
COMP1600, week 7:

Deterministic Finite

Automata (DFAs)
convenors: Dirk Pattinson, Pascal Bercher
lecturer: Pascal Bercher
slides based on those by: Dirk Pattinson
(with contributions by Victor Rivera and previous colleagues)

Semester 2, 2024



Overview of Week 7

▶ Motivation
▶ Introduction to Automata and Formal Languages
▶ Deterministic Finite Automata — Formally —
▶ Language of an Automaton
▶ Minimisation of DFAs
▶ Limitations of FSAs

1 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Motivation

2 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



The Story So Far . . .

Logic.
▶ language and proofs to speak about systems precisely
▶ useful to express properties and do proofs

Establish properties of programs.
▶ Functional Programs. Main tool: (structural) induction / Dafny
▶ Imperative Programs. Main tool: Hoare Logic / Dafny

Q. Is there a general notion of computation that encompasses both?

3 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



First Shot: Your Laptop

Abstract Characteristics.
▶ can do computation
▶ has memory – a finite amount
▶ has (lots of) internal states

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



From Laptops to Formal Models

Concrete (your laptop)
▶ realistic (it exists!)
▶ complex
▶ hard to analyse

Abstract (mathematical model)
▶ exists only as a model
▶ simple
▶ easy to analyse

Q. What is a “good” simple model of computation?
▶ should be able to differentiate different problem solving capabilities
▶ should match what really exists (possibly by a long shot)
▶ should be conceptually simple

5 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



First Answer: Finite State Automata

Basic Components.
▶ internal states – finitely many
▶ state transitions – triggered by reading input
▶ simplifying assumption: just one output: yes/no

Data.
▶ basic input: strings (what you type in, text/XML/JSON file etc.)
▶ characters: drawn from finite set (alphabet, e.g., letters, numbers)

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: Java Identifiers
From Oracle’s Java Language Specification.

An identifier is a sequence of one or more characters. The first character must be a
valid first character (letter, $, ) in an identifier of the Java programming language,
hereafter in this chapter called simply “Java”. Each subsequent character in the
sequence must be a valid nonfirst character (letter, digit, $, ) in a Java identifier.

Graphical Specification

Letter

$

_

Letter

Digit

_

$

Identifier

Q. Can you see a “machine” that recognises Java? identifiers?

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: Java Identifiers
From Oracle’s Java Language Specification.

An identifier is a sequence of one or more characters. The first character must be a
valid first character (letter, $, ) in an identifier of the Java programming language,
hereafter in this chapter called simply “Java”. Each subsequent character in the
sequence must be a valid nonfirst character (letter, digit, $, ) in a Java identifier.

Graphical Specification

Letter

$

_

Letter

Digit

_

$

Identifier

Q. Can you see a “machine” that recognises Java? identifiers?

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Java Identifiers
Example: Main Components

Letter

$

_

Letter

Digit

_

$

Identifier

Data.
▶ drawn form a finite alphabet (unicode, or ASCII)

Control.
▶ “yes” if I can get from the left to the right, “no” otherwise
▶ have states after taking a transition (implicit in diagram)

Computational Problem with yes/no answer:
▶ is a given sequence of characters a valid Java identifier?

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Preview.
Next two weeks. Finite Automata
▶ start with simplest model: finite automata
▶ relate to regular languages, non-determinism
▶ conclusion: finite automata “too simple”

The week after. Pushdown automata
▶ like finite automata, but some more memory
▶ useful for e.g. specifying syntax of programming languages
▶ still “too simple” for general computation

Then. Turing machines
▶ The most widely accepted model of computation
▶ infinite memory
▶ idea: buy another hard disk whenever your computation runs out of

memory
▶ limits of what can be computed

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Introduction to
Automata and

Formal Languages

10 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Finite State Automata: First Example

The simplest useful abstraction of a “computing machine” consists of:
▶ A fixed, finite set of states
▶ A transition relation over the states

Example: a traffic light Finite State Automaton (FSA) has 3 states:

����
- G

@
@R

G names state in which light is green.

����
Y

���
Y names state in which light is yellow.����

R�

R names state in which light is red.

System designs are often in terms of state machines.
There are many extensions, e.g., how long does it stay red, how long green, etc.

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Second Example: Vending Machine
Operation
▶ accept 10c and 20c coins
▶ delivers if it has received at least 40c and selection is made

����
- 0c -20

@@R
10

�
�	

����
10c -

20
�
��10
����
20c -20

@@R
10

����
30c -

20
�
��10
�����
��
40c

@@R
10

�select

�����
��
50c

�
select

Note.
▶ transitions are labelled
▶ new ingredient: final states (doubly circled)

Computation. Sequences of actions (labels) from initial to final state.

