
COMP1600, week 8:
Non-Deterministic
Finite Automata (NFAs)
and Regular Expressions
convenors: Dirk Pattinson, Pascal Bercher
lecturer: Pascal Bercher
slides based on those by: Dirk Pattinson
(with contributions by Victor Rivera and previous colleagues)

Semester 2, 2024

Overview of Week 8

▶ Introduction
▶ Non-Deterministic Finite Automata (NFAs) — Formally —
▶ Language of an NFA
▶ Determinisation of NFAs
▶ NFAs with ϵ-transitions
▶ Regular Expressions

1 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Introduction

2 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Deterministic Finite State
Automata — NFAs

Consider this FSA:

����
- s0 -a��6a

����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

Q. Is it a DFA in the sense of our definition?

Q. Is it intuitively clear what it does? Test it! What’s it’s language?

3 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Deterministic Finite State
Automata — NFAs

Consider this FSA:

����
- s0 -a��6a

����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

Q. Is it a DFA in the sense of our definition?

Q. Is it intuitively clear what it does? Test it! What’s it’s language?

3 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it legal, i.e., a “proper” DFA?
����

- s0 -a��6a
����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

A. It makes sense, but it is nondeterministic: A nondeterministic finite
automaton (NFA). So not a “legal” DFA, but a specimen of a different breed.

Differences to deterministic automata
▶ Multiple edges with the same label come out of states
▶ For some states, there is not an edge for every token

Formally. NFAs have a transition relation rather than a transition function.
▶ transition relation R(s1, x , s2) is true if there’s an x -labelled edge from s1

to s2
▶ there can be many states that are connected to s1 via an x -labelled edge.

(Example: s0, s1, s2)
▶ there can be no x -labelled edge between s1 and any state. (Example: s3)

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it legal, i.e., a “proper” DFA?
����

- s0 -a��6a
����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

A. It makes sense, but it is nondeterministic: A nondeterministic finite
automaton (NFA). So not a “legal” DFA, but a specimen of a different breed.

Differences to deterministic automata
▶ Multiple edges with the same label come out of states
▶ For some states, there is not an edge for every token

Formally. NFAs have a transition relation rather than a transition function.
▶ transition relation R(s1, x , s2) is true if there’s an x -labelled edge from s1

to s2
▶ there can be many states that are connected to s1 via an x -labelled edge.

(Example: s0, s1, s2)
▶ there can be no x -labelled edge between s1 and any state. (Example: s3)

4 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it clear what it does?
����

- s0 -a��6a
����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

Observations.
▶ Some states don’t have an outgoing edge with a certain letter, so the NFA

can “get stuck”.
▶ In some states, there’s more than one possible successor state with a

certain letter.

Acceptance condition for NFAs given string w :
▶ can get from initial to final state, making the “right” choice of successor

state without getting stuck

Example. w = aaabcc
▶ need to “look ahead” to make the right choice
▶ (alternatively, try to backtrack if wrong choice has been made)

5 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it clear what it does?
����

- s0 -a��6a
����
s1 -

b��6b
����
s2 -c��6c

�����
��
s3

Observations.
▶ Some states don’t have an outgoing edge with a certain letter, so the NFA

can “get stuck”.
▶ In some states, there’s more than one possible successor state with a

certain letter.

Acceptance condition for NFAs given string w :
▶ can get from initial to final state, making the “right” choice of successor

state without getting stuck

Non-Example. w = aaacc
▶ Doesn’t work because we are (definitely) stuck after reading the last a.

5 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Key Differences: DFAs vs NFAs
DFA:
▶ DFAs have a transition function.

▶ For each state in a DFA and for each input symbol, there is a unique
successor state.

▶ An input sequence x1, x2, . . . , xn is accepted by a DFA if there exists some
sequence of transitions that leads from the initial state to a final state.

NFA:
▶ NFAs have a transition relation.

▶ NFAs allow zero, one, or more transitions from a state for the same input
symbol.

▶ An input sequence x1, x2, . . . , xn is accepted by a NFA if there exists some
sequence of transitions that leads from the initial state to a final state.

Q. Is there actually a difference between the solution criteria?

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Key Differences: DFAs vs NFAs
DFA:
▶ DFAs have a transition function.
▶ For each state in a DFA and for each input symbol, there is a unique

successor state.

▶ An input sequence x1, x2, . . . , xn is accepted by a DFA if there exists some
sequence of transitions that leads from the initial state to a final state.

NFA:
▶ NFAs have a transition relation.
▶ NFAs allow zero, one, or more transitions from a state for the same input

symbol.

▶ An input sequence x1, x2, . . . , xn is accepted by a NFA if there exists some
sequence of transitions that leads from the initial state to a final state.

Q. Is there actually a difference between the solution criteria?

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Key Differences: DFAs vs NFAs
DFA:
▶ DFAs have a transition function.
▶ For each state in a DFA and for each input symbol, there is a unique

successor state.
▶ An input sequence x1, x2, . . . , xn is accepted by a DFA if there exists some

sequence of transitions that leads from the initial state to a final state.

NFA:
▶ NFAs have a transition relation.
▶ NFAs allow zero, one, or more transitions from a state for the same input

symbol.
▶ An input sequence x1, x2, . . . , xn is accepted by a NFA if there exists some

sequence of transitions that leads from the initial state to a final state.

Q. Is there actually a difference between the solution criteria?

6 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example: NFA vs. DFA

L = {αend | α ∈ Σ∗} An NFA recognising strings of letters ending in “end”:
(The alphabet Σ here is the Latin alphabet.)

����
- S0 -e��6Σ

����
s1 -n ����

s2 -d �����
��
s3

Note.
▶ two transitions from s0 for the letter “e”
▶ no transition from s1 for (e.g.) the letter “d”

7 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Equivalent DFA
Example. DFAs are (often) more complex.

A DFA that recognises strings of letters than end in “end”.

����
- s0 -e��6Σ \ {e}

�
��	

@@I
����
s1

� Σ \ {n,e}
-n

��
?

e
��	 ����

s2
�e -d�

Σ \ {e,d}

�����
��
s3

@@
e

�
Σ \ {e}

Q. Which FSA is easier to write and read?

����
- S0 -e��6Σ

����
s1 -n ����

s2 -d �����
��
s3

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Equivalent DFA
Example. DFAs are (often) more complex.

