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Overview of Week 9

▶ Introduction
▶ Grammars and Derivations
▶ The Chomsky Hierarchy
▶ Regular Grammars/Languages
▶ Context-Free Grammars/Languages
▶ Parse-trees and Ambiguity
▶ Pushdown Automata
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Introduction
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Terminology Recap: Formal Languages

▶ The alphabet or vocabulary of a formal language is a set of tokens (or
letters). It is usually denoted Σ.

▶ A string over Σ is a sequence of tokens.
▶ e.g., sequence may be empty, giving empty string ϵ
▶ e.g., ababc is a string over Σ = {a, b, c}

▶ A language with alphabet Σ is some set of strings over Σ.
▶ e.g., the set of all strings Σ∗

▶ e.g., the set of all strings of even length, {w ∈ Σ∗ | |w | % 2 == 0}
▶ e.g., ... we had many examples in the last two weeks!
▶ e.g., any subset of Σ∗
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Specifying Languages
Languages can be given . . .
▶ as a finite enumeration, e.g. L = {ϵ, a, ab, abb}

▶ as a set, by giving an acceptance predicate, i.e., L = {w ∈ Σ∗ | P(w)} for
some alphabet Σ. E.g., P(w) = |w | % 2 == 0.

▶ algebraically by regular expressions, e.g. L = L(r) for RegEx r
▶ by an automaton, e.g. L = L(A) for some FSA A (we had 3 kinds!)
▶ by a grammar (this lecture)

Grammar.
▶ a concept that has been invented in linguistics to describe natural

languages
▶ describes how strings are constructed rather than how membership can be

checked (e.g., by an automaton; though does it? what does a RegEx do?)
▶ the main tool to describe syntax; grammars are extremely important!

▶ Fun fact: My expertise on Hierarchical Planning (a subfield of Artificial
Intelligence) largely overlaps with formal grammars!
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Grammars and
Derivations
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Formal Grammars

Formal Definition. A grammar is a quadruple ⟨Vt , Vn, S, P⟩ where
▶ Vt is a finite set of terminal symbols (the alphabet)
▶ Vn is a finite set of non-terminal symbols disjoint from Vt

(Notation: V = Vt ∪ Vn)
▶ S is a distinguished non-terminal symbol called the start symbol
▶ P is a set of productions (also called production rules), each written

α → β

where
▶ α ∈ V ∗VnV ∗ (i.e., at least one non-terminal in α)
▶ β ∈ V ∗ (i.e., β is any sequence of symbols)
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Example (for Syntax)
The grammar (recall: grammars have the form ⟨Vt , Vn, S, P⟩)

G = ⟨{a, b}, {S, A}, S, {S → aAb, aA → aaAb, A → ϵ}⟩
has the following components:

▶ Terminals: {a, b}
▶ Non-terminals: {S, A}
▶ Start symbol: S

▶ Productions:
S → aAb

aA → aaAb
A → ϵ

Notation.
▶ Often, we just list the productions P, as all other components can be

inferred (S is the standard notation for the start symbol)
▶ The notation α → β1 | · · · | βn abbreviates the set of productions

α → β1, α → β2, . . . , α → βn

(like for inductive data types)
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Derivations
Intuition.
▶ A production α → β tells you what you can “make” if you have α:

you can turn it into β. It allows us to re-write any string γαρ to γβρ.
▶ Notation: γαρ ⇒ γβρ

Derivations.
▶ α ⇒∗ β if α can be re-written to β in 0 or more steps
▶ so ⇒∗ is the reflexive transitive closure of ⇒.

Sentential Forms of a grammar.
▶ informally: all strings from (Vt ∪ Vn)∗ that can be generated from S
▶ formally: S(G) = {w ∈ V ∗ | S ⇒∗ w}.

Language of a grammar.
▶ informally: all strings of terminal symbols that can be generated from the

start symbol S
▶ formally: L(G) = {w ∈ V ∗

t | S ⇒∗ w}, which is a subset of S(G)
▶ that’s the same as L(G) = S(G) ∩ V ∗

t
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Example
Productions of the grammar G .

