w . So, TM
Mw ignores its input and runs like M would on w . Since Mw ignores its
input, it either accepts all words or none!

▶ So, running MT on Mw tells us whether M halts on w !
▶ Contradiction, since we solved the halting problem. So MT can’t exist.

It’s undecidable (i.e., not recursive), but maybe at least recursively enumerable?
(I.e., says yes eventually when the answer is yes, but doesn’t always say no
when the answer is no.) We see that in the tutorials!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Proof that T is undecidable
Reduction Strategy.
▶ Suppose we had such a TM MT that decides T .
▶ We know: For an arbitrary TM M and an arbitrary string w , we can’t

decide whether M halts on w . So let’s “solve” it anyway! (By using MT ,
so we obtain a contradiction.)

▶ Given such (M, w), create a new TM Mw , that executes M on w . So, TM
Mw ignores its input and runs like M would on w . Since Mw ignores its
input, it either accepts all words or none!

▶ So, running MT on Mw tells us whether M halts on w !
▶ Contradiction, since we solved the halting problem. So MT can’t exist.

It’s undecidable (i.e., not recursive), but maybe at least recursively enumerable?
(I.e., says yes eventually when the answer is yes, but doesn’t always say no
when the answer is no.) We see that in the tutorials!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Proof that T is undecidable
Reduction Strategy.
▶ Suppose we had such a TM MT that decides T .
▶ We know: For an arbitrary TM M and an arbitrary string w , we can’t

decide whether M halts on w . So let’s “solve” it anyway! (By using MT ,
so we obtain a contradiction.)

▶ Given such (M, w), create a new TM Mw , that executes M on w . So, TM
Mw ignores its input and runs like M would on w . Since Mw ignores its
input, it either accepts all words or none!

▶ So, running MT on Mw tells us whether M halts on w !
▶ Contradiction, since we solved the halting problem. So MT can’t exist.

It’s undecidable (i.e., not recursive), but maybe at least recursively enumerable?
(I.e., says yes eventually when the answer is yes, but doesn’t always say no
when the answer is no.) We see that in the tutorials!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Proof that T is undecidable
Reduction Strategy.
▶ Suppose we had such a TM MT that decides T .
▶ We know: For an arbitrary TM M and an arbitrary string w , we can’t

decide whether M halts on w . So let’s “solve” it anyway! (By using MT ,
so we obtain a contradiction.)

▶ Given such (M, w), create a new TM Mw , that executes M on w . So, TM
Mw ignores its input and runs like M would on w . Since Mw ignores its
input, it either accepts all words or none!

▶ So, running MT on Mw tells us whether M halts on w !

▶ Contradiction, since we solved the halting problem. So MT can’t exist.
It’s undecidable (i.e., not recursive), but maybe at least recursively enumerable?
(I.e., says yes eventually when the answer is yes, but doesn’t always say no
when the answer is no.) We see that in the tutorials!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Proof that T is undecidable
Reduction Strategy.
▶ Suppose we had such a TM MT that decides T .
▶ We know: For an arbitrary TM M and an arbitrary string w , we can’t

decide whether M halts on w . So let’s “solve” it anyway! (By using MT ,
so we obtain a contradiction.)

▶ Given such (M, w), create a new TM Mw , that executes M on w . So, TM
Mw ignores its input and runs like M would on w . Since Mw ignores its
input, it either accepts all words or none!

▶ So, running MT on Mw tells us whether M halts on w !
▶ Contradiction, since we solved the halting problem. So MT can’t exist.

It’s undecidable (i.e., not recursive), but maybe at least recursively enumerable?
(I.e., says yes eventually when the answer is yes, but doesn’t always say no
when the answer is no.) We see that in the tutorials!

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Conclusions

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Chomsky Hierarchy
Recall. Classification of language according to complexity of grammars
▶ regular languages – FSAs
▶ context-free languages – PDAs
▶ context-sensitive languages – LBAs (linearly bounded TMs)
▶ recursively enumerable languages – TMs

Q. Where do recursive languages sit in this hierarchy?
Are there automata for them?

A. They sit between context sensitive and recursively enumerable and are
recognised by total TMs, which halt on every input.

Structure vs Property
▶ all other automata had a clear cut definition
▶ total TMs have a condition attached (i.e., they always terminate)

Problem.
▶ cannot test whether this condition is fulfilled
▶ so the definition is based on a property, not a clear structure

42 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Chomsky Hierarchy
Recall. Classification of language according to complexity of grammars
▶ regular languages – FSAs
▶ context-free languages – PDAs
▶ context-sensitive languages – LBAs (linearly bounded TMs)
▶ recursively enumerable languages – TMs

Q. Where do recursive languages sit in this hierarchy?
Are there automata for them?

A. They sit between context sensitive and recursively enumerable and are
recognised by total TMs, which halt on every input.

Structure vs Property
▶ all other automata had a clear cut definition
▶ total TMs have a condition attached (i.e., they always terminate)

Problem.
▶ cannot test whether this condition is fulfilled
▶ so the definition is based on a property, not a clear structure

42 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Summary
This week, we learned:
▶ There are problems that are so hard that no TM can express them (those

that are not recursively enumerable)
▶ Others can be expressed but might loop forever on no-instances (those

that are recursively enumerable but undecidable)
▶ Others are even decidable, i.e., an algorithm always says (correctly) yes or

no after a finite time.
▶ We saw (important) examples for such problems. Others are given in the

tutorials.
The tutorial also discusses important properties such as the relationship
between a language and its complement (regarding their complexity).

Next week, we look into decidable problems and analyse “more fine-grained”
how hard it is to decide them. (Runtime!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