A DFA that recognises strings of letters than end in “end”.

����
- s0 -e��6Σ \ {e}

�
��	

@@I
����
s1

� Σ \ {n,e}
-n

��
?

e
��	 ����

s2
�e -d�

Σ \ {e,d}

�����
��
s3

@@
e

�
Σ \ {e}

Q. Which FSA is easier to write and read?

����
- S0 -e��6Σ

����
s1 -n ����

s2 -d �����
��
s3

8 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Why do we need/use/have NFAs?

So, why do we have NFAs?
▶ They are more compact.
▶ They are (sometimes!) easier to read and write.

▶ Because we are step-wise increasing the power of our models of
computation! (this week: add non-determinism.)

Q1. Why only sometimes?

Q2. Can you think of another reason why “NFAs exist”?

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Why do we need/use/have NFAs?

So, why do we have NFAs?
▶ They are more compact.
▶ They are (sometimes!) easier to read and write.

▶ Because we are step-wise increasing the power of our models of
computation! (this week: add non-determinism.)

Q1. Why only sometimes?

Q2. Can you think of another reason why “NFAs exist”?

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Why do we need/use/have NFAs?

So, why do we have NFAs?
▶ They are more compact.
▶ They are (sometimes!) easier to read and write.
▶ Because we are step-wise increasing the power of our models of

computation! (this week: add non-determinism.)

Q1. Why only sometimes?

Q2. Can you think of another reason why “NFAs exist”?

9 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Deterministic
FiniteAutomata

(NFAs)
—Formally—

10 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFAs: Formal Definition
A Nondeterministic Finite State Automaton (NFA) consists of five parts:

A = (Σ, S, s0, F , R)

▶ a finite input alphabet Σ, the (finite) set of tokens
▶ a finite set of states S
▶ an initial state s0 ∈ S (we start here)
▶ a set of final states F ⊆ S (we hope to finish in one of these)
▶ a transition relation R ⊆ S × Σ × S.

Aside. The transition relation is what makes the automaton nondeterministic.
It can be seen as a function δ : S × Σ → P(S), where P(S) is the set of subsets
(i.e., power set) of S. (Cf. slide 18 of last week!)

11 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example
Transition Diagram

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

As a transition table.

0 1
→ s0 {s0, s1} {S0, s3}

s1 {s2} ∅
⊙s2 {s2} {s2}

s3 ∅ {s2}

Both convey precisely the same information.
Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive 0s or 1s.
▶ Formally: L = {αxxβ | α, β ∈ Σ∗ and x ∈ Σ} (with Σ = {0, 1}) or

L = (0 | 1)∗(00|11)(0 | 1)∗ (this is a regular expression!)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example
Transition Diagram

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

As a transition table.

0 1
→ s0 {s0, s1} {S0, s3}

s1 {s2} ∅
⊙s2 {s2} {s2}

s3 ∅ {s2}

Both convey precisely the same information.
Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive 0s or 1s.

▶ Formally: L = {αxxβ | α, β ∈ Σ∗ and x ∈ Σ} (with Σ = {0, 1}) or
L = (0 | 1)∗(00|11)(0 | 1)∗ (this is a regular expression!)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example
Transition Diagram

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

As a transition table.

0 1
→ s0 {s0, s1} {S0, s3}

s1 {s2} ∅
⊙s2 {s2} {s2}

s3 ∅ {s2}

Both convey precisely the same information.
Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive 0s or 1s.
▶ Formally: L = {αxxβ | α, β ∈ Σ∗ and x ∈ Σ} (with Σ = {0, 1})

or
L = (0 | 1)∗(00|11)(0 | 1)∗ (this is a regular expression!)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example
Transition Diagram

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

As a transition table.

0 1
→ s0 {s0, s1} {S0, s3}

s1 {s2} ∅
⊙s2 {s2} {s2}

s3 ∅ {s2}

Both convey precisely the same information.
Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive 0s or 1s.
▶ Formally: L = {αxxβ | α, β ∈ Σ∗ and x ∈ Σ} (with Σ = {0, 1}) or

L = (0 | 1)∗(00|11)(0 | 1)∗ (this is a regular expression!)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Acceptance for NFAs
Acceptance Informally. An NFA A = (Σ, S, F , s0, R) accepts a word
w = x1x2 . . . xn (in symbols: w ∈ L(A)) iff there exists a sequence of states

s0
x1−→ s1

x2−→ . . .
xn−1−→ sn−1

xn−→ sn

where s0 is the starting state, sn ∈ F is an accepting state, and si
x−→ sj if

(si , x , sj) ∈ R.

Aside. This is like for deterministic automata, the only difference is that for
▶ deterministic automata we have si

x−→ sj if N(si , x) = sj
(that is, the automaton makes the (unique) transition)

▶ non-deterministic automata we have si
x−→ sj if (si , x , sj) ∈ R

(that is, the automaton can make a transition)

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Acceptance for NFAs
Acceptance Informally. An NFA A = (Σ, S, F , s0, R) accepts a word
w = x1x2 . . . xn (in symbols: w ∈ L(A)) iff there exists a sequence of states

s0
x1−→ s1

x2−→ . . .
xn−1−→ sn−1

xn−→ sn

where s0 is the starting state, sn ∈ F is an accepting state, and si
x−→ sj if

(si , x , sj) ∈ R.

Aside. This is like for deterministic automata, the only difference is that for
▶ deterministic automata we have si

x−→ sj if N(si , x) = sj
(that is, the automaton makes the (unique) transition)

▶ non-deterministic automata we have si
x−→ sj if (si , x , sj) ∈ R

(that is, the automaton can make a transition)

13 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R∗(s, w , s ′) is true if s ′ is a state that
the NFA can reach, starting in state s and reading string w .

Formal Definition. The eventual state relation has type

R∗ ⊆ S × Σ∗ × S
(equivalent to R∗ : S × Σ∗ × S → Bool)

and is defined inductively as follows:

R∗(s, ϵ, s) (is true)
R∗(s, xα, s ′) = ∃s ′′.R(s, x , s ′′) ∧ R∗(s ′′, α, s ′)

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R∗(s, w , s ′) is true if s ′ is a state that
the NFA can reach, starting in state s and reading string w .