S → aAb, aA → aaAb, A → ϵ.

Example Derivation.

S ⇒ aAb ⇒ aaAbb ⇒ aaaAbbb ⇒ aaabbb

▶ last string aaabbb is a word, others are sentential forms

Language of grammar G .

L(G) = {anbn | n ∈ N, n ≥ 1}

Alternative Grammar for the same language

S → aSb, S → ab.
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TheChomsky
Hierarchy
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The Chomsky Hierarchy
(by Noam Chomsky, a Linguist!)
Each grammar is of a type: (There are lots of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions α → β

Context-sensitive: (type 1) the length of the left hand side of each production
must not exceed the length of the right∗, |α| ≤ |β|.
▶ Note 1: There are other equivalent definitions which don’t

restrict the length
▶ Note 2∗: If ϵ ∈ L should be allowed, we are allowed S → ϵ,

but then we don’t allow S to occur on any right-hand side.
Context-free: (type 2) the left of each production must be a single

non-terminal. (Q. You might think that’s not type 1, why?)
Regular: (type 3) As for type 2, but the right of each production is further

constrained (details to come).

This also gives us a way to classify languages. (Next slide.)
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Classification of Languages

Definition. A language is type n if it can be generated by a type n grammar.

Immediate Fact.
▶ Every language of type n + 1 is also of type n.
▶ E.g., every context-free language (type 2) is also context-sensitive (type 1).

Establishing that a language is of type n
▶ give a grammar of type n that generates the language
▶ usually the easier task (and often fun! like designing an automaton/RegEx)

Disproving that a language is of type n
▶ must show that no type n-grammar generates the language
▶ usually a difficult problem. (There are complex theorems to help.)
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▶ usually the easier task (and often fun! like designing an automaton/RegEx)

Disproving that a language is of type n
▶ must show that no type n-grammar generates the language
▶ usually a difficult problem. (There are complex theorems to help.)
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Example – Language
{anbn | n ∈ N, n ≥ 1}
Different grammars for this language
▶ Unrestricted (type 0):

S → aAb
aA → aaAb
A → ϵ

▶ Context-free (type 2):
S → ab
S → aSb

Recall. We know from last week that there is no DFA accepting L
▶ We will see that this means that there’s no regular grammar
▶ so the language is context-free, but not regular.
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Regular (Type 3) Grammars
Definition. A grammar is regular if all its productions are either right-linear,
i.e. of the form

A → aB or A → a or A → ϵ

or left-linear, i.e., of the form

A → Ba or A → a or A → ϵ.

▶ right and left linear grammars are equivalent: they generate the same
languages (and can hence be turned into each other)

▶ we focus on right linear ones (it’s probably slightly more intuitive)
▶ i.e., one symbol is generated at a time (cf. DFA/NFA!)
▶ rule application terminates with terminal symbols or ϵ

Next Goal. Relate regular languages to DFAs/NFAs/RegExs.
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Regular
Grammars/Languages

15 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Regular Languages – Many Views
Theorem. Let L be a language. Then the following are equivalent:
▶ L is the language generated by a right-linear grammar;
▶ L is the language generated by a left-linear grammar;
▶ L is the language accepted by some DFA;
▶ L is the language accepted by some NFA;
▶ L is the language specified by a regular expression.

So far.
▶ have seen that NFAs and DFAs generate the same languages
▶ have shown that regular expressions can be turned into NFAs (hence DFAs)
▶ claimed that DFAs can be turned into regular expressions

Goal. Show that NFAs and right-linear grammars generate the same languages.
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From NFAs to Right-linear Grammars
Given. Take an NFA A = (Σ, S, s0, F , R).
▶ alphabet, state set, initial state, final states, transition relation

Construction of a right-linear grammar
▶ terminal symbols are elements of the alphabet Σ;
▶ non-terminal symbols are the states S;
▶ start symbol is the start state s0;
▶ productions are constructed as follows:

Each transition
T a−→ U

gives production
T → aU

Each final state
T ∈ F

gives production
T → ϵ

(Formally, a transition T a−→ U means (T , a, U) ∈ R.)