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}

2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)

3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)

4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))

5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))

6. MANY more!
Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language Examples
Main Idea.
▶ input: a string over a fixed character set
▶ operation: transitions labelled with characters
▶ output: yes if in final state after reading the input

More Generally.
▶ Setup: Fix a finite set of characters (an alphabet)
▶ Problem: A set of strings (called language) that are “valid” or “good”
▶ Task: decide computationally which strings are “good”

Example Languages.
1. A finite set: {a, aa, ab, aaa, aab, aba, abb}
2. All valid payments: {(20, 20), . . . (10, 10, 10, 10, 10)} (also finite!)
3. Palindromes over 0/1: {ε, 0, 1, 00, 11, 010, 101, 000, 111, 0110, ...} (infinite)
4. All syntactically valid Java programs: {. . . } (later! :))
5. All Java (etc.) programs that terminate: {. . . } (later! :))
6. MANY more!

Languages in this sense are called formal languages.
13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Terminology
Alphabet.

A finite set (of symbols). Usually denoted by Σ.

Strings over an alphabet Σ
finite sequence of characters (elements of Σ), can be the empty sequence.
E.g. for Σ = {a, b, c}, ababc is a string over Σ, and so is ε.

Languages over alphabet Σ
are just sets of strings over Σ.
(The language of an automaton is the set of strings accepted by it.)

Words of the language
just another name for the elements (strings) of the language.

Notation:
▶ Σ∗ is the set of all strings over Σ.
▶ Therefore, every language with alphabet Σ is some subset of Σ∗.

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.

▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)

▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts

▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state

▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?

Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Automata
First Model of Computation. Deterministic Finite Automata
▶ solve computational problem: given string (word) w , is w accepted?

Basic Ingredients. (see e.g. traffic light and vending machine example)
▶ The alphabet of a DFA is a finite set of input tokens that an automaton

acts on.
▶ A DFA consists of a finite set of states (a primitive notion)
▶ One of the states is the initial state — where the automaton starts
▶ At least one of the states is a final state
▶ A transition function (next state function):

State × Token → State

Q. What’s the difference between a DFA and an FSA?
Disclaimer: We often use FSA when a specific FSA is meant (like a DFA),
because it should be clear from context which is meant.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Recurring Theme

Diagrammatic Notation.
▶ useful for humans
▶ e.g. the transition diagram of the vending machine

Mathematical Notation.
▶ useful for formal manipulation (e.g. proving theorems)
▶ useful for computer implementation

Glue between Diagrams and Maths
▶ both notions convey precisely the same information
▶ crucial: being able to switch back and forth!

16 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Deterministic Finite
Automata

—Formally—

17 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Formal Definition of DFA
A Deterministic Finite State Automaton (DFA) consists of five parts:

A = (Σ, S, s0, F , N)

▶ a finite input alphabet Σ, the set of tokens
▶ a finite set of states S
▶ an initial state s0 ∈ S (we start here)
▶ a set of final states F ⊆ S (helps defining which strings are accepted)
▶ a transition function N : S × Σ → S

Aside. Having a transition function is what makes the automaton deterministic.

▶ It requires a unique successor for each state-token pair
▶ (Also, we have a successor for each state-token pair)

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Formal Definition of DFA
A Deterministic Finite State Automaton (DFA) consists of five parts:

A = (Σ, S, s0, F , N)

▶ a finite input alphabet Σ, the set of tokens
▶ a finite set of states S
▶ an initial state s0 ∈ S (we start here)
▶ a set of final states F ⊆ S (helps defining which strings are accepted)
▶ a transition function N : S × Σ → S

Aside. Having a transition function is what makes the automaton deterministic.

▶ It requires a unique successor for each state-token pair
▶ (Also, we have a successor for each state-token pair)

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Finite State Automata as String
Acceptors
Idea. A finite state automaton
▶ works on strings over an alphabet Σ
▶ determines which strings in Σ∗ are “good” (accepted) and which strings

are “bad” (rejected). (Recall our two initial examples)

Acceptance Informally. Let A = (Σ, S, s0, F , N) be a DFA. Then A accepts
the string w = x1x2 . . . xn iff there is a sequence of states

s0
x1−→ s1

x2−→ . . .
xn−1−→ sn−1

xn−→ sn

where s0 is the starting state, sn ∈ F is an accepting state, and si
x−→ sj if

N(si , x) = sj .

Informally. Run the automaton from the starting state, move states according
to the individual letters of the word, and accept iff you end up in a final state.

