COMP1600, week 8:
Non-Deterministic
Finite Automata (NFAs)
and Regular Expressions

convenors: Dirk Pattinson, Pascal Bercher

lecturer: Pascal Bercher

slides based on those by: Dirk Pattinson Py ﬁg%’ggg?n

(with contributions by Victor Rivera and previous colleagues) =~ University

Semester 2, 2024

Overview of Week 8

Introduction

Non-Deterministic Finite Automata (NFAs) — Formally —
Language of an NFA

Determinisation of NFAs

NFAs with e-transitions

Regular Expressions

vVVvyvYyvVvyYyvyy

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Introduction

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Non-Deterministic Finite State
Automata — NFAs

Consider this FSA:

Q. Is it a DFA in the sense of our definition?

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

)

Non-Deterministic Finite State
Automata — NFAs

Consider this FSA:

R R0

Q. Is it a DFA in the sense of our definition?

Q. Is it intuitively clear what it does? Test it! What's it's language?

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

s it legal, i.e., a “proper” DFA?

G e

A. It makes sense, but it is nondeterministic: A nondeterministic finite
automaton (NFA). So not a “legal” DFA, but a specimen of a different breed.

Differences to deterministic automata
> Multiple edges with the same label come out of states
» For some states, there is not an edge for every token

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

s it legal, i.e., a “proper” DFA?

A. It makes sense, but it is nondeterministic: A nondeterministic finite
automaton (NFA). So not a “legal” DFA, but a specimen of a different breed.

Differences to deterministic automata
> Multiple edges with the same label come out of states
» For some states, there is not an edge for every token

Formally. NFAs have a transition relation rather than a transition function.
> transition relation R(s;,x,sp) is true if there's an x-labelled edge from s
to s
> there can be many states that are connected to s; via an x-labelled edge.
(Example: sp, s1, s2)
> there can be no x-labelled edge between s; and any state. (Example: s3)

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it clear what it does?

Observations.

> Some states don't have an outgoing edge with a certain letter, so the NFA
can “get stuck”.

> In some states, there’'s more than one possible successor state with a
certain letter.

Acceptance condition for NFAs given string w:

> can get from initial to final state, making the “right” choice of successor
state without getting stuck

Example. w = aaabcc
> need to “look ahead” to make the right choice

> (alternatively, try to backtrack if wrong choice has been made)

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Is it clear what it does?

Observations.

> Some states don't have an outgoing edge with a certain letter, so the NFA
can “get stuck”.

> In some states, there’'s more than one possible successor state with a
certain letter.

Acceptance condition for NFAs given string w:

> can get from initial to final state, making the “right” choice of successor
state without getting stuck

Non-Example. w = aaacc

> Doesn't work because we are (definitely) stuck after reading the last a.

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Key Differences: DFAs

DFA:
» DFAs have a transition function.

NFA:
» NFAs have a transition relation.

vs NFAs

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

tw"‘l‘

=

Key Differences: DFAs vs NFAs

DFA:
» DFAs have a transition function.

» For each state in a DFA and for each input symbol, there is a unique
successor state.

NFA:
» NFAs have a transition relation.

> NFAs allow zero, one, or more transitions from a state for the same input
symbol.

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Key Differences: DFAs vs NFAs

DFA:
» DFAs have a transition function.
» For each state in a DFA and for each input symbol, there is a unique
successor state.
> An input sequence xq, X2, . .., X, is accepted by a DFA if there exists some
sequence of transitions that leads from the initial state to a final state.

NFA:
» NFAs have a transition relation.
> NFAs allow zero, one, or more transitions from a state for the same input
symbol.
> An input sequence xi, X2, ..., X, is accepted by a NFA if there exists some
sequence of transitions that leads from the initial state to a final state.

Q. Is there actually a difference between the solution criteria?

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example: NFA vs. DFA

L = {aend | @ € £*} An NFA recognising strings of letters ending in “end":
(The alphabet X here is the Latin alphabet.)

DD @O

Note.

> two transitions from sy for the letter “e

> 1o transition from s; for (e.g.) the letter “d”

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Equivalent DFA

Example. DFAs are (often) more complex.

A DFA that recognises strings of letters than end in “end".

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Equivalent DFA

Example. DFAs are (often) more complex.

A DFA that recognises strings of letters than end in “end".

Q. Which FSA is easier to write and read?

&=

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher =

Why do we need/use/have NFAs?

So, why do we have NFAs?

» They are more compact.

> They are (sometimes!) easier to read and write.

Q1. Why only sometimes?

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

.

Why do we need/use/have

So, why do we have NFAs?

» They are more compact.