Observation. The grammar so generated is right-linear, and hence regular.
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NFAs to Right-linear Grammars –
Example
Given. A non-deterministic automaton

����
- s -a��6a

����
s1 -

b��6b
����
s2 -c��6c

�������
s3

Equivalent Grammar obtained by construction

S → aS S2 → cS2

S → aS1 S2 → cS3

S1 → bS1 S3 → ε

S1 → bS2

(We capitalised the NFA states to make clear they are non-terminals!)

Exercise. Convince yourself that the NFA accepts precisely the words that the
grammar generates. (We still owe a proof of correctness of the translation.)
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From Right-linear Grammars to NFAs
Given. Right-linear grammar (Vt , Vn, S, P)
▶ terminals, non-terminals, start symbol, productions

Construction of an equivalent NFA has
▶ alphabet is the terminal symbols Vt ;
▶ states are the non-terminal symbols Vn plus new state Sf (for final);
▶ start state is the start symbol S;
▶ final states are Sf and all non-terminals T such that there exists a

production T → ε;
▶ transition relation is constructed as follows:

Each production
T → aU

gives transition
T a−→ U

Each production
T → a

gives transition
T a−→ Sf
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Right-linear Grammars to NFAs – Ex.
Given. Grammar G with the productions

S → 0 S → 1T
T → ε T → 0T T → 1T

(generates the language

of binary strings without leading zeros)

Equivalent Automaton obtained by construction.

S

Sf

T

0

1
0, 1

Exercise. Convince yourself that the NFA accepts precisely the words that the
grammar generates. (Again we still owe a correctness proof of the translation.)
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Context-Free
Grammars/Languages
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Context-Free (Type 2) Grammars (CFGs)

Recall. A grammar is type-2 or context-free if all productions have the form

A → w

where A ∈ Vn is a non-terminal, and w ∈ V ∗ is an (arbitrary) string.
▶ left side is non-terminal
▶ right side can be anything
▶ independent of context, replace LHS (left hand side) with RHS (right HS).

In Contrast. Context-Sensitive grammars may have productions

αAβ → αwβ

which may only replace A by w if A appears in context α β
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Example
Goal. Design a CFG for the language

L = {ambncm−n | m ≥ n ≥ 0}

Strategy. First, understand the language!

Every word w ∈ L can be split
w = am−nanbncm−n

and hence L = {akanbnck | n, k ≥ 0}

▶ convenient to not have comparison between n and m
▶ generate ak . . . ck , i.e., same number of leading as and trailing cs

▶ fill . . . in the middle by anbn, i.e., same number of as and bs
▶ use different non-terminals for both phases of the construction

Resulting Grammar.

(productions only)
S → aSc | T
T → aTb | ϵ
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Example cont’d
Grammar

S → aSc | T
T → aTb | ϵ

Example Derivation. of aaabbc:

S ⇒ aSc
⇒ aTc
⇒ aaTbc
⇒ aaaTbbc
⇒ aaabbc
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The Power of Context-Free Grammars

A fun example (for the “usefulness” of CFGs):
http://pdos.csail.mit.edu/scigen

This tool generates (fake) scientific papers based on formal grammars!

Note that:
▶ Sadly, the generator doesn’t seem to work anymore.
▶ But the page mentions where their (fake papers) were accepted!
▶ They link similar “services”.
▶ Maybe you can still find a working version somewhere...
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ParseTrees and
Ambiguity
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Parse Trees
Idea. Represent derivation as tree rather than as list of rule applications
▶ describes where and how productions have been applied
▶ generated word can be collected at the leaves

Example for the grammar that we have just constructed
S

Sa c

T

Ta b

Ta b

ϵ
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S → aSc | T
T → aTb | ϵ

word: w = aaabbc



Parse Trees Carry Semantics
Take the code

if e1 then if e2 then s1 else s2

where e1, e2 are boolean expressions and s1, s2 are subprograms.