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1
As a diagram. ����

- s0

@
@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

In Mathematical Notation.
▶ Alphabet –
▶ States –
▶ Initial state –
▶ Final states –
▶ Transition function (as a table) – on the right:

0 1
s0
s1
s2

Q1. Which strings are accepted by this automaton?
Q2. What changes if we re-name the states?

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1
As a diagram. ����

- s0

@
@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

In Mathematical Notation.
▶ Alphabet – {0, 1}
▶ States – {s0, s1, s2}
▶ Initial state – s0 (shown with arrow w/out origin)
▶ Final states – {s2}
▶ Transition function (as a table) – on the right:

0 1
s0 s1 s0
s1 s1 s2
s2 s1 s0

Q1. Which strings are accepted by this automaton?
Q2. What changes if we re-name the states?

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1
As a diagram. ����

- s0

@
@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

In Mathematical Notation.
▶ Alphabet – {0, 1}
▶ States – {s0, s1, s2}
▶ Initial state – s0 (shown with arrow w/out origin)
▶ Final states – {s2}
▶ Transition function (as a table) – on the right:

0 1
s0 s1 s0
s1 s1 s2
s2 s1 s0

Q1. Which strings are accepted by this automaton?

Q2. What changes if we re-name the states?

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1
As a diagram. ����

- s0

@
@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

In Mathematical Notation.
▶ Alphabet – {0, 1}
▶ States – {s0, s1, s2}
▶ Initial state – s0 (shown with arrow w/out origin)
▶ Final states – {s2}
▶ Transition function (as a table) – on the right:

0 1
s0 s1 s0
s1 s1 s2
s2 s1 s0

Q1. Which strings are accepted by this automaton?
Q2. What changes if we re-name the states?

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1, cont’d
Recall. N : S × Σ → S is the transition function.

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

0 1
s0 s1 s0
s1 s1 s2
s2 s1 s0

Single Steps of the automaton
▶ N(s0, 0) is the state that the automation transitions to from state s0

reading letter 0. Here: N(s0, 0) = s1.

Multiple Steps of the automaton
▶ N(N(s0, 0), 1) is the state of the automation when starting in s0 and

reading first 0, then 1. Here: N(N(s0, 0), 1) = s2.
▶ Later, we will simplify this using the Eventual State Function.

Then, N∗(s0, 01) = s2.

21 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1, cont’d
Recall. N : S × Σ → S is the transition function.

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0

0 1
s0 s1 s0
s1 s1 s2
s2 s1 s0

Single Steps of the automaton
▶ N(s0, 0) is the state that the automation transitions to from state s0

reading letter 0. Here: N(s0, 0) = s1.

Multiple Steps of the automaton
▶ N(N(s0, 0), 1) is the state of the automation when starting in s0 and

reading first 0, then 1. Here: N(N(s0, 0), 1) = s2.
▶ Later, we will simplify this using the Eventual State Function.

Then, N∗(s0, 01) = s2.

21 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 2

����
- U

?

a

-
b

@
@
@@R

c

�����
��
Z��-a,b,c

�����
��
V ���

a,b,c

����
Y ���

c

6
b

� a

a b c

U→ Z V Y
V⊙ V V V
Y Z V Y
Z⊙ Z Z Z

(the table carries the same information as the diagram)

Q. What is the language of this automaton?

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Eventual State Function

Revisit example 1:

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

�
�	

0

▶ Input 0101 takes the DFA from s0 to s2,
Input 1011 takes the DFA from s1 to s0, etc.

▶ A complete list of such possibilities is a function from a given state and a
string to an ‘eventual state.’

This is the idea of Eventual State Function.
(Called N∗ rather than N to reflect the transitive closure.)

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Eventual State Function — Definition
Definition.
Let A be a DFA with states S, alphabet Σ, and transition function N.
The eventual state function for A is of type

N∗ : S × Σ∗ → S

and is defined inductively by:

N∗(s, ϵ) = s (N1)
N∗(s, xα) = N∗(N(s, x), α) (N2)

(where x ∈ Σ)

Informally.
N∗(s, w) is the state A reached by starting in state s and reading string w .

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



An Important (but Unsurprising)
Theorem about N∗

The “Append Theorem”. For all states s ∈ S and for all strings α, β ∈ Σ∗

N∗(s, αβ) = N∗(N∗(s, α), β)

Informally: In other words, appending string β to a string α can be understood
as first reaching the state after processing α, and then continuing from there to
process β. (Instead of processing αβ directly.)

Proof by induction on the length of α (and arbitrary β).
Base case: α = ϵ

LHS = N∗(s, ϵβ) = N∗(s, β)
RHS = N∗(N∗(s, ϵ), β)

= N∗(s, β) = LHS (by (N1))

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



An Important (but Unsurprising)
Theorem about N∗

The “Append Theorem”. For all states s ∈ S and for all strings α, β ∈ Σ∗

N∗(s, αβ) = N∗(N∗(s, α), β)

Informally: In other words, appending string β to a string α can be understood
as first reaching the state after processing α, and then continuing from there to
process β. (Instead of processing αβ directly.)