> They are (sometimes!) easier to read and write.

Q1. Why only sometimes?

NFAs?

Q2. Can you think of another reason why “NFAs exist”?

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Why do we need/use/have NFAs?

So, why do we have NFAs?
» They are more compact.
> They are (sometimes!) easier to read and write.

> Because we are step-wise increasing the power of our models of
computation! (this week: add non-determinism.)

Q1. Why only sometimes?

Q2. Can you think of another reason why “NFAs exist”?

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Non-Deterministic
Finite Automata
(NFAs)

— Formally —

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFAs: Formal Definition

A Nondeterministic Finite State Automaton (NFA) consists of five parts:

A:(Z,SaSOaFyR)

v

a finite input alphabet X, the (finite) set of tokens

> a finite set of states S

> an initial state sp € S (we start here)

> a set of final states F C S (we hope to finish in one of these)
» 3 transition relation R C Sx ¥ x S.

Aside. The transition relation is what makes the automaton nondeterministic.
It can be seen as a function 0 : S x £ — P(S), where P(S) is the set of subsets
(i.e., power set) of S. (Cf. slide 18 of last week!)

11

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example

Transition Diagram

@ As a
SN
®

Both convey precisely the same information.

Q. What is the language of this automaton?

transition table.

0o | 1
— 50 | {s0,51} | {S0, 83}
si| {s2} 0
®s {52} {52}
S3 0 {2}

12

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Another Example

Transition Diagram
transition table.

As a
0 @ 0 | o0 | 1
/ — 50 | {s0,51} | {0, 3}
—>EE; &))o1 s1| {s} 0
©s {s2} {52}
0’1\ 1 S3 (Z) {52}
)

Both convey precisely the same information.

Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive Os or 1s.

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example

Transition Diagram
As a transition table.

0 @ 0 | o0 | 1
/ — S0 {50,51} {50,53}
—>EE; &))o1 s1| {s} 0
®s {52} {52}
0’1x 1 S3 (Z) {52}
©

Both convey precisely the same information.

Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive Os or 1s.
» Formally: L = {axxf|a, € ¥* and x € £} (with X = {0,1})

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Another Example

Transition Diagram

As a transition table.

0 @ 0 | 0o | 1
/ o — S0 {5{075}1} {506)53}
H(:) 0,1 s s
@) @s; {sz} {s2}
01 1 @ 1 3 0 {s2}

Both convey precisely the same information.

Q. What is the language of this automaton?

A. Informally: Any string that contains at least two consecutive Os or 1s.

> Formally: L ={axx8 | a,B € £* and x € L} (with X = {0,1}) or
L=(0]1)*(00|11)(0 | 1)* (this is a regular expression!)

12 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher =

Acceptance for NFAs

Acceptance Informally. An NFA A= (X%, S, F, s, R) accepts a word
W = X1X2 ... X, (in symbols: w € L(A)) iff there exists a sequence of states

X1 X2 Xn—1 Xn
So —>S1 —~>...——>Sh—1 ——~ Sp

where sy is the starting state, s, € F is an accepting state, and s; —— s; if
(si,x,s;) € R.

13

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Acceptance for NFAs

Acceptance Informally. An NFA A= (X%, S, F, s, R) accepts a word
W = X1X2 ... X, (in symbols: w € L(A)) iff there exists a sequence of states

X1 X2 Xn—1 Xn
So —>S1 —~>...——>Sh—1 ——~ Sp

where sp is the starting state, s, € F is an accepting state, and s; — s; if
(si,x,s;) € R.

Aside. This is like for deterministic automata, the only difference is that for
> deterministic automata we have s; — s; if N(s;,x) = s;
(that is, the automaton makes the (unique) transition)

> non-deterministic automata we have s; — s; if (s, x,s;) € R
(that is, the automaton can make a transition)

13

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R*(s,w,s’) is true if s’ is a state that
the NFA can reach, starting in state s and reading string w.

14

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R*(s,w,s’) is true if s’ is a state that
the NFA can reach, starting in state s and reading string w.

Formal Definition. The eventual state relation has type

R*CSx¥*"xS
(equivalent to R* : S x ¥* x S — Bool)

14

=
COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher =

Eventual State Relation for NFAs

Basic Idea. The eventual state relation R*(s,w,s’) is true if s’ is a state that
the NFA can reach, starting in state s and reading string w.