Two Readings.

if e1 then ( if e2 then s1 else s2 )

and

if e1 then ( if e2 then s1 ) else s2

Goal. unambiguous interpretation of the code leading to determined and clear
program execution.
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Ambiguity

Recall that we can present CFG derivations as parse trees.

Until now this was merely a pretty presentation; now it will become important.

Definitions:
▶ A context-free grammar G is unambiguous iff every string can be

derived by at most one parse tree.
▶ G is ambiguous iff there exists a word w ∈ L(G) derivable by more than

one parse tree.
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Example: If-Then and If-Then-Else
Consider the CFG

S → if bexp then S | if bexp then S else S | prog

where bexp and prog stand for boolean expressions and if statement-free
programs respectively, defined elsewhere.

The string if e1 then if e2 then s1 else s2 then has two parse trees:

S
yy ""

S
yy �� "" ((if e1 then S

uu || �� ""

if e1 then S
yy ��

else S
��

if e2 then S
��

else S
��

if e2 then S
��

s2

s1 s2 s1
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Example: If-Then and If-Then-Else

That grammar was ambiguous. But here’s a grammar accepting the exact
same language that is unambiguous:

S → if bexp then S | T
T → if bexp then T else S | prog

There is now only one parse tree for if e1 then if e2 then s1 else s2.
(Given on the next slide.)
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Example: If-Then and If-Then-Else
S

yy ""
if e1 then S

��
T

uu || �� ""
if e2 then T

��

else S
��

s1 T
��

s2
You cannot parse this string as if “e1 then ( if e2 then s1 ) else s2”.

Q. Does that mean we can’t generate the ‘meaning’ of:
“e1 then ( if e2 then s1 ) else s2”?
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Reflecting on This Example
Observation.
▶ there’s more than one grammar for a language
▶ some are ambiguous, others are not
▶ ambiguity is a property of grammars

Grammars for Programs.
▶ ambiguity is bad: don’t know how program will execute!

▶ replace ambiguous grammar with unambiguous one

Choices for converting ambiguous grammars to unambiguous ones
▶ decide on just one parse tree
▶ e.g. if e1 then ( if e2 then s1 ) else s2 vs.

if e1 then ( if e2 then s1 else s2 )
▶ in example: we have chosen:

if e1 then ( if e2 then s1 ) else s2
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What Ambiguity Isn’t
Q. Is the grammar with the following production ambiguous?

T → if bexp then T else S

Reasoning.
▶ Suppose that the above production was used
▶ we can then expand either T or S first.

A. This is not ambiguity.
▶ both options give rise to the same parse tree
▶ indeed, for context-free languages it doesn’t matter what production is

applied first.
▶ thinking about parse trees, both expansions happen in parallel.

Main Message. Parse trees provide a better representation of syntax than
derivations.
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Inherently Ambiguous Languages
Q1. Can we always remove ambiguity?

Example. Language L = {aibjck | (j = i or j = k) and i , j , k ∈ N}

Q2. Why is this context-free?

A. Note that L = {aibick | i , k ∈ N} ∪ {aibjc j | i , j ∈ N}
▶ idea: start with production that “splits” between the union
▶ S → T | W where T is “left” and W is “right”

Complete Grammar. It starts with S → T | W . Assume:
▶ left part uses non-terminals T , U, V
▶ right part uses non-terminals W , X , Y
T → UV W → XY
U → aUb | ϵ X → aX | ϵ
V → cV | ϵ Y → bYc | ϵ

Q3. Why is this language ambiguous?
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Inherently Ambiguous Languages
Problem. Both left part aibick and right part aibjc j has non-empty
intersection: aibic i

Ambiguity where a, b and c are equi-numerous, e.g., a1b1c1 = abc:

S
��

S
��

T
}} !!

W
|| ""

U
~~ �� !!

V
�� !!