Proof by induction on the length of α (and arbitrary β).
Base case: α = ϵ

LHS = N∗(s, ϵβ) = N∗(s, β)
RHS = N∗(N∗(s, ϵ), β)

= N∗(s, β) = LHS (by (N1))

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)

LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))

= N∗(N(s, x), αβ) (by (N2))

= N∗(N∗(N(s, x), α), β)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))

= N∗(N(s, x), αβ) (by (N2))

= N∗(N∗(N(s, x), α), β)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))

= N∗(N(s, x), αβ) (by (N2))

= N∗(N∗(N(s, x), α), β)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))
= N∗(N(s, x), αβ) (by (N2))

= N∗(N∗(N(s, x), α), β)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))
= N∗(N(s, x), αβ) (by (N2))
= N∗(N∗(N(s, x), α), β) (by IH)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))
= N∗(N(s, x), αβ) (by (N2))
= N∗(N∗(N(s, x), α), β) (by IH)

RHS = N∗(N∗(s, xα), β)

= N∗(N∗(N(s, x), α), β)
Corollary — when β is a single token

N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))
= N∗(N(s, x), αβ) (by (N2))
= N∗(N∗(N(s, x), α), β) (by IH)

RHS = N∗(N∗(s, xα), β)
= N∗(N∗(N(s, x), α), β) (by (N2))

Corollary — when β is a single token
N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof cont’d: Step case:
Recall that we want to show:
For all s ∈ S and all α, β ∈ Σ∗ holds N∗(s, αβ) = N∗(N∗(s, α), β)

Step Case. Show that N∗(s, (xα)β) = N∗(N∗(s, xα), β)
LHS = N∗(s, (xα)β)

= N∗(s, x(αβ))
= N∗(N(s, x), αβ) (by (N2))
= N∗(N∗(N(s, x), α), β) (by IH)

RHS = N∗(N∗(s, xα), β)
= N∗(N∗(N(s, x), α), β) (by (N2))

Corollary — when β is a single token
N∗(s, αy) = N(N∗(s, α), y)

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example

����
- S0

@@R
0��61

����
S1

���1 ���
0

�����
��
S2� 1

��	
0

N∗(S1, 1011) = N∗(N(S1, 1), 011)
= N∗(S2, 011)
= N∗(S1, 11)
= N∗(S2, 1)
= N∗(S0, ϵ)
= S0

27 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Languageof an
Automaton

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Language of an Automaton, Revisited

Recall:
The language of an automaton is the set of strings accepted by it.

Acceptance, formally:
Let A = (Σ, S, s0, F , N) be a DFA and w be a string in Σ∗. Then,
▶ w is accepted by A iff N∗(s0, w) ∈ F
▶ Thus, L(A) = {w ∈ Σ∗ | N∗(s0, w) ∈ F}

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1 again

����
- s0

@
@R
0��61

����
s1

�
��1 ���

0

�����
��
s2� 1

��	
0

Q. Which strings are accepted?
▶ e.g. 0011101 takes the machine from state s0 through states s1, s1, s2, s0,

s0, s1 to s2 (a final state).
▶ N∗(s0, 0011101) = N∗(s1, 011101) = N∗(s1, 11101) = . . . N∗(s1, 1) = s2

▶ others: 01, 001, 101, 0001, 0101, 00101101 . . .
▶ Thus, L(A) = {w ∈ Σ∗ | w = α01, α ∈ Σ∗} (where A is our DFA)

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example 1 (cont’d)

����
- s0

@
@R
0��61

����
s1

�
��1 ���

0

�����
��
s2� 1

��	
0

Accepted Strings.
01, 001, 101, 0001, 0101, 00101101 . . .

Strings that are not accepted.
ϵ, 0, 1, 00, 10, 11, 100 . . .

Q. What do the accepted strings have in common? How do we justify this?

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proving an Acceptance Predicate — in
General

Our Claim. The automaton A accepts precisely the strings that are elements of
the language L = {w ∈ Σ∗ | P(w)}.

(P is sometimes called an acceptance predicate.)

Proof Obligations.
1. Show that any string satisfying P is accepted by A.
2. Show any string accepted by A satisfies P.

Q. Do we really need both? Isn’t the first obligation enough?

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proving an Acceptance Predicate for A1

����
- s0

@
@R
0��61

����
s1

�
��1 ���

0

�����
��
s2� 1

��	
0

Proof obligation 1:
If a string ends in 01, then it is accepted by A1. That is:

For all α ∈ Σ∗, N∗(s0, α01) ∈ F

Proof obligation 2:
If a string is accepted by A1, then it ends in 01. That is:

For all w ∈ Σ∗, if N∗(s0, w) ∈ F then ∃α ∈ Σ∗. w = α01

33 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Part 1: ∀α ∈ Σ∗, N∗(s0, α01) ∈ F

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0Lemma:

∀s ∈ S. N∗(s, 01) = s2

Proof by cases:

N∗(s0, 01) = N∗(s1, 1) = s2

N∗(s1, 01) = N∗(s1, 1) = s2

N∗(s2, 01) = N∗(s1, 1) = s2

So, by the Append Theorem above, we get

N∗(s0, α01) = N∗(N∗(s0, α), 01) = s2

Why? Because we covered all possible cases for N∗(s0, α)

□

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Part 2: N∗(s0, w) = s2 ⇒ ∃α. w = α01

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0Proof. Suppose N∗(s0, w) = s2.

The shortest path in the DFA from s0 to s2 has two transitions.
Thus, we can assume that w = αxy for some α ∈ Σ∗.
Thus, suppose N∗(s0, αxy) = s2.

By corollary to the Append Theorem (case of single token):

N∗(s0, αxy) = N(N∗(s0, αx), y) = s2

By the definition of N, y must be 1 and N∗(s0, αx) must be s1.
Thus, s2 = N∗(s0, αxy) = N(N∗(s0, αx), y) = N(s1, 1), so w ends on 1.

Similarly, N(N∗(s0, α), x) = s1

and x is 0 (again by the definition of N), so w ends on 01.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Part 2: N∗(s0, w) = s2 ⇒ ∃α. w = α01

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0Proof. Suppose N∗(s0, w) = s2.

The shortest path in the DFA from s0 to s2 has two transitions.
Thus, we can assume that w = αxy for some α ∈ Σ∗.
Thus, suppose N∗(s0, αxy) = s2.

By corollary to the Append Theorem (case of single token):

N∗(s0, αxy) = N(N∗(s0, αx), y) = s2

By the definition of N, y must be 1 and N∗(s0, αx) must be s1.
Thus, s2 = N∗(s0, αxy) = N(N∗(s0, αx), y) = N(s1, 1), so w ends on 1.

Similarly, N(N∗(s0, α), x) = s1

and x is 0 (again by the definition of N), so w ends on 01.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Part 2: N∗(s0, w) = s2 ⇒ ∃α. w = α01

����
- s0

@@R
0��61

����
s1

���1 ���
0

�����
��
s2� 1

��	
0Proof. Suppose N∗(s0, w) = s2.

The shortest path in the DFA from s0 to s2 has two transitions.
Thus, we can assume that w = αxy for some α ∈ Σ∗.
Thus, suppose N∗(s0, αxy) = s2.

By corollary to the Append Theorem (case of single token):

N∗(s0, αxy) = N(N∗(s0, αx), y) = s2

By the definition of N, y must be 1 and N∗(s0, αx) must be s1.
Thus, s2 = N∗(s0, αxy) = N(N∗(s0, αx), y) = N(s1, 1), so w ends on 1.

Similarly, N(N∗(s0, α), x) = s1

and x is 0 (again by the definition of N), so w ends on 01.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Another Example

Which language does D accept?

D: ����
- s0 -

1��60
�����
��
s1 -

1��60
����
s2��60

���
1

D accepts the language of bitstrings containing exactly one 1-bit.

Proof obligations:
▶ Show that if a bitstring contains exactly one 1-bit then it is accepted by D.
▶ Show that if a string is accepted by D it contains exactly one 1-bit.

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Another Example

Which language does D accept?

D: ����
- s0 -

1��60
�����
��
s1 -

1��60
����
s2��60

���
1

D accepts the language of bitstrings containing exactly one 1-bit.

Proof obligations:
▶ Show that if a bitstring contains exactly one 1-bit then it is accepted by D.
▶ Show that if a string is accepted by D it contains exactly one 1-bit.

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Mapping to Mathematics
����

- s0 -
1��60

�����
��
s1 -

1��60
����
s2��60

���
1

Expressed mathematically, the main conclusion is

L(D) = {w ∈ Σ∗ | w = 0n10m, n, m ≥ 0}

The two subgoals are
1. If w = 0n10m then N∗(s0, w) = s1.
2. If N∗(s0, w) = s1 then w = 0n10m.

For this DFA the phrase “w is accepted by D” is captured by the expression
N∗(s0, w) = s1.