Formal Definition. The eventual state relation has type

R*CSx¥*"xS
(equivalent to R* : S x ¥* x S — Bool)

and is defined inductively as follows:

R*(s,¢,s) (is true)
R*(s,xc,s’) = 3s".R(s, x,s") AN R*(s", a1, s")

14 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example

The “double digits” automaton DD:

()
HB/ 0 0,1
0 1x 1 |

RO

Eventual State Relation.
> (so,€,5) € R* by definition

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example

The “double digits” automaton DD:

()
HB/ 0 0,1
0 1\ 1 |

RO

Eventual State Relation.
> (so,€,5) € R* by definition
> 5 5 S0 2 So LN so, hence (sp,001, 55) € R*.

15

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

0

Eventual State Relation: Example

The “double digits” automaton DD:

()
HB/ 0 0,1
0 1\ 1 |

RO

Eventual State Relation.
> (so,€,5) € R* by definition
> 5 5 S0 2 So LN so, hence (sp,001, 55) € R*.
> 5 o So o So N s3, hence (sp,001, s3) € R*.

15

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

=
o

Eventual State Relation: Example

The “double digits” automaton DD:

(&)
HB/ 0 0,1
0 1\ 1 |

®

Eventual State Relation.
> (so,€,5) € R* by definition
> s o So o So BN so, hence (sp,001, 55) € R*.
> 5 o So o So N s3, hence (sp,001, s3) € R*.
> s N s N S LN sy, hence (sp,001, s;) € R*.

15

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

=
o

Eventual State Relation: Example

The “double digits” automaton DD:

()
4>8/ 0 0,1
0 1\ 1 |

. ®

Eventual State Relation.
> (so,€,5) € R* by definition
> s o So o So BN so, hence (sp,001, 55) € R*.
> 5 o So o So N s3, hence (sp,001, s3) € R*.
> s o s N S LN sy, hence (sp,001, s;) € R*.

Q1. What about sy N So N 51 LN 47 So, does 001 € L(DD) hold?

.

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation: Example

The “double digits” automaton DD:

()
Hay 0 0,1
0 1\ 1 |

. ®

Eventual State Relation.
> (so,€,5) € R* by definition
> s o So o So BN so, hence (sp,001, 55) € R*.
> 5 o So o So N s3, hence (sp,001, s3) € R*.
> s o s o S LN sy, hence (sp,001, s;) € R*.

Q1. What about sy N So N 51 LN 47 So, does 001 € L(DD) hold?
Q2. Does 0110 € L(DD) hold?

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

An Important (but Unsurprising)
Theorem about R*

For all states s, s’ and for all strings a, 3 € £*
R*(s,c3,s") if and only if 3s”. R*(s,a,s") A R*(s", 3,5)

The proof is similar to the corresponding result for N* in DFAs.
(You could do it as an exercise!)

16

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

[Language of an NFA]

17

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, revisited

Let A= (X, S, s, F,R) be a NFA.
Acceptance, formally. A string w is accepted by A if

Jds € F. R*(sp, w,s)

(Compare with the definition of acceptance for NFAs earlier)

18 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, revisited

Let A= (X, S, s, F,R) be a NFA.
Acceptance, formally. A string w is accepted by A if

Jds € F. R*(sp, w,s)

(Compare with the definition of acceptance for NFAs earlier)

Language of an NFA.
The /anguage accepted by A is the set of all strings accepted by A

LA)={we X" |3IseF. R*(s,w,s)}
Informally. That is, w € L(A) iff there exists a path through the diagram for

A, from sq to a final state s (s € F), such that the symbols on the path match
the symbols in w

18

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Language of an NFA, Comment

Some comments (related to languages):
> Identifying the language of an NFA is not always easy!

> ... and neither is constructing an NFA given a language.
» We recommend practising:

> Take some language and draw the NFA.
> Take some NFA and identify its language.

Careful:

Q. Can every language be recognised™ by an NFA?
(*Recall that “recognising” is a synonym for “accepting”.)

19 COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher =

20

On the Power of Non-Determinism!

Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?

> it seems easier to construct NFAs

> but in examples, DFAs did also exist

COMP1600/6260: Foundations of Computing

=
Dirk Pattinson and Pascal Bercher

On the Power of Non-Determinism!

Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?

> it seems easier to construct NFAs

> but in examples, DFAs did also exist

A. No.

Theorem.
If language L is accepted by a NFA, then there is some DFA which accepts the

same language. Or more formally:
Let A be an NFA. Then, there exists a DFA A’, such that L(A) = L(A").

20

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

On the Power of Non-Determinism!

Q. Is there a language that is accepted by an NFA for which we cannot find a
DFA that (also) accepts it?

> it seems easier to construct NFAs

> but in examples, DFAs did also exist

A. No.

Theorem.

If language L is accepted by a NFA, then there is some DFA which accepts the
same language. Or more formally:

Let A be an NFA. Then, there exists a DFA A’, such that L(A) = L(A").