X
~~ ��

Y
|| ��   

a U
��

b c V
��

a X
��

b Y
��

c

ϵ ϵ ϵ ϵ

So there are two parse trees for the same word!

Fact. There is no unambiguous grammar for this language (we don’t prove this)
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The Bad News

Q1. Can we compute an unambiguous grammar whenever one exists?

Q2. Can we even determine whether an unambiguous grammar exists?

A. If we interpret “compute” and “determine” as “by means of a program”
(that works for an arbitrary CFL), then no.
▶ There is no program that solves this problem for all grammars
▶ input: CFG G , output: ambiguous or not. This problem is undecidable

(More undecidable problems next week!)
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Example: Subtraction
Example.

S → S − S | int
▶ int stands for integers
▶ the intended meaning of − is subtraction

Ambiguity. S

�� �� ��

S

�� �� ��
S

�� �� ��

− 1 5 − S

�� �� ��
5 − 3 3 − 1

Evaluation.
▶ left parse tree evaluates to 1
▶ right parse tree evaluates to 3
▶ so ambiguity matters! (As we also saw for the if/else statements.)
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Technique 1: Associativity
Idea for ambiguity induced by binary operator (think: −)
▶ prescribe “implicit parentheses”, e.g. a − b − c ≡ (a − b) − c
▶ make operator associate to the left or the right

Left Associativity.
S → S − int | int

Result.
▶ 5 − 3 − 1 can only be read as (5 − 3) − 1
▶ this is left associativity

Right Associativity.
S → int − S | int

Idea. Break the symmetry
▶ one side of operator forced to lower level
▶ here: force right hand side of i to lower level
▶ create example derivation trees for all three grammars to see why that helps
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Example: Multiplication and Addition

Example. Grammar for addition and multiplication

S → S ∗ S | S + S | int

Ambiguity.
▶ 1 + 2 ∗ 3 can be read as (1 + 2) ∗ 3 and 1 + (2 ∗ 3) with different results
▶ also 1 + 2 + 3 is ambiguous – but this doesn’t matter here.

Take 1. The trick we have just seen
▶ strictly evaluate from left to right

▶ but this gives 1 + 2 ∗ 3 ≡ (1 + 2) ∗ 3, not intended!

Goal. Want ∗ to have higher precedence than +
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Technique 2: Precedence
Example Grammar giving ∗ higher precedence:

S → S + T | T
T → T ∗ int | int

Given e.g. 1 + 2 ∗ 3 or 2 ∗ 3 + 1
▶ forced to expand + first: otherwise only ∗
▶ so + will be last operation evaluated

Example. Derivation of 1 + 2 ∗ 3 (which we want to interpret as 1 + (2 ∗ 3))
▶ suppose we start with S ⇒ T ⇒ T ∗ int
▶ stuck, as cannot generate 1 + 2 from T

Idea. Forcing operation with higher priority to lower level
▶ three levels: S, (highest), T (middle) and integers
▶ lowest-priority operation generated by highest-level non-terminal
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Example: Basic Arithmetic

Repeated use of + and ∗:

S → S + T | S − T | T
T → T ∗ U | T/U | U
U → (S) | int

Main Differences.
▶ have parentheses to break operator priorities, e.g. (1 + 2) ∗ 3
▶ parentheses at lowest level, so highest priority
▶ lower-priority operator can be inside parentheses
▶ expressions of arbitrary complexity (no nesting in previous examples)
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Example: Balanced Brackets

S → ϵ | (S) | SS

Ambiguity.
▶ associativity: create brackets from left or from right (as before).
▶ at least wo ways of generating ():

▶ S ⇒ SS ⇒ S ⇒ (S) ⇒ () and
▶ S ⇒ (S) ⇒ ()

▶ indeed, any expression has infinitely many parse trees

Reason. More than one way to derive ϵ.
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Technique 3: Controlling ϵ

Alternative Grammar with only one way to derive ϵ:

S → ϵ | T
T → TU | U
U → () | (T )

▶ ϵ can only be derived from S
▶ all other derivations go through T
▶ here: combined with multiple level technique
▶ ambiguity with ϵ can be hard to miss!
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PushdownAutomata
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From Grammars to Automata

So Far.
▶ regular languages correspond to regular grammars (by definition).
▶ regular languages are exactly those accepted by FSAs or regular expressions

(or regular grammars, of course).