37 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proving these subgoals ����
- s0 -

1��60
�����
��
s1 -

1��60
����
s2��60

���
1

The first subgoal (“If w = 0n10m then N∗(s0, w) = s1”) can be shown using the
following two lemmas, which are easily proved by induction:

Lemma 1: ∀n ≥ 0. N∗(s0, 0n) = s0

Lemma 2: ∀n ≥ 0. N∗(s1, 0n) = s1

Therefore N∗(s0, 0n10m)
=N∗(N∗(s0, 0n), 10m) (by Append Theorem)
=N∗(s0, 10m) (by Lemma 1)
=N∗(N(s0, 1), 0m) (by Def. of N∗)
=N∗(s1, 0m) (by Def. of N)
=s1 (by Lemma 2)

The second subgoal (“N∗(s0, w) = s1 then w = 0n10m”), more formally:
∀w : N∗(s0, w) = s1 =⇒ ∃n, m ≥ 0. w = 0n10m

can be proved in a similar fashion to Example 1 on earlier slides.

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proving these subgoals ����
- s0 -

1��60
�����
��
s1 -

1��60
����
s2��60

���
1

The first subgoal (“If w = 0n10m then N∗(s0, w) = s1”) can be shown using the
following two lemmas, which are easily proved by induction:

Lemma 1: ∀n ≥ 0. N∗(s0, 0n) = s0

Lemma 2: ∀n ≥ 0. N∗(s1, 0n) = s1

Therefore N∗(s0, 0n10m)
=N∗(N∗(s0, 0n), 10m) (by Append Theorem)
=N∗(s0, 10m) (by Lemma 1)
=N∗(N(s0, 1), 0m) (by Def. of N∗)
=N∗(s1, 0m) (by Def. of N)
=s1 (by Lemma 2)

The second subgoal (“N∗(s0, w) = s1 then w = 0n10m”), more formally:
∀w : N∗(s0, w) = s1 =⇒ ∃n, m ≥ 0. w = 0n10m

can be proved in a similar fashion to Example 1 on earlier slides.

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proving these subgoals ����
- s0 -

1��60
�����
��
s1 -

1��60
����
s2��60

���
1

The first subgoal (“If w = 0n10m then N∗(s0, w) = s1”) can be shown using the
following two lemmas, which are easily proved by induction:

Lemma 1: ∀n ≥ 0. N∗(s0, 0n) = s0

Lemma 2: ∀n ≥ 0. N∗(s1, 0n) = s1

Therefore N∗(s0, 0n10m)
=N∗(N∗(s0, 0n), 10m) (by Append Theorem)
=N∗(s0, 10m) (by Lemma 1)
=N∗(N(s0, 1), 0m) (by Def. of N∗)
=N∗(s1, 0m) (by Def. of N)
=s1 (by Lemma 2)

The second subgoal (“N∗(s0, w) = s1 then w = 0n10m”), more formally:
∀w : N∗(s0, w) = s1 =⇒ ∃n, m ≥ 0. w = 0n10m

can be proved in a similar fashion to Example 1 on earlier slides.
38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Minimisationof
DFAs

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of Automata
Two automata are said to be equivalent if they accept the same language.

Example:

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

A5:
�����
��

- s0

?

1

��
?

0

����
s1

���
0

6
1

Q1. What language does A5 accept?

Q2. What language does A4 accept? Can A4 be simplified?
Q3. When are two states equivalent?

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of Automata
Two automata are said to be equivalent if they accept the same language.

Example:

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

A5:
�����
��

- s0

?

1

��
?

0

����
s1

���
0

6
1

Q1. What language does A5 accept?
Q2. What language does A4 accept? Can A4 be simplified?

Q3. When are two states equivalent?

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of Automata
Two automata are said to be equivalent if they accept the same language.

Example:

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

A5:
�����
��

- s0

?

1

��
?

0

����
s1

���
0

6
1

Q1. What language does A5 accept?
Q2. What language does A4 accept? Can A4 be simplified?
Q3. When are two states equivalent?

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of States
Two states sj and sk of an FSA are equivalent if for all input strings w

N∗(sj , w) ∈ F if and only if N∗(sk , w) ∈ F

Example. In A4, s2 is equivalent to s0 and s1 is equivalent to s3.

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

Q. Can we use this to define when/whether two DFAs are equivalent?

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of States
Two states sj and sk of an FSA are equivalent if for all input strings w

N∗(sj , w) ∈ F if and only if N∗(sk , w) ∈ F

Example. In A4, s2 is equivalent to s0 and s1 is equivalent to s3.

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

Q. Can we use this to define when/whether two DFAs are equivalent?

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Equivalence of States
Two states sj and sk of an FSA are equivalent if for all input strings w

N∗(sj , w) ∈ F if and only if N∗(sk , w) ∈ F

Example. In A4, s2 is equivalent to s0 and s1 is equivalent to s3.