Formal Definition. The eventual state relation has type

R∗ ⊆ S × Σ∗ × S
(equivalent to R∗ : S × Σ∗ × S → Bool)

and is defined inductively as follows:

R∗(s, ϵ, s) (is true)
R∗(s, xα, s ′) = ∃s ′′.R(s, x , s ′′) ∧ R∗(s ′′, α, s ′)

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R∗(s, w , s ′) is true if s ′ is a state that
the NFA can reach, starting in state s and reading string w .

Formal Definition. The eventual state relation has type

R∗ ⊆ S × Σ∗ × S
(equivalent to R∗ : S × Σ∗ × S → Bool)

and is defined inductively as follows:

R∗(s, ϵ, s) (is true)
R∗(s, xα, s ′) = ∃s ′′.R(s, x , s ′′) ∧ R∗(s ′′, α, s ′)

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition

▶ s0
0→ s0

0→ s0
1→ s0, hence (s0, 001, s0) ∈ R∗.

▶ s0
0→ s0

0→ s0
1→ s3, hence (s0, 001, s3) ∈ R∗.

▶ s0
0→ s1

0→ s2
1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition
▶ s0

0→ s0
0→ s0

1→ s0, hence (s0, 001, s0) ∈ R∗.

▶ s0
0→ s0

0→ s0
1→ s3, hence (s0, 001, s3) ∈ R∗.

▶ s0
0→ s1

0→ s2
1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition
▶ s0

0→ s0
0→ s0

1→ s0, hence (s0, 001, s0) ∈ R∗.
▶ s0

0→ s0
0→ s0

1→ s3, hence (s0, 001, s3) ∈ R∗.

▶ s0
0→ s1

0→ s2
1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition
▶ s0

0→ s0
0→ s0

1→ s0, hence (s0, 001, s0) ∈ R∗.
▶ s0

0→ s0
0→ s0

1→ s3, hence (s0, 001, s3) ∈ R∗.
▶ s0

0→ s1
0→ s2

1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition
▶ s0

0→ s0
0→ s0

1→ s0, hence (s0, 001, s0) ∈ R∗.
▶ s0

0→ s0
0→ s0

1→ s3, hence (s0, 001, s3) ∈ R∗.
▶ s0

0→ s1
0→ s2

1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example
The “double digits” automaton DD:

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Eventual State Relation.
▶ (s0, ϵ, s0) ∈ R∗ by definition
▶ s0

0→ s0
0→ s0

1→ s0, hence (s0, 001, s0) ∈ R∗.
▶ s0

0→ s0
0→ s0

1→ s3, hence (s0, 001, s3) ∈ R∗.
▶ s0

0→ s1
0→ s2

1→ s2, hence (s0, 001, s2) ∈ R∗.

Q1. What about s0
0→ s0

0→ s1
1→ ? So, does 001 ∈ L(DD) hold?

Q2. Does 0110 ∈ L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Important (but Unsurprising)
Theorem about R∗

For all states s, s ′ and for all strings α, β ∈ Σ∗

R∗(s, αβ, s ′) if and only if ∃s ′′. R∗(s, α, s ′′) ∧ R∗(s ′′, β, s ′)

The proof is similar to the corresponding result for N∗ in DFAs.
(You could do it as an exercise!)

16 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Languageof anNFA

17 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, revisited
Let A = (Σ, S, s0, F , R) be a NFA.

Acceptance, formally. A string w is accepted by A if

∃s ∈ F . R∗(s0, w , s)

(Compare with the definition of acceptance for NFAs earlier)

Language of an NFA.
The language accepted by A is the set of all strings accepted by A

L(A) = {w ∈ Σ∗ | ∃s ∈ F . R∗(s0, w , s)}

Informally. That is, w ∈ L(A) iff there exists a path through the diagram for
A, from s0 to a final state s (s ∈ F), such that the symbols on the path match
the symbols in w

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, revisited
Let A = (Σ, S, s0, F , R) be a NFA.

Acceptance, formally. A string w is accepted by A if

∃s ∈ F . R∗(s0, w , s)

(Compare with the definition of acceptance for NFAs earlier)

Language of an NFA.
The language accepted by A is the set of all strings accepted by A

L(A) = {w ∈ Σ∗ | ∃s ∈ F . R∗(s0, w , s)}

Informally. That is, w ∈ L(A) iff there exists a path through the diagram for
A, from s0 to a final state s (s ∈ F), such that the symbols on the path match
the symbols in w

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, Comment

Some comments (related to languages):
▶ Identifying the language of an NFA is not always easy!
▶ ... and neither is constructing an NFA given a language.
▶ We recommend practising:

▶ Take some language and draw the NFA.
▶ Take some NFA and identify its language.

Careful:
Q. Can every language be recognised∗ by an NFA?

(∗Recall that “recognising” is a synonym for “accepting”.)

19 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

On the Power of Non-Determinism!
Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?
▶ it seems easier to construct NFAs
▶ but in examples, DFAs did also exist

A. No.

Theorem.
If language L is accepted by a NFA, then there is some DFA which accepts the
same language. Or more formally:
Let A be an NFA. Then, there exists a DFA A′, such that L(A) = L(A′).

Proof.
We provide an algorithm that, given an arbitrary NFA A, creates a DFA A′,
such that L(A) = L(A′). (In the worst-case, it might take exponential time.)

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

On the Power of Non-Determinism!
Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?
▶ it seems easier to construct NFAs
▶ but in examples, DFAs did also exist

A. No.

Theorem.
If language L is accepted by a NFA, then there is some DFA which accepts the
same language. Or more formally:
Let A be an NFA. Then, there exists a DFA A′, such that L(A) = L(A′).

Proof.
We provide an algorithm that, given an arbitrary NFA A, creates a DFA A′,
such that L(A) = L(A′). (In the worst-case, it might take exponential time.)

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

On the Power of Non-Determinism!
Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?
▶ it seems easier to construct NFAs
▶ but in examples, DFAs did also exist

A. No.

Theorem.
If language L is accepted by a NFA, then there is some DFA which accepts the
same language. Or more formally:
Let A be an NFA. Then, there exists a DFA A′, such that L(A) = L(A′).

Proof.
We provide an algorithm that, given an arbitrary NFA A, creates a DFA A′,
such that L(A) = L(A′). (In the worst-case, it might take exponential time.)

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisationof
NFAs

21 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction
Assumption. We have an NFA with state set {q0, . . . , qn}.

Basic Idea.
▶ consider all possible runs of the NFA in parallel
▶ as a consequence, can be in a set of states

Construction.
▶ A state of the DFA is a set of states of the NFA:

▶ E.g., the DFA state {q3, q7} corresponds to being in q3 or q7 in the NFA.
▶ Signifies the states that the NFA can be in after reading some input.

▶ Transition function: records possible next states.
▶ E.g., from DFA state {q3, q7} (=NFA states q3 and q7) when reading letter

x , successor state equals the union of transitions (with x) from q3 and q7.
▶ DFA final states are state sets that contain a final NFA state.

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction
Assumption. We have an NFA with state set {q0, . . . , qn}.

Basic Idea.
▶ consider all possible runs of the NFA in parallel
▶ as a consequence, can be in a set of states

Construction.
▶ A state of the DFA is a set of states of the NFA:

▶ E.g., the DFA state {q3, q7} corresponds to being in q3 or q7 in the NFA.
▶ Signifies the states that the NFA can be in after reading some input.

▶ Transition function: records possible next states.
▶ E.g., from DFA state {q3, q7} (=NFA states q3 and q7) when reading letter

x , successor state equals the union of transitions (with x) from q3 and q7.
▶ DFA final states are state sets that contain a final NFA state.

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction
Assumption. We have an NFA with state set {q0, . . . , qn}.

Basic Idea.
▶ consider all possible runs of the NFA in parallel
▶ as a consequence, can be in a set of states

Construction.
▶ A state of the DFA is a set of states of the NFA:

▶ E.g., the DFA state {q3, q7} corresponds to being in q3 or q7 in the NFA.
▶ Signifies the states that the NFA can be in after reading some input.

▶ Transition function: records possible next states.
▶ E.g., from DFA state {q3, q7} (=NFA states q3 and q7) when reading letter

x , successor state equals the union of transitions (with x) from q3 and q7.

▶ DFA final states are state sets that contain a final NFA state.

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction
Assumption. We have an NFA with state set {q0, . . . , qn}.

Basic Idea.
▶ consider all possible runs of the NFA in parallel
▶ as a consequence, can be in a set of states

Construction.
▶ A state of the DFA is a set of states of the NFA:

▶ E.g., the DFA state {q3, q7} corresponds to being in q3 or q7 in the NFA.
▶ Signifies the states that the NFA can be in after reading some input.

▶ Transition function: records possible next states.
▶ E.g., from DFA state {q3, q7} (=NFA states q3 and q7) when reading letter

x , successor state equals the union of transitions (with x) from q3 and q7.
▶ DFA final states are state sets that contain a final NFA state.

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points
Input. Let NFA A = (Σ, S, s0, F , R).

Subset Construction.
▶ DFA states are subsets of S but each subset plays the role of a single state!

▶ Transitions: for a DFA state in Q ⊆ S and a letter x ∈ Σ:

N(Q, x) = {s1 ∈ S | s x→ s1 for some s ∈ Q}
= {s1 ∈ S | (s, x , s1) ∈ R for some s ∈ Q}

Example.
▶ Let {q3, q7} ⊆ S be a DFA state (i.e., q3 and q7 are NFA states).
▶ Let (q3, 0, q3) ∈ R, (q3, 0, q5) ∈ R, (q3, 1, q42} ∈ R (and no others for q3)
▶ Let (q7, 0, q8) ∈ R (and none else, also not for letter 1)

→ Then, we get {q3, q7} 0→ {q3, q5, q8} and {q3, q7} 1→ {q42}

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points
Input. Let NFA A = (Σ, S, s0, F , R).

Subset Construction.
▶ DFA states are subsets of S but each subset plays the role of a single state!
▶ Transitions: for a DFA state in Q ⊆ S and a letter x ∈ Σ:

N(Q, x) = {s1 ∈ S | s x→ s1 for some s ∈ Q}
= {s1 ∈ S | (s, x , s1) ∈ R for some s ∈ Q}

Example.
▶ Let {q3, q7} ⊆ S be a DFA state (i.e., q3 and q7 are NFA states).

▶ Let (q3, 0, q3) ∈ R, (q3, 0, q5) ∈ R, (q3, 1, q42} ∈ R (and no others for q3)
▶ Let (q7, 0, q8) ∈ R (and none else, also not for letter 1)

→ Then, we get {q3, q7} 0→ {q3, q5, q8} and {q3, q7} 1→ {q42}

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points
Input. Let NFA A = (Σ, S, s0, F , R).

Subset Construction.
▶ DFA states are subsets of S but each subset plays the role of a single state!
▶ Transitions: for a DFA state in Q ⊆ S and a letter x ∈ Σ:

N(Q, x) = {s1 ∈ S | s x→ s1 for some s ∈ Q}
= {s1 ∈ S | (s, x , s1) ∈ R for some s ∈ Q}

Example.
▶ Let {q3, q7} ⊆ S be a DFA state (i.e., q3 and q7 are NFA states).
▶ Let (q3, 0, q3) ∈ R, (q3, 0, q5) ∈ R, (q3, 1, q42} ∈ R (and no others for q3)

▶ Let (q7, 0, q8) ∈ R (and none else, also not for letter 1)

→ Then, we get {q3, q7} 0→ {q3, q5, q8} and {q3, q7} 1→ {q42}

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points
Input. Let NFA A = (Σ, S, s0, F , R).

Subset Construction.
▶ DFA states are subsets of S but each subset plays the role of a single state!
▶ Transitions: for a DFA state in Q ⊆ S and a letter x ∈ Σ:

N(Q, x) = {s1 ∈ S | s x→ s1 for some s ∈ Q}
= {s1 ∈ S | (s, x , s1) ∈ R for some s ∈ Q}

Example.
▶ Let {q3, q7} ⊆ S be a DFA state (i.e., q3 and q7 are NFA states).
▶ Let (q3, 0, q3) ∈ R, (q3, 0, q5) ∈ R, (q3, 1, q42} ∈ R (and no others for q3)
▶ Let (q7, 0, q8) ∈ R (and none else, also not for letter 1)

→ Then, we get {q3, q7} 0→ {q3, q5, q8} and {q3, q7} 1→ {q42}

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points
Input. Let NFA A = (Σ, S, s0, F , R).

Subset Construction.
▶ DFA states are subsets of S but each subset plays the role of a single state!
▶ Transitions: for a DFA state in Q ⊆ S and a letter x ∈ Σ:

N(Q, x) = {s1 ∈ S | s x→ s1 for some s ∈ Q}
= {s1 ∈ S | (s, x , s1) ∈ R for some s ∈ Q}

Example.
▶ Let {q3, q7} ⊆ S be a DFA state (i.e., q3 and q7 are NFA states).
▶ Let (q3, 0, q3) ∈ R, (q3, 0, q5) ∈ R, (q3, 1, q42} ∈ R (and no others for q3)
▶ Let (q7, 0, q8) ∈ R (and none else, also not for letter 1)

→ Then, we get {q3, q7} 0→ {q3, q5, q8} and {q3, q7} 1→ {q42}

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation: Example
The “double digits”
automaton

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Subset Construction: transition table

0 1
→ {s0}

{s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

Note.
▶ don’t have transition for all states, just those reachable from {s0}
▶ all others are not relevant (cf. elimination of unreachable states)
▶ having all states would require 24 = 16 entries.

▶ Once the table is complete replace each DFA state set by a simple name

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation: Example
The “double digits”
automaton

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

Subset Construction: transition table

0 1
→ {s0} {s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

Note.
▶ don’t have transition for all states, just those reachable from {s0}
▶ all others are not relevant (cf. elimination of unreachable states)
▶ having all states would require 24 = 16 entries.
▶ Once the table is complete replace each DFA state set by a simple name

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation Example, as Diagrams
Double Digits, as NFA.

Double Digits as DFA.

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

s1
0

 // s0

0,1

YY

0
>>

1

s2 0,1ff

s3

1

>>

S01
0 //

1

��

S012

0

��

1

��

// S0

0
>>

1

S03

0

KK

1
// S023

1

XX

0

KK

0 1
→ {s0} {s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

NFAswith
ε-transitions

26 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

More Expressive Power: ϵ-transitions

Extra Ingredient: Spontaneous transitions that don’t “consume” a letter
▶ NFAs that may change state without consuming a symbol.
▶ NFAs of this kind are called NFAs with ϵ-transitions
▶ can convert NFAs with ϵ-transitions to (standard) NFAs

Formal Definition. An NFA with ϵ-transitions is an NFA, but the transition
relation has the form

R ⊆ S × Σ ∪ {ϵ} × S

▶ cf. NFAs with transition relation R ⊆ S × Σ × S
▶ R(s, ϵ, s ′) is a spontaneous transition (without reading input symbol)
▶ ϵ is not an element of the alphabet!

27 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

More Expressive Power: ϵ-transitions

Extra Ingredient: Spontaneous transitions that don’t “consume” a letter
▶ NFAs that may change state without consuming a symbol.
▶ NFAs of this kind are called NFAs with ϵ-transitions
▶ can convert NFAs with ϵ-transitions to (standard) NFAs

Formal Definition. An NFA with ϵ-transitions is an NFA, but the transition
relation has the form

R ⊆ S × Σ ∪ {ϵ} × S

▶ cf. NFAs with transition relation R ⊆ S × Σ × S
▶ R(s, ϵ, s ′) is a spontaneous transition (without reading input symbol)
▶ ϵ is not an element of the alphabet!

27 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

ϵ-NFA: Example
General Pattern. ϵ-transitions say “or”

s1

1

�� 0)) s2

1

��
0ii

// s0

ϵ 66

ϵ ((s3

0

YY

1)) s4

0

YY
1

ii

Q. What does that automaton do?

A. Interpretation:
▶ “top” automaton (with start state s1) requires even number of 0’s
▶ “bottom” automaton (with start state s3) requires even number of 1’s
→ entire automaton (with start state s0) accepts either an even number of 1’s

or an even number of 0’s

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

ϵ-NFA: Example
General Pattern. ϵ-transitions say “or”

s1

1

�� 0)) s2

1

��
0ii

// s0

ϵ 66

ϵ ((s3

0

YY

1)) s4

0

YY
1

ii

Q. What does that automaton do?

A. Interpretation:
▶ “top” automaton (with start state s1) requires even number of 0’s
▶ “bottom” automaton (with start state s3) requires even number of 1’s
→ entire automaton (with start state s0) accepts either an even number of 1’s

or an even number of 0’s

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example and Acceptance
Language of this Automaton?

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
��

Acceptance Informally. An ϵ-NFA A accepts a word w = x1 . . . xn if there is a
sequence of states

s0
ϵ∗

−→ s1
x1−→ s ′

1
ϵ∗

−→ s2
x2−→ s ′

2 . . . sn
xn−→ s ′

n
ϵ∗

−→ f

where s0 is the starting state, f ∈ F is an accepting state and
▶ si

x−→ sj if there is an x -transition from si to sj , i.e., (si , x , sj) ∈ R
▶ si

ϵ∗

−→ sj if there is a sequence of ϵ-transitions from si to sj .

In particular: the empty string ϵ ∈ L(A) if s0
ϵ∗

−→ f for a final state f ∈ F .

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example and Acceptance
Language of this Automaton?

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
��

Acceptance Informally. An ϵ-NFA A accepts a word w = x1 . . . xn if there is a
sequence of states

s0
ϵ∗

−→ s1
x1−→ s ′

1
ϵ∗

−→ s2
x2−→ s ′

2 . . . sn
xn−→ s ′

n
ϵ∗

−→ f

where s0 is the starting state, f ∈ F is an accepting state and
▶ si

x−→ sj if there is an x -transition from si to sj , i.e., (si , x , sj) ∈ R
▶ si

ϵ∗

−→ sj if there is a sequence of ϵ-transitions from si to sj .

In particular: the empty string ϵ ∈ L(A) if s0
ϵ∗

−→ f for a final state f ∈ F .

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for ϵ-NFAs
ϵ-closure. For an ϵ-NFA (Σ, S, s0, F , R), the ϵ-closure of a state s ∈ S is given
by: eclose(s) = {s ′ ∈ S | there is a sequence of ϵ-transitions from s to s ′}
(Note that it always holds: eclose(s) ⊇ {s} as base-case.)

and the eventual state relation is given by

R∗(s, ϵ, s ′) ⇐⇒ s ′ ∈ eclose(s)
R∗(s, xα, s ′) ⇐⇒ there are s0 and s1 such that

s0 ∈ eclose(s), (s0, x , s1) ∈ R, (s1, α, s ′) ∈ R∗

Acceptance (and language) for DFAs / NFAs:
A string w is accepted by an ϵ-NFA A (in symbols: w ∈ L(A)) if (s0, w , f) ∈ R∗

for some final state f ∈ F , that is

L(A) = {w ∈ Σ∗ | ∃f ∈ F .(s0, w , f) ∈ R∗}

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for ϵ-NFAs
ϵ-closure. For an ϵ-NFA (Σ, S, s0, F , R), the ϵ-closure of a state s ∈ S is given
by: eclose(s) = {s ′ ∈ S | there is a sequence of ϵ-transitions from s to s ′}
(Note that it always holds: eclose(s) ⊇ {s} as base-case.)

and the eventual state relation is given by

R∗(s, ϵ, s ′) ⇐⇒ s ′ ∈ eclose(s)

R∗(s, xα, s ′) ⇐⇒ there are s0 and s1 such that
s0 ∈ eclose(s), (s0, x , s1) ∈ R, (s1, α, s ′) ∈ R∗

Acceptance (and language) for DFAs / NFAs:
A string w is accepted by an ϵ-NFA A (in symbols: w ∈ L(A)) if (s0, w , f) ∈ R∗

for some final state f ∈ F , that is

L(A) = {w ∈ Σ∗ | ∃f ∈ F .(s0, w , f) ∈ R∗}

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for ϵ-NFAs
ϵ-closure. For an ϵ-NFA (Σ, S, s0, F , R), the ϵ-closure of a state s ∈ S is given
by: eclose(s) = {s ′ ∈ S | there is a sequence of ϵ-transitions from s to s ′}
(Note that it always holds: eclose(s) ⊇ {s} as base-case.)

and the eventual state relation is given by

R∗(s, ϵ, s ′) ⇐⇒ s ′ ∈ eclose(s)
R∗(s, xα, s ′) ⇐⇒ there are s0 and s1 such that

s0 ∈ eclose(s), (s0, x , s1) ∈ R, (s1, α, s ′) ∈ R∗

Acceptance (and language) for DFAs / NFAs:
A string w is accepted by an ϵ-NFA A (in symbols: w ∈ L(A)) if (s0, w , f) ∈ R∗

for some final state f ∈ F , that is

L(A) = {w ∈ Σ∗ | ∃f ∈ F .(s0, w , f) ∈ R∗}

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for ϵ-NFAs
ϵ-closure. For an ϵ-NFA (Σ, S, s0, F , R), the ϵ-closure of a state s ∈ S is given
by: eclose(s) = {s ′ ∈ S | there is a sequence of ϵ-transitions from s to s ′}
(Note that it always holds: eclose(s) ⊇ {s} as base-case.)

and the eventual state relation is given by

R∗(s, ϵ, s ′) ⇐⇒ s ′ ∈ eclose(s)
R∗(s, xα, s ′) ⇐⇒ there are s0 and s1 such that

s0 ∈ eclose(s), (s0, x , s1) ∈ R, (s1, α, s ′) ∈ R∗

Acceptance (and language) for DFAs / NFAs:
A string w is accepted by an ϵ-NFA A (in symbols: w ∈ L(A)) if (s0, w , f) ∈ R∗

for some final state f ∈ F , that is

L(A) = {w ∈ Σ∗ | ∃f ∈ F .(s0, w , f) ∈ R∗}

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and ϵ-NFAs
Q. Are there languages only accepted by ϵ-NFAs?

A. No.

Every ϵ-NFA A = (Σ, S, s0, F , R) can be converted to an NFA A′

without ϵ-transitions so that L(A) = L(A′).

Construction. Define A′ = (Σ, S, s0, F ′, R ′), such that:
▶ We make s ∈ S an accepting state in A′ if s can reach an accepting state

in A by ϵ-transitions:

F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

▶ Put an arc s x−→ t into A′ if there is some s ′ ∈ eclose(s), such that
s ′ x−→ t in A. Formally:

R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

(double-check that A and A′ accept the same strings!)

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and ϵ-NFAs
Q. Are there languages only accepted by ϵ-NFAs?

A. No. Every ϵ-NFA A = (Σ, S, s0, F , R) can be converted to an NFA A′

without ϵ-transitions so that L(A) = L(A′).

Construction. Define A′ = (Σ, S, s0, F ′, R ′), such that:
▶ We make s ∈ S an accepting state in A′ if s can reach an accepting state

in A by ϵ-transitions:

F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

▶ Put an arc s x−→ t into A′ if there is some s ′ ∈ eclose(s), such that
s ′ x−→ t in A. Formally:

R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

(double-check that A and A′ accept the same strings!)

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and ϵ-NFAs
Q. Are there languages only accepted by ϵ-NFAs?

A. No. Every ϵ-NFA A = (Σ, S, s0, F , R) can be converted to an NFA A′

without ϵ-transitions so that L(A) = L(A′).

Construction. Define A′ = (Σ, S, s0, F ′, R ′), such that:
▶ We make s ∈ S an accepting state in A′ if s can reach an accepting state

in A by ϵ-transitions:

F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

▶ Put an arc s x−→ t into A′ if there is some s ′ ∈ eclose(s), such that
s ′ x−→ t in A. Formally:

R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

(double-check that A and A′ accept the same strings!)

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and ϵ-NFAs
Q. Are there languages only accepted by ϵ-NFAs?

A. No. Every ϵ-NFA A = (Σ, S, s0, F , R) can be converted to an NFA A′

without ϵ-transitions so that L(A) = L(A′).

Construction. Define A′ = (Σ, S, s0, F ′, R ′), such that:
▶ We make s ∈ S an accepting state in A′ if s can reach an accepting state

in A by ϵ-transitions:

F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

▶ Put an arc s x−→ t into A′ if there is some s ′ ∈ eclose(s), such that
s ′ x−→ t in A. Formally:

R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

(double-check that A and A′ accept the same strings!)

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for ϵ-Elimination

▶ Make s ∈ S an accepting state in A′ if s can reach an accepting state in A
by ϵ-transitions: F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

→ All states here can reach a goal state with only ϵ-transitions!

▶ Put an arc s x−→ t into A′ if there is a transition s ′ x−→ t in A with
s ′ ∈ eclose(s): R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

→ Test s0
a−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s1?

No

→ Test s0
b−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s1?

Yes! s1

→ Test s0
c−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s1?

No

→ Test s0
a−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s2?

No

→ Test s0
b−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s2?

No

→ Test s0
c−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s2?

Yes! s2

→ Test s1
a−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ a−→ s2?

No

→ Test s1
b−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ b−→ s2?

No

→ Test s1
c−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ c−→ s2?

Yes! s2

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
��

Example for ϵ-Elimination

▶ Make s ∈ S an accepting state in A′ if s can reach an accepting state in A
by ϵ-transitions: F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

→ All states here can reach a goal state with only ϵ-transitions!
▶ Put an arc s x−→ t into A′ if there is a transition s ′ x−→ t in A with

s ′ ∈ eclose(s): R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}

→ Test s0
a−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s1?

No

→ Test s0
b−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s1?

Yes! s1

→ Test s0
c−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s1?

No

→ Test s0
a−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s2?

No

→ Test s0
b−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s2?

No

→ Test s0
c−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s2?

Yes! s2

→ Test s1
a−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ a−→ s2?

No

→ Test s1
b−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ b−→ s2?

No

→ Test s1
c−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ c−→ s2?

Yes! s2

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
��

Example for ϵ-Elimination

▶ Make s ∈ S an accepting state in A′ if s can reach an accepting state in A
by ϵ-transitions: F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

→ All states here can reach a goal state with only ϵ-transitions!
▶ Put an arc s x−→ t into A′ if there is a transition s ′ x−→ t in A with

s ′ ∈ eclose(s): R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}
→ Test s0

a−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s1?

No

→ Test s0
b−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s1?

Yes! s1

→ Test s0
c−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s1?

No

→ Test s0
a−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s2?

No

→ Test s0
b−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s2?

No

→ Test s0
c−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s2?

Yes! s2

→ Test s1
a−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ a−→ s2?

No

→ Test s1
b−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ b−→ s2?

No

→ Test s1
c−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ c−→ s2?

Yes! s2

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
��

Example for ϵ-Elimination

▶ Make s ∈ S an accepting state in A′ if s can reach an accepting state in A
by ϵ-transitions: F ′ = {s ∈ S | eclose(s) ∩ F ̸= ∅}

→ All states here can reach a goal state with only ϵ-transitions!
▶ Put an arc s x−→ t into A′ if there is a transition s ′ x−→ t in A with

s ′ ∈ eclose(s): R ′ = {(s, x , t) | (s ′, x , t) ∈ R for some s ′ ∈ eclose(s)}
→ Test s0

a−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s1? No
→ Test s0

b−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s1? Yes! s1

→ Test s0
c−→ s1: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s1? No

→ Test s0
a−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ a−→ s2? No

→ Test s0
b−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ b−→ s2? No

→ Test s0
c−→ s2: Does s ′ ∈ eclose(s0) exist, s.t. s ′ c−→ s2? Yes! s2

→ Test s1
a−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ a−→ s2? No

→ Test s1
b−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ b−→ s2? No

→ Test s1
c−→ s2: Does s ′ ∈ eclose(s1) exist, s.t. s ′ c−→ s2? Yes! s2

32 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

// s0

a
�� ϵ // s1

b �� ϵ // s2

c
�� // s0

a

�� b //
c

33s1

b

�� c // s2

c

��

RegularExpressions

33 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions
Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:
▶ ϵ, the empty string, and every letter of the alphabet

▶ Kleene star and Plus: repeat strings from an expression
▶ vertical bar (pipe): choose either the left or right expression
▶ concatenation, for sequencing expressions
▶ parentheses, for grouping

Examples.

▶ a∗ indicates 0 or more as: {α | α ∈ {a}∗}
▶ a+ indicates 1 or more as: {aα | α ∈ {a}∗}
▶ yes | no is the language with just the 2 given strings: { yes, no }
▶ (0 | 1)∗ indicates the set of binary numerals: {α | α ∈ {0, 1}∗}

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions
Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:
▶ ϵ, the empty string, and every letter of the alphabet
▶ Kleene star and Plus: repeat strings from an expression

▶ vertical bar (pipe): choose either the left or right expression
▶ concatenation, for sequencing expressions
▶ parentheses, for grouping

Examples.
▶ a∗ indicates 0 or more as: {α | α ∈ {a}∗}
▶ a+ indicates 1 or more as: {aα | α ∈ {a}∗}

▶ yes | no is the language with just the 2 given strings: { yes, no }
▶ (0 | 1)∗ indicates the set of binary numerals: {α | α ∈ {0, 1}∗}

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions
Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:
▶ ϵ, the empty string, and every letter of the alphabet
▶ Kleene star and Plus: repeat strings from an expression
▶ vertical bar (pipe): choose either the left or right expression
▶ concatenation, for sequencing expressions

▶ parentheses, for grouping

Examples.
▶ a∗ indicates 0 or more as: {α | α ∈ {a}∗}
▶ a+ indicates 1 or more as: {aα | α ∈ {a}∗}
▶ yes | no is the language with just the 2 given strings: { yes, no }

▶ (0 | 1)∗ indicates the set of binary numerals: {α | α ∈ {0, 1}∗}

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions
Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:
▶ ϵ, the empty string, and every letter of the alphabet
▶ Kleene star and Plus: repeat strings from an expression
▶ vertical bar (pipe): choose either the left or right expression
▶ concatenation, for sequencing expressions
▶ parentheses, for grouping

Examples.
▶ a∗ indicates 0 or more as: {α | α ∈ {a}∗}
▶ a+ indicates 1 or more as: {aα | α ∈ {a}∗}
▶ yes | no is the language with just the 2 given strings: { yes, no }
▶ (0 | 1)∗ indicates the set of binary numerals: {α | α ∈ {0, 1}∗}

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero:

0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)

▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c:

(a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s:

0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)

▶ What’s ((z∗(x∗ | y∗) z))∗?
The set of strings over {x , y , z} with no x and y adjacent.

▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })
The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.

▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })
The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

▶ A single zero or binary numerals without leading zero: 0|(1(0|1)∗)
▶ The set of strings over {a, b, c} with just one c: (a | b)∗c(a | b)∗

▶ The language of bit-strings that have an even number of 1s: 0∗(10∗10∗)∗

(Zero is even, so 0 . . . 0 should be accepted. Thus, (0∗10∗10∗)∗ is wrong)
▶ What’s ((z∗(x∗ | y∗) z))∗?

The set of strings over {x , y , z} with no x and y adjacent.
▶ What’s 1 | (0 (ϵ |(.(0 | 1)∗1))))? (Here, Σ = { . , 0 , 1 })

The binary fractional numerals between 0 and 1 with no trailing zeroes.
E.g. 1, 0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Definition of Regular Expressions
Key Concept.
▶ regular expressions are purely syntactical – just like formulae
▶ but: every expression denotes a set of strings – this is the meaning.

Definition.
The regular expressions over alphabet Σ and the sets that they denote are:
▶ ∅ is a regular expression and denotes the empty set ∅
▶ ϵ is a regular expression and denotes the set {ϵ}
▶ for each a ∈ Σ, a is a regular expression and denotes the set {a}

▶ If α and β are regular expressions denoting languages R and S resp., then:
▶ α | β denotes R ∪ S
▶ α β denotes RS which is {ww ′ | w ∈ R ∧ w ′ ∈ S}
▶ α∗ denotes R∗, i.e., the set of finitely many ri ∈ R, concatenated, i.e.,

R∗ is (inductively) defined as {ϵ} ∪ RR∗

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Definition of Regular Expressions
Key Concept.
▶ regular expressions are purely syntactical – just like formulae
▶ but: every expression denotes a set of strings – this is the meaning.

Definition.
The regular expressions over alphabet Σ and the sets that they denote are:
▶ ∅ is a regular expression and denotes the empty set ∅
▶ ϵ is a regular expression and denotes the set {ϵ}
▶ for each a ∈ Σ, a is a regular expression and denotes the set {a}
▶ If α and β are regular expressions denoting languages R and S resp., then:

▶ α | β denotes R ∪ S
▶ α β denotes RS which is {ww ′ | w ∈ R ∧ w ′ ∈ S}
▶ α∗ denotes R∗, i.e., the set of finitely many ri ∈ R, concatenated, i.e.,

R∗ is (inductively) defined as {ϵ} ∪ RR∗

36 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions and DFAs

Key Insights.

▶ For every DFA A, we have regular expression r with L(A) = L(r).
(We didn’t show or even state that yet!)

▶ For every regular expression r , we have a DFA A with L(r) = L(A).
(You will see this in the next few slides.)

▶ Recall that we already showed the equivalence of DFAs and NFAs.
▶ Thus, the “power” of NFAs / DFAs are completely described by regular

expressions (and vice versa). In other words:

DFAs, NFAs, and regular expressions are all equally expressive.

37 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions to ϵ-NFAs
Key Insight.
▶ regular expressions are an inductively defined structure
▶ e.g., representable by an inductive data type in Haskell
▶ as a consequence, we can give inductive definition of the corresponding

automaton

Construction. (start state on left, final state on right)
▶ When the regular expression is a symbol a of the alphabet (language is

{a}) the automaton is
a

▶ When the regular expression is ϵ (language is {ϵ}) the automaton is
ε

▶ When the regular expression is ∅ (language is ∅) the automaton has no
edges

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions to NFAs, ctd
Suppose the NFA corresponding to some regular expression R is:

R

Then, we can inductively define the NFAs corresponding to composite regular
expressions as follows:

R1

2R
2RR1

R1 2RR1 2R

RR*
ε

ε

ε ε

ε

ε

ε

ε

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example

Given the regular expression for binary numerals without leading zeros,
(0 | 1(0|1)∗), the previous algorithm (the inductive definition) gives this NFA:

0

1

1 ε

ε

ε

0

ε

ε
ε ε

ε ε

ε

ε

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example

Given the regular expression for binary numerals without leading zeros,
(0 | 1(0|1)∗), the previous algorithm (the inductive definition) gives this NFA:

0

1

1 ε

ε

ε

0

ε

ε
ε ε

ε ε

ε

ε

40 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Closing the Loop

Given a finite alphabet Σ and a language L ⊆ Σ∗. The following are equivalent:
▶ L can be described by a regular expression
▶ L can be recognised by an ϵ-NFA
▶ L can be recognised by an NFA
▶ L can be recognised by a DFA . . .

as we can convert regular expressions into ϵ-NFAs into NFAs into DFAs.

Missing Link.
Construction of regular expressions from DFAs (not covered in this course).

41 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Summary

42 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Summary.

Starting Point. Finite Automata
▶ motivated by computers having finite memory (only)
▶ solving simple problems: is string s accepted?

Limitations of Finite Automata
▶ Some languages can’t be recognised, e.g., L = {anbn | n ≥ 0}

Characterisation of expressive power
▶ can go back and forth between automata and regular expressions

Q. Are finite automata a “good” model of computation?
▶ if yes, why?
▶ if not, why not? What is missing?

43 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Literature.

▶ Introduction to Automata Theory, Languages, and Computation
By Hopcroft, Motwani, and Ullman.
A classic text that has been re-worked from a standard textbook.

▶ Introduction To The Theory Of Computation
by Michael Sipser
The part on Automata and Languages covers (more than) what we have
discussed here.

▶ There are tons of exercises one can practice with.
(Online and in our repository.)

44 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