Q. What automata correspond to context-free grammars?
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General Structure of Automata

Finite

State

Control

input taperead
head

a0 a1 a2 ... an. . . .

Auxiliary

Memory

▶ input tape is a set of symbols
▶ finite state control is just like for DFAs / NFAs
▶ symbols are processed and head advances
▶ new aspect: auxiliary memory

Auxiliary Memory classifies languages and grammars
▶ no auxiliary memory: NFAs / DFAs: regular languages
▶ stack: push-down automata: context-free languages
▶ unbounded tape: Turing machines: all languages
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PDAs cont’d
Actions of a push-down automaton
▶ change of internal state
▶ pushing or popping the stack
▶ advance to next input symbol

Action dependencies. Actions generally depend on
▶ current state (of finite state control),
▶ input symbol, and
▶ symbol at the top of the stack

Acceptance. The machine accepts if
▶ input string is fully read
▶ machine is in accepting state

Variation.
▶ PDAs can equivalently be defined without final states F .
▶ Then, acceptance condition is having an empty stack

(after the input word was completely read). But we don’t use that!
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Example
Language (that cannot be recognised by a DFA)

L = {anbn | n ≥ 1}

▶ cannot be recognised by a DFA
▶ can be generated by a context-free grammar
▶ can be recognised by a PDA

PDA design. (ad hoc, but showcases the idea)
▶ phase 1: (state s1) push a’s from the input onto the stack
▶ phase 2: (state s2) pop a’s from the stack, if there is a b on input
▶ finalise: if the input is exhausted and the stack is empty, enter a final state

(s3), i.e., accept the string.
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Deterministic PDA – Definition
Definition. A deterministic PDA has the form (S, s0, F , Σ, Γ, Z , δ), where
▶ S is the finite set of states, s0 ∈ S is the initial state and F ⊆ S are the

final states;
▶ Σ is the finite alphabet, or set of input symbols;
▶ Γ is the finite set of stack symbols, and Z ∈ Γ is the initial stack symbol;
▶ δ is a (partial) transition function

δ : S × (Σ ∪ {ϵ}) × Γ ↛ S × Γ∗

δ : (state, input token or ϵ, top-of-stack) ↛ (new state, new top of stack)

Additional Requirement to ensure determinism:
▶ if δ(s, ϵ, γ) is defined, then δ(s, x , γ) is undefined for all x ∈ Σ and γ ∈ Γ
▶ ensures that automaton has at most one execution
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Notation
Given. Deterministic PDA with transition function

δ : S × (Σ ∪ {ϵ}) × Γ ↛ S × Γ∗

δ : (state, input token or ϵ, top-of-stack) ↛ (new state, new top of stack)

Notation.
▶ write δ(s, x , γ) = s ′/σ

▶ σ ∈ Γ∗ is a string that replaces top stack symbol
▶ final states are usually underlined (s)

Rationale.
▶ replacing top stack symbol gives just one operation for push and pop
▶ pop: δ(s, x , γ) = s ′/ϵ

▶ push: δ(s, x , γ) = s ′/wγ
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Two types of PDA transition

Input-consuming transitions
▶ δ contains (s1, x , γ) 7→ s2/σ

▶ automaton reads symbol x
▶ symbol x is consumed

Non-consuming transitions
▶ independent of input symbol
▶ can happen any time and does not consume input symbol
▶ δ contains (s1, ϵ, γ) 7→ s2/σ

Recall that for the pair s1, γ, we can’t have any other entry (s1, x , γ) with
x ∈ Σ to stay deterministic! (See slide 50)
Q. How is this different from epsilon transitions in ϵ-NFAs?
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Example cont’d
Language L = {anbn | n ≥ 1}

Push-down automaton
▶ starts with Z (initial stack symbol) on stack
▶ final state is s3 (underlined)
▶ transition function (partial) given by

δ(s0, a, Z ) 7→ s1/aZ push first a
δ(s1, a, a) 7→ s1/aa push further a’s
δ(s1, b, a) 7→ s2/ϵ start popping a’s
δ(s2, b, a) 7→ s2/ϵ pop further a’s
δ(s2, ϵ, Z ) 7→ s3/ϵ accept

(δ is partial, i.e., undefined for many arguments)
Also note that we don’t have to delete Z in the last step.
The stack doesn’t have to be empty at the end.
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Example cont’d — PDA Trace
PDA configurations
▶ triples: (state, remaining input, stack)
▶ top of stack on the left (by convention)

Example Execution.

(s0, aaabbb, Z ) ⇒

(s1, aabbb, aZ ) (push first a)
⇒ (s1, abbb, aaZ ) (push further a’s)
⇒ (s1, bbb, aaaZ ) (push further a’s)
⇒ (s2, bb, aaZ ) (start popping a’s)
⇒ (s2, b, aZ ) (pop further a’s)
⇒ (s2, ϵ, Z ) (pop further a’s)
⇒ (s3, ϵ, ϵ)

(accept)

Accepting execution. Input exhausted, ends in final state (as usual!).
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Example cont’d — Rejection

PDA execution.

(s0, aaba, Z ) ⇒ (s1, aba, aZ )
⇒ (s1, ba, aaZ )
⇒ (s2, a, aZ )

⇒ ???

Non-accepting execution.
▶ No transition possible, stuck without reaching final state
▶ rejection happens when transition function is undefined for current

configuration (state, input, top of stack) or when word is consumed, and
no epsilon transitions can bring us to a final state.
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Example: Palindromes with ‘Centre
Mark’
Example Language.

L = {wcwR | w ∈ {a, b}∗ ∧ wR is w reversed}

Deterministic PDA that accepts L

▶ Push a’s and b’s onto the stack as we seem them;
▶ When we see c, change state;
▶ Now try to match the tokens we are reading with the tokens on top of the

stack, popping as we go;
▶ If the top of the stack is the empty stack symbol Z , enter the final state

via an ϵ-transition. Hopefully our input has been used up too!

Exercise. Define this formally!
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Non-Deterministic PDAs
Deterministic PDAs
▶ transitions are a partial function

δ : S × (Σ ∪ {ϵ}) × Γ ↛ S × Γ∗

δ : (state, input token or ϵ, top-of-stack) ↛ (new state, new top of stack)

▶ side condition about ϵ-transitions

Non-Deterministic PDAs
▶ transitions given by relation

δ ⊆ S × (Σ ∪ {ϵ}) × Γ × S × Γ∗

▶ no side condition (at all).

Main differences
▶ for deterministic PDA: at most one transition possible
▶ for non-deterministic PDA: zero or more transitions possible
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Non-Deterministic PDAs cont’d
Finite Automata
▶ non-determinism is convenient
▶ but doesn’t give extra power (subset construction)
▶ can convert every NFA to an equivalent DFA

Push-down Automata.
▶ non-determinism gives extra power
▶ cannot convert every non-deterministic PDA to deterministic PDA
▶ there are context- free languages that can only be recognised by

non-deterministic PDA
▶ intuition: non-determinism allows “guessing”

Grammar / Automata correspondence
▶ non-deterministic PDAs are more important
▶ they correspond to context-free languages

58 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



Example: Even-Length Palindromes
Palindromes of even length, without centre-marks

L = {wwR | w ∈ {a, b}∗ ∧ wR is w reversed}
▶ this is a context-free language
▶ cannot be recognised by deterministic PDA
▶ intuitive reason: no centre-mark, so don’t know when first half of word is

read

Non-deterministic PDA for L has the transition
δ(s, ϵ, γ) = r/x

▶ x ∈ {a, b, Z}, s is the ‘push’ state and r the ‘match and pop’ state.

Intuition
▶ “guess” (non-deterministically) whether we need to enter “match-and-pop”

state
▶ automaton gets stuck if guess is not correct (no harm done)
▶ automaton accepts if guess is correct
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Grammars and PDAs

Theorem. Context-free languages and non-deterministic PDAs are equivalent
▶ for every CFL L there exists a PDA that accepts L
▶ if L is accepted by a non-deterministic PDA, then L is a CFL.

Proof. We only do one direction: construct PDA from CFL (i.e., CFL to PDA).
▶ other direction (i.e., PDA to CFL) quite complex.
▶ for our proof, since we have a CFL, by definition, there is CFG.
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From CFG to PDA
Given. Context-Free Grammar G = (Vt , Vn, S, P)

Construct non-deterministic PDA A = (Q, q0, F , Σ, Γ, Z , δ)

States. q0 (initial state), q1 (working state) and q2 (final state).

Alphabet. Σ = Vt , terminal symbols of the grammar

Stack Alphabet. Γ = Vt ∪ Vn ∪ {Z}

Initialisation.
▶ push start symbol S onto stack, enter working state q1
▶ δ(q0, ϵ, Z ) 7→ q1/SZ

Termination.
▶ if the stack is empty (i.e., just contains Z ), terminate
▶ δ(q1, ϵ, Z ) 7→ q2/ϵ

61 COMP1600/6260: Foundations of Computing Dirk Pattinson and Pascal Bercher



From CFGs to PDAs: working state
Idea.
▶ build the derivation on the stack by expanding non-terminals according to

productions
▶ if a terminal appears that matches the input, pop it
▶ terminate, if the entire input has been consumed

Expand Non-Terminals.
▶ non-terminals on the stack are replaced by right hand side of productions
▶ δ(q1, ϵ, A) 7→ q1/α for all productions A → α

Pop Terminals.
▶ terminals on the stack are popped if they match the input
▶ δ(q1, x , x) 7→ q1/ϵ for all terminals x

Result of Construction. Non-deterministic PDA
▶ may have more than one production for a non-terminal
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Example — Derive a PDA for a CFG
Arithmetic Expressions as a grammar:

S → S + T | T
T → T ∗ U | U
U → (S) | int

1. Initialise:

δ(q0, ϵ, Z ) 7→ q1/SZ

2. Expand non-terminals:

δ(q1, ϵ, S) 7→ q1/S + T δ(q1, ϵ, T ) 7→ q1/U
δ(q1, ϵ, S) 7→ q1/T δ(q1, ϵ, U) 7→ q1/(S)
δ(q1, ϵ, T ) 7→ q1/T ∗ U δ(q1, ϵ, U) 7→ q1/int
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CFG to PDA cont’d

3. Match and pop terminals:

δ(q1, +, +) 7→ q1/ϵ

δ(q1, ∗, ∗) 7→ q1/ϵ

δ(q1, int, int) 7→ q1/ϵ

δ(q1, (, () 7→ q1/ϵ

δ(q1, ), )) 7→ q1/ϵ

4. Terminate:

δ(q1, ϵ, Z ) 7→ q2/ϵ
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Example Trace

(q0, int ∗ int, Z ) ⇒ (q1, int ∗ int, SZ )
⇒ (q1, int ∗ int, TZ )
⇒ (q1, int ∗ int, T ∗ UZ )
⇒ (q1, int ∗ int, U ∗ UZ )
⇒ (q1, int ∗ int, int ∗ UZ )
⇒ (q1, ∗int, ∗UZ )
⇒ (q1, int, UZ )
⇒ (q1, int, intZ )
⇒ (q1, ϵ, Z )
⇒ (q2, ϵ, ϵ)
⇒ accept
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Summary about PDAs

▶ Definition of deterministic PDA
▶ Definition of non-deterministic PDA
▶ PDA configurations
▶ Relation of PDAs to CFGs/CFLs (same!)
▶ Compilation: CFGs to PDAs
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