A4:
�����
��

- s0 -1

��
?0

����
s1

?

1

���
0

�����
��
s2

���
0� 1����

s3
��-0

6
1

Q. Can we use this to define when/whether two DFAs are equivalent?

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



DFA State Minmimization

The Table Filling Algorithm identifies equivalent and non-equivalent (called
distinguishable) pairs of states.
▶ Any final state can’t be equivalent to a non-final state (they are

distinguishable).
▶ If s and s ′ are distinguishable and

there exist states s ′′, s ′′′, and symbol x such that
▶ N∗(s ′′, x) = s
▶ N∗(s ′′′, x) = s ′

then s ′′ and s ′′′ are also distinguishable:

s'' s

s'

x

xs'''

42 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.
▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair
▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair
▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.

▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair
▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair
▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.
▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair

▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair
▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.
▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair
▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair

▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.
▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair
▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair
▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Identifying pairs of (In)distinguishable
States: An Example

▶ Fill in × (black) whenever one component of pair is final, and other is not.
▶ Fill in × (blue) if 1 moves the pair of states to a distinguishable pair
▶ Fill in × (red) if 0 moves the pair of states to a distinguishable pair
▶ Repeat until no progress (any two states without a × sign are equivalent!)

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}

Color-blind?
red: A/B,
blue: A/E, A/C,

B/E, B/C,
D/G, F/G



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}

▶ Collapse each equivalence class of states to
a single state.

▶ Delete parallel transitions with same label.
▶ The resulting transition diagram will be a

DFA.



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}

▶ Collapse each equivalence class of states to
a single state.

▶ Delete parallel transitions with same label.

▶ The resulting transition diagram will be a
DFA.



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}

▶ Collapse each equivalence class of states to
a single state.

▶ Delete parallel transitions with same label.
▶ The resulting transition diagram will be a

DFA.



Table-filling Algorithm

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

▶ Delete states not reachable from start
states.

▶ Find distinguishable and equivalent pairs of
states as described on the previous slide.

▶ Identify equivalence classes of equivalent
states. In this example:
{A}, {B}, {C , E}, {D, F}, {G}

▶ Collapse each equivalence class of states to
a single state.

▶ Delete parallel transitions with same label.
▶ The resulting transition diagram will be a

DFA.



Table-filling Algorithm: Improvement

Homework / Open Discussion:
▶ Are we allowed to delete states that cannot reach any final state?

▶ Construct at least two examples and execute the algorithm (both with and
without deleting such states):

▶ One DFA D has exactly 2 states and L(D) = {1n | n ≥ 0}.
Q. Can there be a DFA with just 1 state?

▶ Another DFA D′ that has exactly 4 states but still L(D) = L(D′).

45 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling Algorithm: Improvement

Homework / Open Discussion:
▶ Are we allowed to delete states that cannot reach any final state?
▶ Construct at least two examples and execute the algorithm (both with and

without deleting such states):

▶ One DFA D has exactly 2 states and L(D) = {1n | n ≥ 0}.
Q. Can there be a DFA with just 1 state?

▶ Another DFA D′ that has exactly 4 states but still L(D) = L(D′).

45 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling Algorithm: Improvement

Homework / Open Discussion:
▶ Are we allowed to delete states that cannot reach any final state?
▶ Construct at least two examples and execute the algorithm (both with and

without deleting such states):
▶ One DFA D has exactly 2 states and L(D) = {1n | n ≥ 0}.

Q. Can there be a DFA with just 1 state?

▶ Another DFA D′ that has exactly 4 states but still L(D) = L(D′).

45 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling Algorithm: Improvement

Homework / Open Discussion:
▶ Are we allowed to delete states that cannot reach any final state?
▶ Construct at least two examples and execute the algorithm (both with and

without deleting such states):
▶ One DFA D has exactly 2 states and L(D) = {1n | n ≥ 0}.

Q. Can there be a DFA with just 1 state?
▶ Another DFA D′ that has exactly 4 states but still L(D) = L(D′).

45 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.

▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)

▶ Minimality test: Suppose a DFA A cannot be minimised further by
table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)
▶ Minimality test: Suppose a DFA A cannot be minimised further by

table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.

▶ View A and B together as one DFA
(Ignore the fact that there are two start states)

▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)
▶ Minimality test: Suppose a DFA A cannot be minimised further by

table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)

▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)
▶ Minimality test: Suppose a DFA A cannot be minimised further by

table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .

▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?
If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)

▶ Minimality test: Suppose a DFA A cannot be minimised further by
table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)

▶ Minimality test: Suppose a DFA A cannot be minimised further by
table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)

▶ Minimality test: Suppose a DFA A cannot be minimised further by
table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Table-filling: Other Uses

▶ Test equivalence of languages accepted by 2 DFAs.
▶ Given A = (Σ, SA, sA0, FA, NA) and B = (Σ, SB , sB0, FB , NB):

▶ Rename states in SB so that SA and SB are disjoint.
▶ View A and B together as one DFA

(Ignore the fact that there are two start states)
▶ Run table-filling on SA ∪ SB .
▶ sA0 and sB0 are indistinguishable ⇔ L(A) = L(B).Why?

If w distinguishes sA0 from sB0 then w cannot be in both L(A) and L(B)
▶ Minimality test: Suppose a DFA A cannot be minimised further by

table-filling. Then, A has the least number of states among all DFAs that
accept L(A)

46 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Limitations ofFSAs

47 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What is not acceptable for an FSA?
Q. Is an FSA a sufficiently “powerful” model of computation?
▶ E.g., L = All syntactically valid Java programs
▶ or L = All Java (etc.) programs that terminate
▶ Can DFAs always return the correct yes/no answer?

Technical Analysis. Properties of languages accepted by a DFA.

A very important example:
▶ L = { anbn | n ∈ N0}
▶ L = {ϵ, ab, aabb, aaabbb, a4b4, a5b5, ...}

Claim. There is no FSA that recognises this language.
(because an FSA’s memory is limited.)

Q. How do you answer the question above now?

48 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What is not acceptable for an FSA?
Q. Is an FSA a sufficiently “powerful” model of computation?
▶ E.g., L = All syntactically valid Java programs
▶ or L = All Java (etc.) programs that terminate
▶ Can DFAs always return the correct yes/no answer?

Technical Analysis. Properties of languages accepted by a DFA.

A very important example:
▶ L = { anbn | n ∈ N0}
▶ L = {ϵ, ab, aabb, aaabbb, a4b4, a5b5, ...}

Claim. There is no FSA that recognises this language.
(because an FSA’s memory is limited.)

Q. How do you answer the question above now?

48 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What is not acceptable for an FSA?
Q. Is an FSA a sufficiently “powerful” model of computation?
▶ E.g., L = All syntactically valid Java programs
▶ or L = All Java (etc.) programs that terminate
▶ Can DFAs always return the correct yes/no answer?

Technical Analysis. Properties of languages accepted by a DFA.

A very important example:
▶ L = { anbn | n ∈ N0}
▶ L = {ϵ, ab, aabb, aaabbb, a4b4, a5b5, ...}

Claim. There is no FSA that recognises this language.

(because an FSA’s memory is limited.)

Q. How do you answer the question above now?

48 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



What is not acceptable for an FSA?
Q. Is an FSA a sufficiently “powerful” model of computation?
▶ E.g., L = All syntactically valid Java programs
▶ or L = All Java (etc.) programs that terminate
▶ Can DFAs always return the correct yes/no answer?

Technical Analysis. Properties of languages accepted by a DFA.

A very important example:
▶ L = { anbn | n ∈ N0}
▶ L = {ϵ, ab, aabb, aaabbb, a4b4, a5b5, ...}

Claim. There is no FSA that recognises this language.
(because an FSA’s memory is limited.)

Q. How do you answer the question above now?

48 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof of Claim

Proof by contradiction.
Suppose A is an FSA that accepts L. That is, L = L(A).

Then each of the following are states of A:

N∗(s0, a), N∗(s0, a2), N∗(s0, a3) . . .

But A only has finitely many states, so some state must repeat:

There are distinct i and j such that N∗(s0, ai) = N∗(s0, aj).
▶ That is, the automaton cannot tell those ai and aj apart.
▶ But then how can it tell whether bi or bj follow?

49 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Proof by Contradiction (cont’d)

Since aibi is accepted, we know

N∗(s0, aibi) ∈ F

By the append theorem

N∗(N∗(s0, ai), bi) = N∗(s0, aibi) ∈ F

Now, since N∗(s0, ai) = N∗(s0, aj)

N∗(N∗(s0, aj), bi) = N∗(s0, ajbi) ∈ F

So ajbi is accepted by A but ajbi is not in L, contradicting the initial
assumption.

50 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Pigeonhole Principle

The proof used the pigeonhole principle:
No function from one set to a smaller finite set can be one-to-
one. �



�
	

•
•
•
•

�



�
	

•
•
•

(Finiteness is not really necessary — no function from one set to another with
smaller cardinality can be one-to-one.)

“You cannot fit n + 1 pigeons into n holes”

51 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher


