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Overview of Week 12

▶ Motivation
▶ Non-Deterministic Turing Machines
▶ Big-O Notation
▶ Complexity Classes
▶ Reductions
▶ NP-Completeness
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Motivation

▶ So far, we only knew that what problems can be decided, semi-decided, or
not even expressed.

▶ Now, we want to know “how quickly” problems can be solved.

▶ We investigate the computational hardness of decision problems:
▶ What’s the “performance” of the best-known algorithm for solving the

respective problem?
▶ Which problems are equally hard? Which ones are harder than others?
▶ We look at how problems can be “turned into each other”.

▶ We measure “performance” in terms of a Turing Machine’s:
▶ Time requirement (number of operations/transitions)
▶ Space requirement (number of cells that can be read/written)
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Why should we care for Problem
Complexities?
Given a new problem to solve, we:
▶ . . . can use existing solvers instead of designing new ones,

→ Which software do you think is better? The one you design from scratch in
a few weeks, or one that entire research communities (few or dozens to
thousands of PhD students, post-docs, Professors) created over decades?

▶ . . . know performance bounds for our yet-to-be-designed solver
→ No need to look for an “efficient” algorithm if not a single genius so far was

able to do that! (Well, don’t let that stop you necessarily, see last point!)
But it makes a great excuse. :)

▶ . . . understand the problems we solve much better.
→ If you know that your (new) problem is equivalent to an existing

(established) one, that surely helps... (Imagine, you take a course twice!
The second time it’s much easier...)
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Example (for the Relevance of this)
Boolean Satisfiability (SAT)
▶ Let ϕ be a boolean formula with n variables, e.g.,:

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x4) ∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ x4) with n = 4.
▶ Can you find a valuation (assignment to the xi values) that makes it true?
▶ Which runtimes does your algorithm have?

▶ Two approaches:

1. Enumerate all possible choices, e.g., using truth tables.
Runtime?

2. Guess a valuation, then verify.

What about Backtracking? Not required! Non-Determinism is always right!
Runtime? Polytime for the verification, plus the guessing.

▶ So, what is the best runtime for deciding SAT?
▶ The first “runtime class” will be called EXPTIME (membership)
▶ The second will be called NP (N is for non-deterministic)
→ SAT is in

Any idea why NP is lower? The guessing can be compiled away in
exponential time! (Just try all options.)

▶ But is the problem also in P? (I.e., can we P-solve it without guessing?)
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Non-Deterministic
TuringMachines
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Deterministic Turing Machines, Recap

A Turing Machine has the form (S, s0, F , Γ, Σ, B, δ), where
▶ S is the set of states with s0 ∈ S the initial state;
▶ F ⊆ S are the final states;
▶ Γ is the set of tape symbols (everything that might ever be on the tape);
▶ B ∈ Γ \ Σ is the blank symbol;
▶ Σ ⊆ Γ is the set of input symbols;
▶ δ is a (partial) transition function

δ : S × Γ ⇀ S × Γ × {L, R, S}
(state, tape symbol) 7→ (new state, new tape symbol, direction)

The direction tells the read/write head which way to go next:
Left, Right, or Stay/Stop. (Stopping the head is different from halting.)
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Fundamental Properties of Non-Det. TMs
Basic Properties/Definitions
▶ If a TM reaches a final state, it acceptes the input word.

(Same as for deterministic TMs, but now we have many branches/traces!)

▶ A word is rejected iff it is not accepted. (Again the same as for
deterministic TMs!)

▶ In complexity theory, we consider only decidable problems, where we can
assume that all TMs halt (on all computation traces).

Language Definitions.
▶ The language of a Non-deterministic Turing Machine is the words accepted

by it. (Just like for deterministic TMs.)
▶ Note how this now implies search: there might be many computation

traces for an input; maybe just one accepts!

Relationship to Deterministic TMs.
▶ Non-det. TMs can’t do more than deterministic ones.
▶ Non-det. TMs could be quicker than deterministic ones. (Unknown!)
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Example (for a Non-Det. TM)

Consider the following TM, defined over an initial string over Σ = {0, 1}:

1 0 0 1 1 0 1 1

����
S0- -

1
1,R

6��1
1,R

?

��0
0,R

����
S1- -

1
1,R

6��1
1,R

�����
��
H

1. What does this TM do?

Checking for the “right” input.

2. What language does it accept?

{w | w contains ≥ 2 consecutive 1s}
= {w11w ′ | w , w ′ ∈ Σ∗}
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2. What language does it accept?

{w | w contains ≥ 2 consecutive 1s}
= {w11w ′ | w , w ′ ∈ Σ∗}
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Big-O Notation
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Introduction

▶ In the following we will define complexity classes based on whether some
TM with specific properties exists.

▶ Example SAT: There is a non-det. TM that runs in “polynomial time” –
what does that mean?

▶ We formalize this using the Big-O notation.
▶ That way we will know whether some function (the runtime or space

consumption of a TM) is in polytime or exponential time etc.

Poll. Who of you knows the big-O notation already?
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Example
Let’s decide L = {0i1i | i ∈ N} by TM M, i.e., check whether an arbitrary input
has the form 0i1i for some i . M does:
▶ Scan word w and reject if 10 is found.
▶ Repeat as long as there are 0s and 1s on the tape:

▶ Replace both the leftmost 0 and the rightmost 1 with blanks.
▶ If either only 0s or 1s are left: reject, otherwise accept.

1. How much “time” does M need, as a function f of w ’s length?
f adheres f (2k) = f (2(k − 1)) + 4k + 1, which is in O(n2).

w ϵ 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

(exact numbers depend on implementation details)
2. How much “space” does M need? O(n)

So in total, M has polynomial time and space restriction!
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Time Complexity – Abstraction
Problem. Exact “number of steps function” usually very complicated
▶ for example, 2n17 + 23n2 − 5
▶ and hard to find in the first place (see last slide!).

Solution. Consider approximate number of steps
▶ focus on asymptotic behaviour
▶ as we are only interested in large problems

Idea. Abstract details away by just focussing on upper bounds
E.g., f (n) = 2n17 + 23n2 + 5 ∈ O(n17)

Big-O Notation. for f and g functions on natural numbers
▶ f ∈ O(g) if ∃c. ∃n0. ∀n ≥ n0. f (n) ≤ c · g(n)
▶ “for large n, g is an upper bound to f up to a constant.”
▶ E.g,. f (n) ∈ O(n17), since g(n) = n17 and we can choose c = 3

so that we have 3n17 ≥ f (n) for all n ≥ n0 (for a suitable n0)
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Graphical Illustration
Recall: f ∈ O(g) if ∃c. ∃n0. ∀n ≥ n0. f (n) ≤ c · g(n)

Here, f (x) ∈ O(g(x)) since g(x) is at least as high as f (x) for all x ≥ x0
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Examples

Examples.
▶ Polynomials: leading exponent dominates
▶ e.g. “xn + lower powers of x” ∈ O(xn)

▶ Exponentials: dominate polynomials
▶ e.g. “2n + polynomial” ∈ O(2n)

Important Special Cases.
▶ linear. f is linear if f ∈ O(n)
▶ polynomial. f is polynomial if f ∈ O(nk), for some k
▶ exponential. f is exponential if f ∈ O(2n)
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Important Special Cases, Graphically

(Image copyright Lauren Kroner)
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ComplexityClasses

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Complexity Classes
First some auxiliary definitions:
▶ DTIME(t(n)) = {L | det. TM decides L in O(t(n)) time }
▶ NTIME(t(n)) = {L | non-det. TM decides L in O(t(n)) time }

▶ DSPACE(t(n)) = {L | det. TM decides L with O(t(n)) space }
▶ NSPACE(t(n)) = {L | non-det. TM decides L with O(t(n)) space }

Now we can define some basic complexity classes:

▶ P =
⋃

k∈N DTIME(nk) PSPACE =
⋃

k∈N DSPACE(nk)
▶ NP =

⋃
k∈N NTIME(nk) NPSPACE =

⋃
k∈N NSPACE(nk)

▶ EXPTIME =
⋃

k∈N DTIME(2nk ) EXPSPACE =
⋃

k∈N DSPACE(2nk )
▶ NEXPTIME =

⋃
k∈N NTIME(2nk ) NEXPSPACE =

⋃
k∈N NSPACE(2nk )

We focus on classes P vs. NP vs. EXPTIME!
(The remaining ones are just listed for the sake of completeness.)
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Relationships among Complexity Classes
How do time and space relate?
▶ On which TM can you solve harder/more problems? Using n movements

or using n cells?

▶ In order to “use” a cell, we need to have a transition towards it.
▶ Thus, each space class can potentially contain more problems than their

corresponding time class:
▶ P ⊆ PSPACE and NP ⊆ NPSPACE
▶ EXPTIME ⊆ EXPSPACE and NEXPTIME ⊆ NEXPSPACE

How do deterministic and non-deterministic classes relate?
▶ Deterministic TMs are a special case of non-deterministic TMs.
▶ Thus, non-deterministic classes can potentially contain more problems than

their corresponding deterministic classes:
▶ P ⊆ NP and EXPTIME ⊆ NEXPTIME
▶ PSPACE ⊆ NPSPACE and EXPSPACE ⊆ NEXPSPACE
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Relationships among Complexity Classes:
What’s known
What’s also known to the literature:
▶ PSPACE = NPSPACE and EXPSPACE = NEXPSPACE

(Savitch’s Theorem, 1970)
▶ P ⊊ EXPTIME

(We know problems in EXPTIME which are provably not in P)

So in total, we get:
▶ P NP (N)PSPACE EXPTIME NEXPTIME (N)EXPSPACE⊆ ⊆ ⊆ ⊆ ⊆

̸=

For this course, only need to know about P, NP, and EXPTIME.

Note how every problem in P is also in NP. So if a problem is in NP, is it an
easy one from P or a hard one like SAT? Hence: Completeness! (Later)
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Reductions
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Basic Definitions
This is the most important (and fun!) part of this week!

▶ We want to transform problems into each other – via reduction.
▶ I.e., we solve “our given problem” by turning it into a known one (which

must be as least as hard; otherwise that’s not possible).

Definition
f : Σ∗ → Σ∗ is a polytime-computable function if some polynomial
time TM M exists that halts with just f (w) on its tape, when
started on any input w ∈ Σ∗.

Definition
A ⊆ Σ∗

1 is polynomial time mapping-reducible to B ⊆ Σ∗
2 , written

A ≤P B, if a polytime-computable function f : Σ∗
1 → Σ∗

2 exists that
is also a reduction (from A to B).
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Reductions
Definition
▶ A reduction is a polynomial-time translation of the problem, say r .
▶ More precisely:

1. r(w) can be computed in time polynomial in |w |.
2. w ∈ A if and only if r(w) ∈ B (so it “preserves the answer”).

Example:
▶ EVEN := {n | n mod 2 = 0}, ODD := {n | n mod 2 = 1}
▶ Reduction from ODD to EVEN:

▶ r(k) = k + 1, so we get k ∈ ODD iff r(k) ∈ EVEN
▶ So essentially we can define odd(n):=even(r(n)) now.
▶ This shows that EVEN is at least as hard as ODD.

▶ If however our goal would have been to show that the ‘new’ problem ODD
is at least as hard as EVEN, then we would have had to reduce from EVEN
to ODD (though r would have been the same). Check this statement after
“hardness” was introduced!
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Example: Independent Set
The Independent Set Problem:
Assume you want to throw a party. But you know that some of your friends
don’t get along. You only want to invite people that do get along.
Formalized as graph.
▶ vertices are your mates
▶ draw an edge between two vertices if people don’t get along

Problem:
Given a graph and a k ≥ 0, is there an independent set, i.e., a subset I of ≥ k
vertices so that
▶ no two elements of I are connected with an edge.
▶ i.e., everybody in I gets along

Example of an independent set of size 2
(just the red-circled vertices)
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Solving the Independent Set Problem

Naive Implementation:
▶ loop through all subsets of size ≥ k (exponentially many!)
▶ and check whether they are independent sets
→ Proves membership in EXPTIME

Using Non-deterministic Turing Machines:
▶ guess a subset of vertices of size ≥ k
▶ check whether it is an independent set
→ Proves membership in NP

Question: Can we do better? Is there a P algorithm?
Answer: We don’t know! But “hardness” helps giving a partial answer.
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Example 2: Vertex Cover
Given a graph G = ⟨V , E ⟩, a vertex cover is a set C of vertices such that every
edge in G has at least one vertex in C .

Example vertex cover:
The red-circled vertices.

Vertex Cover (Decision) Problem.
▶ Given graph ⟨V , E ⟩ and k ≥ 0, is there a vertex cover of size ≤ k?
▶ VC := {(⟨V , E ⟩, k) | ⟨V , E ⟩ has a node cover ≤ k, k ∈ N }

Naive Algorithm:
▶ search through all subsets of size ≤ k (this is exponential)
▶ check whether it’s a vertex cover
→ This proves VC ∈ EXPTIME, but we can do better!

(I.e., we could also guess and verify as before, giving VC ∈ NP.)
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From Independent Set to Vertex Cover
Reductions. Use solutions of one problem to solve another.
Observation. Let G be a graph with n vertices and k ≥ 0.
▶ G has a VC of size ≤ k iff G has an IS of size ≥ n − k

▶ Why?
▶ VC with ≤ k vertices needs to cover all edges.
▶ IS with ≥ n − k vertices can’t cover any edge.

What’s the reduction? Vertex cover to independent set:
▶ ⟨G , k⟩ ∈ VC iff r(⟨G , n⟩) ∈ IS, where = r(⟨G , n⟩) = ⟨G , n − k⟩.
▶ Here, the reduction r only changes the number, but nothing else. But for

most reductions, we will have to “translate problems”, e.g., when turning a
SAT problem into a VC problem (or vice versa)!
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Important Note on Reductions

Be aware!
▶ So far, we only reduced problems, which were “equally hard”, they were

just “different flavors of the same problem”:
▶ EVEN vs. ODD
▶ Independent Set (IS) vs. Vertex Cover (VC)

▶ But reductions also work (in one direction!) when one problem is “strictly
harder” than another!
▶ You should be able to reduce EVEN (or ODD) to Vertex Cover!

(Reducing a problem in P to a problem that’s NP-hard.)
▶ You should be able to reduce Vertex Cover to the Sokoban game.

(Reducing an NP-complete problem to one that’s PSPACE-hard.)

(Hardness and completeness are explained in the next section...)
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Membership,
Hardness,

Completeness
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Membership, Hardness, and Completeness

Definition (NP completeness, NP membership, NP hardness)

A language B is NP-complete if
1. B ∈ NP = NP membership
2. every A ∈ NP is polytime-reducible to B. = NP hardness

▶ So we have “for all A holds A ≤P B”, and therefore we know that B is
“hard/expressive enough” to solve all other problems in NP. (Because we
solve these other A-problems using our B-problem!)

▶ Therefore, NP-complete problems are the hardest ones in NP.
(In particular they may be harder than those in P!)

▶ Hardness is the opposite of “practical exploitation of reductions”:
For hardness, reduce from a known problem rather than to one!
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Motivation

Why are we interested in showing NP-hardness/completeness in the first place?

▶ If we fail in providing a P procedure for a new problem it could be:
▶ Because we just did not discover it (yet? – keep searching!)
▶ It doesn’t even exist! (bail!)

▶ So ... How to find out whether we should just work harder?
▶ If we can prove NP-completeness, then at least we know that nobody

before you found a P procedure. (And maybe none even exists, which
follows directly once somebody proves P ̸=NP.)

▶ Why NP-completeness? Why not just showing NP-hardness?
▶ Since the problem could be even harder! (E.g., PSPACE-hard,

EXPTIME-hard, NEXPTIME-hard, . . . , and infinitely more!)
▶ Each problem class has specific “properties”. E.g., “NP-complete looks like

Logic”, “PSPACE-complete looks like planning”, etc.
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NP-Hardness
Theorem
If B is NP-hard and B ≤P C, then C is NP-hard.

Corollary

If B is NP-complete and B ≤P C for C ∈ NP, then C is
NP-complete.

Proof.
Polynomial time reductions compose.

Important! This Corollary is of major importance!! Why?
→ It gives us a convenient procedure to show NP-completeness!
▶ First, show NP membership. (That’s almost always very easy.)
▶ Then, show hardness by grabbing an NP-complete problem and reduce it

to yours!
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Known NP-Complete Problems
List of known NP-complete problems:
▶ SAT (first problem proved NP-hard) and 3-SAT (see tutorials)
▶ Graph-Colourability and 3-Graph-Colourability (see tutorials)
▶ Independent Set and Vertex Cover (these slides)
▶ Hamiltonian path (not covered)
▶ Traveling Salesman Problem (not covered)
▶ Many more!

Known problems in P:
▶ All regular languages! Q. Why?
▶ Of course, many more!

One of the most important problems in computer science is: P ?=NP.
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Summary
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Summary Weeks 7-12
In weeks 7 to 11:
▶ We started with “machines” to recognizing only regular expressions.
▶ We added bits of computation power until we obtained a machine that can

compute everything that’s possible. (Cf. Chosky Hierarchy.)
▶ On top languages from type 0 to 3, we also differentiate between recursive,

recursively enumerable, and not recursively enumerable.

In week 12:
▶ We looked at the “runtime” required to decide recursive problems.
▶ This is done in terms of transitions or space requirements, measured in

terms of |w | for the “best” Turing Machine (w is the word to decide).
▶ We focused on complexity classes P, NP, and EXPTIME.
▶ Reductions turn one decision problem into another in polytime. Can be

used for:
▶ Exploiting existing algorithms (reduce to known problem)
▶ Prove hardness of your problem (reduce from known problem)

▶ Membership, hardness and completeness of problems.
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used for:

▶ Exploiting existing algorithms (reduce to known problem)
▶ Prove hardness of your problem (reduce from known problem)

▶ Membership, hardness and completeness of problems.
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Conclusion

Some concluding words:
▶ I hope you enjoyed the course, and especially weeks 7 to 12! :)
▶ COMP3630, Theory of Computation, equals weeks 7 to 12 maxed out, for

example:
▶ The equivalence of different TM models is proved there (e.g., multi-tape

TMs or semi-infinite TMs)
▶ When we had proof sketches, the course covers the proof. (E.g., it shows

that SAT is NP-hard (and hence NP-complete.)
▶ It covers many more complexity classes, all mentioned before. And

additional ones (esp. co-classes).
▶ It focuses much more on doing reductions, e.g., proving problems

NP-complete.

▶ Good luck in the exam!
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