Proof.
We provide an algorithm that, given an arbitrary NFA A, creates a DFA A’,
such that L(A) = L(A’). (In the worst-case, it might take exponential time.)

20 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation of

NFAs

21

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

NFA to DFA Construction

Assumption. We have an NFA with state set {qo,...,qn}.

Basic Idea.
> consider all possible runs of the NFA in parallel

> as a consequence, can be in a set of states

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction

Assumption. We have an NFA with state set {qo,...,qn}.

Basic Idea.
> consider all possible runs of the NFA in parallel

> as a consequence, can be in a set of states

Construction.
> A state of the DFA is a set of states of the NFA:

> E.g., the DFA state {gs, g7} corresponds to being in g3 or g7 in the NFA.
> Signifies the states that the NFA can be in after reading some input.

22

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction

Assumption. We have an NFA with state set {qo,...,qn}.

Basic ldea.
> consider all possible runs of the NFA in parallel

> as a consequence, can be in a set of states

Construction.
> A state of the DFA is a set of states of the NFA:
> E.g., the DFA state {gs, g7} corresponds to being in g3 or g7 in the NFA.
> Signifies the states that the NFA can be in after reading some input.
> Transition function: records possible next states.

> E.g., from DFA state {qs, g7} (=NFA states g3 and g7) when reading letter
X, successor state equals the union of transitions (with x) from g3 and q7.

22 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFA to DFA Construction

Assumption. We have an NFA with state set {qo,...,qn}.

Basic ldea.
> consider all possible runs of the NFA in parallel

> as a consequence, can be in a set of states

Construction.
> A state of the DFA is a set of states of the NFA:
> E.g., the DFA state {gs, g7} corresponds to being in g3 or g7 in the NFA.
> Signifies the states that the NFA can be in after reading some input.
> Transition function: records possible next states.
> E.g., from DFA state {qs, g7} (=NFA states g3 and g7) when reading letter
X, successor state equals the union of transitions (with x) from g3 and gy.

» DFA final states are state sets that contain a final NFA state.

22

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points

Input. Let NFA A= (%, S, s, F, R).

Subset Construction.

> DFA states are subsets of S but each subset plays the role of a single state!

23

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points

Input. Let NFA A= (%, S, s, F, R).

Subset Construction.
> DFA states are subsets of S but each subset plays the role of a single state!
» Transitions: for a DFA statein @ C S and a letter x € X_:

N(Q,x) = {s; € S|s> s for some s € Q}
={s1 €S| (s,x,5) € R for some s € Q}

Example.
> Let {g3,q7} C S be a DFA state (i.e., g3 and g; are NFA states).

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points

Input. Let NFA A= (%, S, s, F, R).

Subset Construction.
> DFA states are subsets of S but each subset plays the role of a single state!
» Transitions: for a DFA statein @ C S and a letter x € X_:

N(Q,x) = {s; € S|s> s for some s € Q}
={s1 €S| (s,x,5) € R for some s € Q}

Example.
> Let {g3,q7} C S be a DFA state (i.e., g3 and g; are NFA states).
> Let (q3707 q3) €R, (q3a07 q5) €R, (q37]-a CI42} €ER (and no others for q3)

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points

Input. Let NFA A= (%, S, s, F, R).

Subset Construction.
> DFA states are subsets of S but each subset plays the role of a single state!
» Transitions: for a DFA statein @ C S and a letter x € X_:

N(Q,x) = {s; € S|s> s for some s € Q}
={s1 €S| (s,x,5) € R for some s € Q}

Example.
> Let {g3,q7} C S be a DFA state (i.e., g3 and g; are NFA states).
> Let (g3,0,93) € R, (g3,0,95) € R, (g3,1,qs2} € R (and no others for g3)
> Let (g7,0,gs) € R (and none else, also not for letter 1)

23 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Subset Construction: The Finer Points

Input. Let NFA A= (%, S, s, F, R).

Subset Construction.
> DFA states are subsets of S but each subset plays the role of a single state!
» Transitions: for a DFA statein @ C S and a letter x € X_:

N(Q,x) = {s; € S|s> s for some s € Q}
={s1 €S| (s,x,5) € R for some s € Q}

Example.
> Let {g3,q7} C S be a DFA state (i.e., g3 and g; are NFA states).
> Let (g3,0,93) € R, (g3,0,95) € R, (g3,1,qs2} € R (and no others for g3)
> Let (g7,0,gs) € R (and none else, also not for letter 1)

0 1
— Then, we get {g3,q7} — {93,95,9s} and {q3,q7} = {qa2}

23

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation: Example

The “double digits”
automaton

Subset Construction: transition table

0 1

(s1) = {50}

Note.
> don't have transition for all states, just those reachable from {so}
> all others are not relevant (cf. elimination of unreachable states)
» having all states would require 2* = 16 entries.

24 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Determinisation: Example

The “double digits”

Subset Construction: transition table

automaton
0 1
(s1) — {5} | (s0.51) | {50.5%)
/ 0 {s0,s1} | {50,51,%} | {s0.%3}
{s0,s3} | {s0,51} | {s0,%,53}
@)or o {s0,51,5} | {s0,51,%} | {s0,%2,53}
- 1\ g © {s0,5,53} | {S0,51,5} | {S0,52,53}

Note.

> don't have transition for all states, just those reachable from {so}

> all others are not relevant (cf. elimination of unreachable states)

» having all states would require 2* = 16 entries.

> Once the table is complete replace each DFA state set by a simple name

24 COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Determinisation Example, as Diagrams

(&)

Double Digits, as NFA. % 0

@ &)o1

0,1 1 1

©

Double Digits as DFA.

0 1
— {50} {50751} {50353}
{s0,51} | {S0,51,%} | {s0,83}
{50, 53} {s0,51} {50, 52,53}
© {s0,51,5} | {50,51,5} | {s0,52,53}
© {s0, 5,53} | {S0,51,%} | {S0,52,53}

25 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

NFAs with

e-transitions

26

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

27

More Expressive Power: e-transitions

Extra Ingredient: Spontaneous transitions that don't “consume” a letter
> NFAs that may change state without consuming a symbol.
> NFAs of this kind are called NFAs with e-transitions

> can convert NFAs with e-transitions to (standard) NFAs

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

.

More Expressive Power: e-transitions

Extra Ingredient: Spontaneous transitions that don't “consume” a letter
> NFAs that may change state without consuming a symbol.
> NFAs of this kind are called NFAs with e-transitions
> can convert NFAs with e-transitions to (standard) NFAs

Formal Definition. An NFA with e-transitions is an NFA, but the transition

relation has the form
RCSxXU{e} xS

> cf. NFAs with transition relation RC S x ¥ x S
> R(s,e,s') is a spontaneous transition (without reading input symbol)

> ¢ is not an element of the alphabet!

27

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

e-NFA: Example

General Pattern. e-transitions say “or”

Q. What does that automaton do?

28 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

28

e-NFA: Example

General Pattern. e-transitions say “or”

Q. What does that automaton do?

A. Interpretation:

> “top” automaton (with start state s;) requires even number of 0's

“bottom” automaton (with start state s3) requires even number of 1's

entire automaton (with start state sg) accepts either an even number of 1's
or an even number of 0's

>

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher =

Example and Acceptance

Language of this Automaton?

SENO.
506516

9

= T\

29

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Example and Acceptance

Language of this Automaton?

N Z/
Acceptance Informally. An e-NFA A accepts a word w = x7 ... x, if there is a
sequence of states
E* X1 ! E* X2 ! Xn ! e*
Sg —>S1 —> S —>SH —>S,...5p —> s, — [

where sp is the starting state, f € F is an accepting state and
> s; — s; if there is an x-transition from s; to s;, i.e., (s;,x,5;) € R

€* . . L
> s; — s; if there is a sequence of e-transitions from s; to s;.

In particular: the empty string € € L(A) if s "y f for a final state f € F.

29 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for e-NFAs

e-closure. For an e-NFA (X, S, s, F, R), the e-closure of a state s € S is given
by: eclose(s) = {s’ € S| there is a sequence of e-transitions from s to s’}
(Note that it always holds: eclose(s) 2 {s} as base-case.)

30

=
COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher =

Eventual State Relation for e-NFAs

e-closure. For an e-NFA (X, S, s, F, R), the e-closure of a state s € S is given
by: eclose(s) = {s’ € S| there is a sequence of e-transitions from s to s’}
(Note that it always holds: eclose(s) 2 {s} as base-case.)

and the eventual state relation is given by

R*(s,e,s") <= s’ € eclose(s)

30

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for e-NFAs

e-closure. For an e-NFA (X, S, s, F, R), the e-closure of a state s € S is given
by: eclose(s) = {s’ € S| there is a sequence of e-transitions from s to s’}
(Note that it always holds: eclose(s) 2 {s} as base-case.)

and the eventual state relation is given by
R*(s,e,s") <= s’ € eclose(s)

R*(s,xa,s’) <= there are sy and s; such that
so € eclose(s), (s0, x,51) € R, (s1,,5") € R*

30 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Eventual State Relation for e-NFAs

e-closure. For an e-NFA (X, S, s, F, R), the e-closure of a state s € S is given
by: eclose(s) = {s’ € S| there is a sequence of e-transitions from s to s’}
(Note that it always holds: eclose(s) 2 {s} as base-case.)

and the eventual state relation is given by
R*(s,e,s") <= s’ € eclose(s)

R*(s,xa,s’) <= there are sy and s; such that
so € eclose(s), (s0, x,51) € R, (s1,,5") € R*

Acceptance (and language) for DFAs / NFAs:
A string w is accepted by an e-NFA A (in symbols: w € L(A)) if (sp, w, f) € R*
for some final state f € F, that is

L(A) = {w € £* | 3f € F.(s0,w, f) € R*}

30

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and e-NFAs

Q. Are there languages only accepted by e-NFAs?
A. No.

31

)

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and e-NFAs

Q. Are there languages only accepted by e-NFAs?

A. No. Every eNFA A= (%, S, s, F, R) can be converted to an NFA A’
without e-transitions so that L(A) = L(A').

31

.

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and e-NFAs

Q. Are there languages only accepted by e-NFAs?

A. No. Every eNFA A= (%, S, s, F, R) can be converted to an NFA A’
without e-transitions so that L(A) = L(A').

Construction. Define A’ = (X, S, so, F/, R’), such that:
> We make s € S an accepting state /in A" if s can reach an accepting state
in A by e-transitions:

F'={s € S |eclose(s)NF #0}

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Relationship Between NFAs and e-NFAs

Q. Are there languages only accepted by e-NFAs?

A. No. Every eNFA A= (%, S, s, F, R) can be converted to an NFA A’
without e-transitions so that L(A) = L(A').

Construction. Define A’ = (X, S, so, F/, R’), such that:
> We make s € S an accepting state /in A" if s can reach an accepting state
in A by e-transitions:

F'={s € S |eclose(s)NF #0}

> Put an arc s = t into A’ if there is some s’ € eclose(s), such that
s' =5t in A. Formally:

R ={(s,x,t) | (s',x, t) € R for some s’ € eclose(s)}

(double-check that A and A’ accept the same strings!)

31 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for e-Elimination

> Make s € S an accepting state /n A" if s can reach an accepting state in A
by e-transitions: F'={s € S |eclose(s) N F # 0}
> All states here can reach a goal state with only e-transitions!

32

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for e-Elimination

> Make s € S an accepting state /n A" if s can reach an accepting state in A
by e-transitions: F'={s € S |eclose(s) N F # 0}
> All states here can reach a goal state with only e-transitions!
» Put an arc s = t into A’ if there is a transition s’ —— t in A with
s’ € eclose(s): R ={(s,x,t) | (s, x,t) € R for some s’ € eclose(s)}

32

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Example for e-Elimination

> Make s € S an accepting state /n A" if s can reach an accepting state in A
F'={s € S |eclose(s) N F # 0}
> All states here can reach a goal state with only e-transitions!

» Put an arc s = t into A’ if there is a transition s’ —— t in A with

R ={(s,x,t) | (s, x,t) € R for some s’ € eclose(s)}
Does s’ € eclose(sp) exist, s.t.
s.t.
s.t.
s.t.
s.t.
s.t.
s.t.
s.t.
s.t.

by e-transitions:

s’ € eclose(s):

I

S A A

Test s5 — 51
Test s i) s1:
Test s5 — 51
Test 55 — s
Test sp LN So:
Test 55 — s
Test 51 — s
Test s LN So:
Test 51 —> s

Does s’
Does s’
Does s’
Does s’
Does s’
Does s’
Does s’
Does s’

€ eclose(sp) exist,
€ eclose(sp) exist,
€ eclose(sp) exist,

€ eclose(sp) exist,
€ eclose(sy) exist,
€ eclose(sy) exist,

)
)
)
)
€ eclose(sp) exist,
)
)
)
€ eclose(sy) exist,

s/

1, u u u u u u

—a) 51?
b

— 51?
c

— 51?
a

— 52?
b

— 52?
c

— 52?
a

— 52?
b

— 52?
c

— 52?

32

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Example for e-Elimination |, ,

c
a b (o} b
c
> Make s € S an accepting state /n A" if s can reach an accepting state in A
by e-transitions: F'={s € S |eclose(s) N F # 0}

> All states here can reach a goal state with only e-transitions!
» Put an arc s = t into A’ if there is a transition s’ — t in A with

s’ € eclose(s): R ={(s,x,t) | (s, x,t) € R for some s’ € eclose(s)}
— Test sp — s1: Does s’ € eclose(so) exist, s.t. s’ — 51? No
— Test sp _b, s1: Does s’ € eclose(sy) exist, s.t. s’ b s1? Yes! s;
— Test sp — s1: Does s’ € eclose(so) exist, s.t. s’ — 57 No
— Test sp — s2: Does s’ € eclose(so) exist, s.t. s — 7 No
— Test sp — 5,1 Does s’ € eclose(so) exist, s.t. s’ -5 57 No
— Test sp — sp: Does s’ € eclose(so) exist, s.t. s' — ? Yes! s,
— Test 5§ — s5: Does s’ € eclose(s;) exist, s.t. s' —= 5,7 No
— Test s, — 5,1 Does s’ € eclose(s1) exist, s.t. s’ 25 %7 No
— Test 51 —» s5: Does s’ € eclose(s;) exist, s.t. s' — 5,7 Yes! s,

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

[Regular Expressions

33

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions

Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:

> ¢, the empty string, and every letter of the alphabet

Examples.

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions

Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:
> ¢, the empty string, and every letter of the alphabet

> Kleene star and Plus: repeat strings from an expression

Examples.
> 2° indicates 0 or more as: {a | a € {a}*}
> 27 indicates 1 or more as: {aa | o € {a}*}

34 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

.

Regular Expressions

Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:

> ¢, the empty string, and every letter of the alphabet

> Kleene star and Plus: repeat strings from an expression

> vertical bar (pipe): choose either the left or right expression

> concatenation, for sequencing expressions

Examples.
> 2° indicates 0 or more as: {a | a € {a}*}
> 2" indicates 1 or more as: {aa | a € {a}*}

> ves | no is the language with just the 2 given strings: { yes, no }

34

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Regular Expressions

Regular Expressions are another way to describe formal languages.

Basic Operators used to construct new expressions from old:

> ¢, the empty string, and every letter of the alphabet

Kleene star and Plus: repeat strings from an expression

vertical bar (pipe): choose either the left or right expression

>
>
> concatenation, for sequencing expressions
| 4

parentheses, for grouping

Examples.
> 2° indicates 0 or more as: {a | a € {a}*}
» 2" indicates 1 or more as: {aa | a € {a}*}
> ves | no is the language with just the 2 given strings: { yes, no }

> (0] 1)" indicates the set of binary numerals: {a |« € {0,1}*}

34

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero:

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

0

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0[(1(0]1)*)

]

35

)

{

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0[(1(0]1)*)
> The set of strings over {a, b, c} with just one c:

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0[(1(0]1)*)
> The set of strings over {a, b, c} with just one c: (a| b)*c(a | b)*

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

35

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero:
> The set of strings over {a, b, c} with just one c:

0[(1(0[1)")

(a | b) c(a| b)”
> The language of bit-strings that have an even number of 1s:

COMP1600/6260: Foundations of Computing

.

Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0](1(0]1)*)
> The set of strings over {a, b, c} with just one c: (a| b)*c(a | b)*

> The language of bit-strings that have an even number of 1s: 0°(10°10%)"
(Zero is even, s0 0...0 should be accepted. Thus, (0¥10*10*)* is wrong)

35 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0](1(0]1)*)
> The set of strings over {a, b, c} with just one c: (a| b)*c(a | b)*
> The language of bit-strings that have an even number of 1s: 0°(10°10%)"

(Zero is even, s0 0...0 should be accepted. Thus, (0¥10*10*)* is wrong)
> What's ((z*(x" | y*) 2))*?

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0](1(0]1)*)
> The set of strings over {a, b, c} with just one c: (a| b)*c(a | b)*
> The language of bit-strings that have an even number of 1s: 0°(10°10%)"
(Zero is even, s0 0...0 should be accepted. Thus, (0¥10*10*)* is wrong)
> What's ((z*(x* | y*) 2))*?
The set of strings over {x, y, z} with no x and y adjacent.

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

> A single zero or binary numerals without leading zero: 0](1(0]1)*)
> The set of strings over {a, b, c} with just one c: (a| b)*c(a | b)*
> The language of bit-strings that have an even number of 1s: 0°(10°10%)"
(Zero is even, s0 0...0 should be accepted. Thus, (0¥10*10*)* is wrong)
> What's ((z*(x" | y*) 2))*?
The set of strings over {x, y, z} with no x and y adjacent.
> What's 1| (0 (¢ |(.(0]1)°1))))? (Here, 2 ={.,0,1})

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions — More Examples

v

A single zero or binary numerals without leading zero: 0/(1(0]1)*)
The set of strings over {a, b, c} with just one c: (a| b)*c(a| b)*
The language of bit-strings that have an even number of 1s: 0*(10710")"
(Zero is even, s0 0...0 should be accepted. Thus, (0¥10*10*)* is wrong)
What's ((z*(x* | y*) 2))°?

The set of strings over {x, y, z} with no x and y adjacent.

What's 1 | (0 (¢ [(.(0]1)°1))))? (Here, z={., 0,11}

The binary fractional numerals between 0 and 1 with no trailing zeroes.

E.g. 1,0, 0.1, 0.110011 but not .1 or 0.10. The last 1 in the expression is
required to prevent redundant zeros at the end.

35

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Definition of Regular Expressions

Key Concept.
> regular expressions are purely syntactical — just like formulae
> but: every expression denotes a set of strings — this is the meaning.

Definition.
The regular expressions over alphabet ¥ and the sets that they denote are:

> () is a regular expression and denotes the empty set ()
> ¢ is a regular expression and denotes the set {¢}

> for each a € ¥, 2 is a regular expression and denotes the set {a}

36

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

The Definition of Regular Expressions

Key Concept.
> regular expressions are purely syntactical — just like formulae
> but: every expression denotes a set of strings — this is the meaning.

Definition.
The regular expressions over alphabet ¥ and the sets that they denote are:

> () is a regular expression and denotes the empty set ()
> ¢ is a regular expression and denotes the set {¢}
> for each a € ¥, 2 is a regular expression and denotes the set {a}

> If o and 3 are regular expressions denoting languages R and S resp., then:

» o | /3 denotes R U S

> o 3 denotes RS which is {ww' | w € RAw' € 5}

> " denotes R”, i.e., the set of finitely many r; € R, concatenated, i.e.,
R™ is (inductively) defined as {¢} U RR"

36

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions and DFAs

Key Insights.
> For every DFA A, we have regular expression r with L(A) = L(r).
(We didn't show or even state that yet!)

> For every regular expression r, we have a DFA A with L(r) = L(A).
(You will see this in the next few slides.)

> Recall that we already showed the equivalence of DFAs and NFAs.

> Thus, the “power” of NFAs / DFAs are completely described by regular
expressions (and vice versa). In other words:

DFAs, NFAs, and regular expressions are all equally expressive.

37

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions to e-NFAs

Key Insight.
> regular expressions are an inductively defined structure
> e.g., representable by an inductive data type in Haskell
> as a consequence, we can give inductive definition of the corresponding
automaton

Construction. (start state on left, final state on right)
> When the regular expression is a symbol a of the alphabet (language is
{a}) the automaton is
O—~0
> When the regular expression is ¢ (language is {¢}) the automaton is
o—+-0
> When the regular expression is () (language is ()) the automaton has no

edges
O @)

38 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Regular Expressions to NFAs, ctd

Suppose the NFA corresponding to some regular expression R is:

o R |0

Then, we can inductively define the NFAs corresponding to composite regular
expressions as follows:

kR O R o ® }eO

K oo“oo

RIR Oi/o

.

39 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

40

Example

Given the regular expression for binary numerals without leading zeros,
(0] 1(0]1)*), the previous algorithm (the inductive definition) gives this NFA:

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher =

Example

Given the regular expression for binary numerals without leading zeros,
(0] 1(0]1)*), the previous algorithm (the inductive definition) gives this NFA:

0
€ €
€
€
& sOo—{)s €
1 € \

40

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Closing the Loop

Given a finite alphabet X and a language L C *. The following are equivalent:
> [can be described by a regular expression
> L can be recognised by an e-NFA
> [can be recognised by an NFA
» L can be recognised by a DFA . ..
as we can convert regular expressions into e-NFAs into NFAs into DFAs.

Missing Link.
Construction of regular expressions from DFAs (not covered in this course).

41

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Summary

42

COMP1600/6260: Foundations of Computing

Dirk Pattinson and Pascal Bercher

Summary.

Starting Point. Finite Automata
> motivated by computers having finite memory (only)

> solving simple problems: is string s accepted?

Limitations of Finite Automata
> Some languages can't be recognised, e.g., L = {a"b" | n > 0}

Characterisation of expressive power

> can go back and forth between automata and regular expressions

Q. Are finite automata a “good” model of computation?
> if yes, why?
> if not, why not? What is missing?

43

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

Literature.

» Introduction to Automata Theory, Languages, and Computation
By Hopcroft, Motwani, and Ullman.
A classic text that has been re-worked from a standard textbook.
> Introduction To The Theory Of Computation
by Michael Sipser
The part on Automata and Languages covers (more than) what we have
discussed here.

> There are tons of exercises one can practice with.
(Online and in our repository.)

44

COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher

