COMP1600, week 9:

Grammars and Push-

down Automata (PDAs)

convenors: Dirk Pattinson, Pascal Bercher lecturer: Pascal Bercher slides based on those by: Dirk Pattinson (with contributions by Victor Rivera and previous colleagues)

Australian National University

Semester 2, 2024

Overview of Week 9

- **Introduction**
- ▶ Grammars and Derivations
- ▶ The Chomsky Hierarchy
- ▶ Regular Grammars/Languages
- ▶ Context-Free Grammars/Languages
- ▶ Parse-trees and Ambiguity
- Pushdown Automata

Introduction

Terminology Recap: Formal Languages

- ▶ The **alphabet** or **vocabulary** of a formal language is a set of **tokens** (or **letters**). It is usually denoted Σ.
- \blacktriangleright A string over Σ is a *sequence* of tokens.
	- ▶ e.g., sequence may be empty, giving empty string *ϵ*
	- **•** e.g., ababc is a string over $\Sigma = \{a, b, c\}$

Terminology Recap: Formal Languages

- ▶ The **alphabet** or **vocabulary** of a formal language is a set of **tokens** (or **letters**). It is usually denoted Σ.
- \blacktriangleright A string over Σ is a *sequence* of tokens.
	- ▶ e.g., sequence may be empty, giving empty string *ϵ*
	- **•** e.g., ababc is a string over $\Sigma = \{a, b, c\}$
- \triangleright A **language** with alphabet Σ is some set of strings over Σ.
	- \triangleright e.g., the set of all strings Σ^*
	- ► e.g., the set of all strings of even length, $\{w \in \Sigma^* \mid |w| \sim 2 \}$
	- \triangleright e.g., ... we had many examples in the last two weeks!
	- \blacktriangleright e.g., any subset of Σ^*

Languages can be given ...

▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.
- \triangleright algebraically by regular expressions, e.g. $L = L(r)$ for RegEx r

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.
- \triangleright algebraically by regular expressions, e.g. $L = L(r)$ for RegEx r
- ▶ by an automaton, e.g. $L = L(A)$ for some FSA A (we had 3 kinds!)

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.
- \triangleright algebraically by regular expressions, e.g. $L = L(r)$ for RegEx r
- ▶ by an automaton, e.g. $L = L(A)$ for some FSA A (we had 3 kinds!)
- \triangleright by a grammar (this lecture)

Languages can be given ...

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.
- \triangleright algebraically by regular expressions, e.g. $L = L(r)$ for RegEx r
- ▶ by an automaton, e.g. $L = L(A)$ for some FSA A (we had 3 kinds!)
- \triangleright by a grammar (this lecture)

Grammar.

- ▶ a concept that has been invented in linguistics to describe natural languages
- ▶ describes how strings are *constructed* rather than how membership can be checked (e.g., by an automaton; though does it? what does a RegEx do?)
- \triangleright the main tool to describe syntax; grammars are extremely important!

Languages can be given ...

- ▶ as a finite enumeration, e.g. $L = \{\epsilon, a, ab, abb\}$
- ▶ as a set, by giving an acceptance predicate, i.e., $L = \{w \in \Sigma^* \mid P(w)\}\$ for some alphabet Σ . E.g., $P(w) = |w|$ % 2 = 0.
- \triangleright algebraically by regular expressions, e.g. $L = L(r)$ for RegEx r
- ▶ by an automaton, e.g. $L = L(A)$ for some FSA A (we had 3 kinds!)
- \triangleright by a grammar (this lecture)

Grammar.

- ▶ a concept that has been invented in linguistics to describe natural languages
- ▶ describes how strings are *constructed* rather than how membership can be checked (e.g., by an automaton; though does it? what does a RegEx do?)
- \triangleright the main tool to describe syntax; grammars are extremely important!
- ▶ Fun fact: My expertise on Hierarchical Planning (a subfield of Artificial Intelligence) largely overlaps with formal grammars!

Grammars and **Derivations**

Formal Grammars

Formal Definition. A *grammar* is a quadruple $\langle V_t, V_n, S, P \rangle$ where

- \blacktriangleright V_t is a finite set of *terminal symbols* (the alphabet)
- \triangleright V_n is a finite set of **non-terminal symbols** disjoint from V_t (Notation: $V = V_t \cup V_n$)
- \triangleright S is a distinguished non-terminal symbol called the *start symbol*
- \triangleright P is a set of productions (also called production rules), each written

$$
\alpha \to \beta
$$

where

 $▶ a ∈ V^*V_nV^*$ (i.e., at least one non-terminal in *α*) \triangleright $\beta \in V^*$ (i.e., β is any sequence of symbols)

Example (for Syntax)

The grammar $(\text{recall: grammars have the form } \langle V_t, V_n, S, P \rangle)$ $G = \{\{a, b\}, \{S, A\}, S, \{S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow \epsilon\}\}\$

has the following components:

Example (for Syntax)

The grammar $(\text{recall: grammars have the form } \langle V_t, V_n, S, P \rangle)$ $G = \{\{a, b\}, \{S, A\}, S, \{S \rightarrow aAb, aA \rightarrow aaAb, A \rightarrow \epsilon\}\}\$

has the following components:

 \blacktriangleright Terminals: $\{a, b\}$ ▶ Non-terminals: {S*,* A} ▶ Start symbol: S ▶ Productions: $S \rightarrow aAb$ $aA \rightarrow aaAb$ $A \rightarrow \epsilon$

Example (for Syntax)

The grammar $(\text{recall: grammars have the form } \langle V_t, V_n, S, P \rangle)$ $G = \{\{a, b\}, \{S, A\}, S, \{S \rightarrow aAb, aA \rightarrow aA, A \rightarrow \epsilon\}\}\$

has the following components:

 \blacktriangleright Terminals: $\{a, b\}$ ▶ Non-terminals: {S*,* A} ▶ Start symbol: S ▶ Productions: $S \to aAb$ $aA \rightarrow aA$ $A \rightarrow \epsilon$

Notation.

- \triangleright Often, we just list the productions P, as all other components can be inferred $(S$ is the standard notation for the start symbol)
- **►** The notation $\alpha \to \beta_1 \mid \cdots \mid \beta_n$ abbreviates the set of productions

$$
\alpha \to \beta_1, \quad \alpha \to \beta_2, \quad \ldots, \quad \alpha \to \beta_n
$$

(like for inductive data types)

Intuition.

▶ A production *α* → *β* tells you what you can "make" if you have *α*: you can turn it into *β*. It allows us to re-write any string *γαρ* to *γβρ*.

▶ Notation: *γαρ* ⇒ *γβρ*

Intuition.

- ▶ A production *α* → *β* tells you what you can "make" if you have *α*: you can turn it into *β*. It allows us to re-write any string *γαρ* to *γβρ*.
- ▶ Notation: *γαρ* ⇒ *γβρ*

Derivations.

- \rightharpoonup *α* \Rightarrow ^{*} *β* if *α* can be re-written to *β* in 0 or more steps
- **►** so \Rightarrow^* is the *reflexive transitive closure* of \Rightarrow .

Intuition.

- ▶ A production *α* → *β* tells you what you can "make" if you have *α*: you can turn it into *β*. It allows us to re-write any string *γαρ* to *γβρ*.
- ▶ Notation: *γαρ* ⇒ *γβρ*

Derivations.

- \rightharpoonup *α* \Rightarrow ^{*} *β* if *α* can be re-written to *β* in 0 or more steps
- **►** so \Rightarrow^* is the *reflexive transitive closure* of \Rightarrow .

Sentential Forms of a grammar.

- ▶ informally: all strings from $(V_t \cup V_n)^*$ that can be generated from S
- ▶ formally: $S(G) = \{ w \in V^* \mid S \Rightarrow^* w \}.$

Intuition.

- ▶ A production *α* → *β* tells you what you can "make" if you have *α*: you can turn it into *β*. It allows us to re-write any string *γαρ* to *γβρ*.
- ▶ Notation: *γαρ* ⇒ *γβρ*

Derivations.

- \rightharpoonup *α* \Rightarrow ^{*} *β* if *α* can be re-written to *β* in 0 or more steps
- **►** so \Rightarrow^* is the *reflexive transitive closure* of \Rightarrow .

Sentential Forms of a grammar.

- ▶ informally: all strings from $(V_t \cup V_n)^*$ that can be generated from S
- ▶ formally: $S(G) = \{ w \in V^* \mid S \Rightarrow^* w \}.$

Language of a grammar.

- ▶ informally: all strings of terminal symbols that can be generated from the start symbol S
- ▶ formally: $L(G) = \{ w \in V_t^* \mid S \Rightarrow^* w \}$, which is a subset of $S(G)$
- ▶ that's the same as $L(G) = S(G) \cap V_t^*$

$$
S \to aAb, \qquad aA \to aaAb, \qquad A \to \epsilon.
$$

Example Derivation.

$$
S \to aAb, \qquad aA \to aaAb, \qquad A \to \epsilon.
$$

Example Derivation.

$$
S \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aaaAbbb \Rightarrow aaabbb
$$

▶ last string aaabbb is a word, others are sentential forms

$$
S \to aAb, \qquad aA \to aaAb, \qquad A \to \epsilon.
$$

Example Derivation.

$$
S \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aaaAbbb \Rightarrow aaabbb
$$

 \blacktriangleright last string aaabbb is a word, others are sentential forms **Language** of grammar G.

$$
S \to aAb, \qquad aA \to aaAb, \qquad A \to \epsilon.
$$

Example Derivation.

$$
S \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aaaAbbb \Rightarrow aaabbb
$$

 \blacktriangleright last string aaabbb is a word, others are sentential forms **Language** of grammar G.

$$
L(G) = \{a^n b^n \mid n \in \mathbb{N}, n \geq 1\}
$$

Alternative Grammar for the same language

$$
S \to aAb, \qquad aA \to aaAb, \qquad A \to \epsilon.
$$

Example Derivation.

$$
S \Rightarrow aAb \Rightarrow aaAbb \Rightarrow aaaAbbb \Rightarrow aaabbb
$$

 \blacktriangleright last string aaabbb is a word, others are sentential forms **Language** of grammar G.

$$
L(G) = \{a^n b^n \mid n \in \mathbb{N}, n \geq 1\}
$$

Alternative Grammar for the same language

$$
S\to aSb, \qquad S\to ab.
$$

The Chomsky **Hierarchy**

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

- ▶ Note 1: There are other equivalent definitions which don't restrict the length
- ▶ Note 2[∗] : If *ϵ* ∈ L should be allowed, we are allowed S → *ϵ*, but then we don't allow S to occur on any right-hand side.

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

- ▶ Note 1: There are other equivalent definitions which don't restrict the length
- ▶ Note 2[∗] : If *ϵ* ∈ L should be allowed, we are allowed S → *ϵ*, but then we don't allow S to occur on any right-hand side.

Context-free: (type 2) the left of each production must be a *single* non-terminal.

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

- ▶ Note 1: There are other equivalent definitions which don't restrict the length
- ▶ Note 2[∗] : If *ϵ* ∈ L should be allowed, we are allowed S → *ϵ*, but then we don't allow S to occur on any right-hand side.

Context-free: (type 2) the left of each production must be a *single*

non-terminal. (**Q.** You might think that's not type 1, why?)

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

- ▶ Note 1: There are other equivalent definitions which don't restrict the length
- ▶ Note 2[∗] : If *ϵ* ∈ L should be allowed, we are allowed S → *ϵ*, but then we don't allow S to occur on any right-hand side.

Context-free: (type 2) the left of each production must be a *single*

non-terminal. (**Q.** You might think that's not type 1, why?) **Regular:** (type 3) As for type 2, but the right of each production is further constrained (details to come).

Each grammar is of a $type:$ (There are *lots* of intermediate types, too.)

Unrestricted: (type 0) no constraints, i.e., all productions $\alpha \rightarrow \beta$ **Context-sensitive:** (type 1) the length of the left hand side of each production must not exceed the length of the right^{*}, $|\alpha| \leq |\beta|$.

- ▶ Note 1: There are other equivalent definitions which don't restrict the length
- ▶ Note 2[∗] : If *ϵ* ∈ L should be allowed, we are allowed S → *ϵ*, but then we don't allow S to occur on any right-hand side.

Context-free: (type 2) the left of each production must be a *single*

non-terminal. (**Q.** You might think that's not type 1, why?) **Regular:** (type 3) As for type 2, but the right of each production is further constrained (details to come).

This also gives us a way to classify languages. (Next slide.)

Classification of Languages

Definition. A language is type n if it can be generated by a type n grammar.

Immediate Fact.

- ▶ Every language of type $n + 1$ is also of type n.
- \blacktriangleright E.g., every context-free language (type 2) is also context-sensitive (type 1).

Classification of Languages

Definition. A language is type n if it can be generated by a type n grammar.

Immediate Fact.

- \blacktriangleright Every language of type $n+1$ is also of type n.
- \triangleright E.g., every context-free language (type 2) is also context-sensitive (type 1).

Establishing that a *language* is of type *n*

- \blacktriangleright give a grammar of type *n* that generates the language
- \triangleright usually the easier task (and often fun! like designing an automaton/RegEx)
Classification of Languages

Definition. A language is type n if it can be generated by a type n grammar.

Immediate Fact.

- \blacktriangleright Every language of type $n+1$ is also of type n.
- \triangleright E.g., every context-free language (type 2) is also context-sensitive (type 1).

Establishing that a *language* is of type *n*

- \blacktriangleright give a grammar of type *n* that generates the language
- \triangleright usually the easier task (and often fun! like designing an automaton/RegEx)

Disproving that a language is of type n

- \triangleright must show that no type n-grammar generates the language
- \triangleright usually a *difficult* problem. (There are complex theorems to help.)

Example – Language ${a^n b^n \mid n \in \mathbb{N}, n \geq 1}$

Different grammars for this language

 \blacktriangleright Unrestricted (type 0):

$$
S \to aAb
$$

$$
aA \to aaAb
$$

$$
A \to \epsilon
$$

Context-free (type 2):

 $S \rightarrow ab$ $S \rightarrow aSb$

Recall. We know from last week that there is no DFA accepting L

 \triangleright We will see that this means that there's no regular grammar

so the language is context-free, but not regular.

Regular (Type 3) Grammars

Definition. A grammar is *regular* if all its productions are either *right-linear*, i.e. of the form

 $A \rightarrow aB$ or $A \rightarrow a$ or $A \rightarrow \epsilon$

or left-linear, i.e., of the form

 $A \rightarrow Ba$ or $A \rightarrow a$ or $A \rightarrow \epsilon$.

Regular (Type 3) Grammars

Definition. A grammar is *regular* if all its productions are either *right-linear*, i.e. of the form

 $A \rightarrow aB$ or $A \rightarrow a$ or $A \rightarrow \epsilon$

or left-linear, i.e., of the form

 $A \rightarrow Ba$ or $A \rightarrow a$ or $A \rightarrow \epsilon$.

- ▶ right and left linear grammars are equivalent: they generate the same languages (and can hence be turned into each other)
- \triangleright we focus on *right linear* ones (it's probably slightly more intuitive)
- \triangleright i.e., one symbol is *generated* at a time (cf. DFA/NFA!)
- ▶ rule application terminates with terminal symbols or *ϵ*

Regular (Type 3) Grammars

Definition. A grammar is regular if all its productions are either right-linear, i.e. of the form

 $A \rightarrow aB$ or $A \rightarrow a$ or $A \rightarrow \epsilon$

or left-linear, i.e., of the form

 $A \rightarrow Ba$ or $A \rightarrow a$ or $A \rightarrow \epsilon$.

- ▶ right and left linear grammars are equivalent: they generate the same languages (and can hence be turned into each other)
- \triangleright we focus on *right linear* ones (it's probably slightly more intuitive)
- \triangleright i.e., one symbol is *generated* at a time (cf. DFA/NFA!)
- ▶ rule application terminates with terminal symbols or *ϵ*

Next Goal. Relate regular languages to DFAs/NFAs/RegExs.

Regular Grammars/Languages

Regular Languages – Many Views

Theorem. Let L be a language. Then the following are equivalent:

- \triangleright L is the language generated by a *right-linear grammar*;
- L is the language generated by a *left-linear grammar*;
- L is the language accepted by some DFA ;
- L is the language accepted by some NFA ;
- L is the language specified by a regular expression.

Regular Languages – Many Views

Theorem. Let L be a language. Then the following are equivalent:

- \blacktriangleright L is the language generated by a *right-linear grammar*;
- L is the language generated by a *left-linear grammar*;
- L is the language accepted by some DFA ;
- \triangleright L is the language accepted by some *NFA*;
- L is the language specified by a regular expression.

So far.

- ▶ have seen that NFAs and DFAs generate the same languages
- ▶ have shown that regular expressions can be turned into NFAs (hence DFAs)
- ▶ claimed that DFAs can be turned into regular expressions

Goal.

Regular Languages – Many Views

Theorem. Let L be a language. Then the following are equivalent:

- \blacktriangleright L is the language generated by a *right-linear grammar*;
- \triangleright L is the language generated by a *left-linear grammar*;
- \triangleright L is the language accepted by some DFA;
- \triangleright L is the language accepted by some *NFA*;
- \blacktriangleright L is the language specified by a regular expression.

So far.

- ▶ have seen that NFAs and DFAs generate the same languages
- ▶ have shown that regular expressions can be turned into NFAs (hence DFAs)
- ▶ claimed that DFAs can be turned into regular expressions

Goal. Show that NFAs and right-linear grammars generate the same languages.

From NFAs to Right-linear Grammars

Given. Take an NFA $A = (\Sigma, S, s_0, F, R)$.

▶ alphabet, state set, initial state, final states, transition relation

Construction of a right-linear grammar

- \triangleright terminal symbols are elements of the alphabet Σ ;
- non-terminal symbols are the states S ;
- *start symbol* is the start state s_0 ;
- ▶ *productions* are constructed as follows:

From NFAs to Right-linear Grammars

Given. Take an NFA $A = (\Sigma, S, s_0, F, R)$.

▶ alphabet, state set, initial state, final states, transition relation

Construction of a right-linear grammar

- \triangleright terminal symbols are elements of the alphabet Σ ;
- \triangleright non-terminal symbols are the states S;
- \triangleright start symbol is the start state s_0 ;
- ▶ *productions* are constructed as follows:

Each *transition* gives *production*
\n
$$
T \xrightarrow{a} U
$$
 $T \rightarrow aU$
\nEach *final state*
\n $T \in F$ $T \rightarrow \epsilon$
\n $T \rightarrow \epsilon$

(Formally, a transition $T \stackrel{a}{\longrightarrow} U$ means $(T, a, U) \in R$.)

Observation.

From NFAs to Right-linear Grammars

Given. Take an NFA $A = (\Sigma, S, s_0, F, R)$.

▶ alphabet, state set, initial state, final states, transition relation

Construction of a right-linear grammar

- \triangleright terminal symbols are elements of the alphabet Σ ;
- \triangleright non-terminal symbols are the states S;
- \triangleright start symbol is the start state s_0 ;
- ▶ *productions* are constructed as follows:

Each transition
\n
$$
T \xrightarrow{a} U
$$

\nEach final state
\n $T \in F$
\n $T \rightarrow e$
\n $T \rightarrow e$
\n $T \rightarrow e$

(Formally, a transition $T \stackrel{a}{\longrightarrow} U$ means $(T, a, U) \in R$.)

Observation. The grammar so generated is right-linear, and hence regular.

NFAs to Right-linear Grammars – Example

Given. A non-deterministic automaton

Equivalent Grammar obtained by construction

NFAs to Right-linear Grammars – Example

Given. A non-deterministic automaton

Equivalent Grammar obtained by construction

 $S \rightarrow aS$ $S_2 \rightarrow cS_2$ $S \rightarrow aS_1$ $S_2 \rightarrow cS_3$ $S_1 \rightarrow bS_1$ $S_3 \rightarrow \varepsilon$ $S_1 \rightarrow bS_2$

(We capitalised the NFA states to make clear they are non-terminals!)

Exercise. Convince yourself that the NFA accepts precisely the words that the grammar generates. (We still owe a proof of correctness of the translation.)

From Right-linear Grammars to NFAs

Given. Right-linear grammar (V_t, V_n, S, P)

 \triangleright terminals, non-terminals, start symbol, productions

Construction of an equivalent NFA has

- ▶ alphabet is the terminal symbols V_t ;
- \triangleright states are the non-terminal symbols V_n plus new state S_f (for final);
- \triangleright start state is the start symbol S;
- \triangleright final states are S_f and all non-terminals T such that there exists a production $T \rightarrow \varepsilon$;
- *transition relation* is constructed as follows:

Each production $T \rightarrow all$ gives transition $T \stackrel{a}{\longrightarrow} U$ Each *production* $T \rightarrow a$ gives transition $T \stackrel{a}{\longrightarrow} S_t$

Right-linear Grammars to NFAs – Ex.

Given. Grammar G with the productions

$$
S \to 0
$$

\n
$$
T \to \varepsilon
$$

\n
$$
S \to 1T
$$

\n
$$
T \to 0T
$$

\n
$$
T \to 1T
$$

(generates the language

Right-linear Grammars to NFAs – Ex.

Given. Grammar G with the productions

$$
S \to 0
$$

\n
$$
T \to \varepsilon
$$

\n
$$
S \to 1T
$$

\n
$$
T \to 0T
$$

\n
$$
T \to 1T
$$

(generates the language of binary strings without leading zeros)

Equivalent Automaton obtained by construction.

Right-linear Grammars to NFAs – Ex.

Given. Grammar G with the productions

$$
S \to 0 \qquad S \to 1 \tag{7.3} \quad S \to 0 \quad T \to 0 \quad T \to 1 \quad T \
$$

(generates the language of binary strings without leading zeros)

Equivalent Automaton obtained by construction.

Exercise. Convince yourself that the NFA accepts precisely the words that the grammar generates. (Again we still owe a correctness proof of the translation.)

Context-Free Grammars/Languages

Context-Free (Type 2) Grammars (CFGs)

Recall. A grammar is type-2 or *context-free* if all productions have the form

 $A \rightarrow w$

where $A \in V_n$ is a non-terminal, and $w \in V^*$ is an (arbitrary) string.

- \blacktriangleright left side is non-terminal
- \blacktriangleright right side can be anything
- ▶ *independent* of context, replace LHS (left hand side) with RHS (right HS).

In Contrast. Context-Sensitive grammars may have productions

 $αAβ → αwβ$

which may only replace A by w if A appears in context *α β*

Example

Goal. Design a CFG for the language

$$
L = \{a^m b^n c^{m-n} \mid m \ge n \ge 0\}
$$

Strategy. First, understand the language!

Example

Goal. Design a CFG for the language

$$
L = \{a^m b^n c^{m-n} \mid m \ge n \ge 0\}
$$

Strategy. First, understand the language! Every word $w \in L$ can be split $w = a^{m-n}a^n b^n c^{m-n}$

and hence $L = \{a^k a^n b^n c^k \mid n, k \geq 0\}$

Resulting Grammar.

Example

Goal. Design a CFG for the language

$$
L = \{a^m b^n c^{m-n} \mid m \ge n \ge 0\}
$$

Strategy. First, understand the language! Every word $w \in L$ can be split $w = a^{m-n}a^n b^n c^{m-n}$

and hence $L = \{a^k a^n b^n c^k \mid n, k \geq 0\}$

- \triangleright convenient to *not* have comparison between *n* and *m*
- generate $a^k \dots c^k$, i.e., same number of leading as and trailing c^s
- \blacktriangleright fill ... in the middle by $a^n b^n$, i.e., same number of as and bs
- \triangleright use different non-terminals for both phases of the construction

Resulting Grammar. (productions only)

$$
S \rightarrow aSc \mid T
$$

$$
T \rightarrow aTb \mid \epsilon
$$

Example cont'd

Grammar

$$
S \rightarrow aSc \mid T
$$

$$
T \rightarrow aTb \mid \epsilon
$$

Example Derivation. of aaabbc:

$$
S \Rightarrow aSc
$$

\n
$$
\Rightarrow aTc
$$

\n
$$
\Rightarrow aaTbc
$$

\n
$$
\Rightarrow aaaTbbc
$$

\n
$$
\Rightarrow aaabbc
$$

The Power of Context-Free Grammars

A fun example (for the "usefulness" of CFGs): <http://pdos.csail.mit.edu/scigen>

This tool generates (fake) scientific papers based on formal grammars!

Note that:

- \triangleright Sadly, the generator doesn't seem to work anymore.
- But the page mentions where their (fake papers) were accepted!
- ▶ They link similar "services".
- Maybe you can still find a working version somewhere...

Parse Trees and Ambiguity

Parse Trees

Idea. Represent derivation as *tree* rather than as list of rule applications

- \triangleright describes where and how productions have been applied
- \blacktriangleright generated word can be collected at the leaves

Example for the grammar that we have just constructed

Parse Trees Carry Semantics

Take the code

if e1 then if e2 then s1 else s2

where **e1**, **e2** are boolean expressions and s1, s2 are subprograms. **Two Readings.**

if e1 then (if e2 then s1 else s2)

and

```
if e1 then ( if e2 then s1 ) else s2
```
Goal. unambiguous interpretation of the code leading to determined and clear program execution.

Recall that we can present CFG derivations as *parse trees*.

Until now this was merely a pretty presentation; now it will become important.

Definitions:

- ▶ A context-free grammar G is **unambiguous** iff every string can be derived by **at most** one parse tree.
- **►** G is ambiguous iff there exists a word $w \in L(G)$ derivable by more than one parse tree.

Example: If-Then and If-Then-Else

Consider the CFG

 $S \rightarrow$ if **bexp** then S | if **bexp** then S else S | **prog**

where **bexp** and **prog** stand for boolean expressions and if statement-free programs respectively, defined elsewhere.

The string if e1 then if e2 then s1 else s2 then has two parse trees:

Example: If-Then and If-Then-Else

That grammar was **ambiguous**. But here's a grammar accepting the exact same language that is **unambiguous**:

$$
S \rightarrow \text{ if } \text{bexp then } S \mid T
$$

$$
T \rightarrow \text{ if } \text{bexp then } T \text{ else } S \mid \text{prog}
$$

There is now **only one** parse tree for if e1 then if e2 then s1 else s2. (Given on the next slide.)

Example: If-Then and If-Then-Else

You **cannot** parse this string as if "e1 then (if e2 then s1) else s2".

Q. Does that mean we can't generate the 'meaning' of: "e1 then (if e2 then s1) else s2"?

Reflecting on This Example

Observation.

- \triangleright there's more than one grammar for a language
- some are ambiguous, others are not
- ambiguity is a property of *grammars*

Grammars for Programs.

▶ ambiguity is bad: don't know how program will execute!

Reflecting on This Example

Observation.

- \triangleright there's more than one grammar for a language
- some are ambiguous, others are not
- ▶ ambiguity is a property of *grammars*

Grammars for Programs.

- ▶ ambiguity is bad: don't know how program will execute!
- \blacktriangleright replace ambiguous grammar with unambiguous one

Choices for converting ambiguous grammars to unambiguous ones

- \blacktriangleright decide on just one parse tree
- ▶ e.g. if e1 then (if e2 then s1) else s2 vs.

if e1 then (if e2 then s1 else s2)

In example: we have *chosen*: if e1 then (if e2 then s1) else s2

What Ambiguity Isn't

Q. Is the grammar with the following production ambiguous?

 $T \rightarrow$ if **bexp** then T else S

Reasoning.

- ▶ Suppose that the above production was used
- \triangleright we can then expand either T or S first.

What Ambiguity Isn't

Q. Is the grammar with the following production ambiguous?

 $T \rightarrow$ if **bexp** then T else S

Reasoning.

- \blacktriangleright Suppose that the above production was used
- \triangleright we can then expand either τ or S first.

A. This is not ambiguity.

- \triangleright both options give rise to the same parse tree
- \triangleright indeed, for context-free languages it $doesn't$ matter what production is applied first.
- \blacktriangleright thinking about parse trees, both expansions happen in parallel.

Main Message. Parse trees provide a better representation of syntax than derivations.
Q1. Can we always remove ambiguity?

Example. Language $L = \{a^i b^j c^k | (j = i \text{ or } j = k) \text{ and } i, j, k \in \mathbb{N}\}\$

Q2. Why is this context-free?

Q1. Can we always remove ambiguity?

Example. Language $L = \{a^i b^j c^k | (j = i \text{ or } j = k) \text{ and } i, j, k \in \mathbb{N}\}\$

- **Q2.** Why is this context-free?
- **A.** Note that $L = \{a^i b^i c^k \mid i, k \in \mathbb{N}\} \cup \{a^i b^j c^j \mid i, j \in \mathbb{N}\}\$
	- ▶ idea: start with production that "splits" between the union
	- \triangleright $S \rightarrow T \mid W$ where T is "left" and W is "right"

Complete Grammar. It starts with $S \rightarrow T \mid W$. Assume:

- ▶ left part uses non-terminals T*,*U*,* V
- \blacktriangleright right part uses non-terminals W, X, Y

Q1. Can we always remove ambiguity?

Example. Language $L = \{a^i b^j c^k | (j = i \text{ or } j = k) \text{ and } i, j, k \in \mathbb{N}\}\$

- **Q2.** Why is this context-free?
- **A.** Note that $L = \{a^i b^i c^k \mid i, k \in \mathbb{N}\} \cup \{a^i b^j c^j \mid i, j \in \mathbb{N}\}\$
	- ▶ idea: start with production that "splits" between the union
	- \triangleright $S \rightarrow T \mid W$ where T is "left" and W is "right"

Complete Grammar. It starts with $S \rightarrow T \mid W$. Assume:

- ▶ left part uses non-terminals T*,*U*,* V
- \blacktriangleright right part uses non-terminals W, X, Y

$$
T \rightarrow \mathit{UV} \qquad \qquad W \rightarrow XY
$$

$$
U \ \to \ a U b \ \mid \ \epsilon \qquad \quad X \ \to \ a X \ \mid \ \epsilon
$$

$$
V \rightarrow cV \mid \epsilon \qquad Y \rightarrow bYc \mid \epsilon
$$

Q1. Can we always remove ambiguity?

Example. Language $L = \{a^i b^j c^k | (j = i \text{ or } j = k) \text{ and } i, j, k \in \mathbb{N}\}\$

- **Q2.** Why is this context-free?
- **A.** Note that $L = \{a^i b^i c^k \mid i, k \in \mathbb{N}\} \cup \{a^i b^j c^j \mid i, j \in \mathbb{N}\}\$
	- ▶ idea: start with production that "splits" between the union
	- \triangleright $S \rightarrow T \mid W$ where T is "left" and W is "right"

Complete Grammar. It starts with $S \rightarrow T \mid W$. Assume:

- ▶ left part uses non-terminals T*,*U*,* V
- \blacktriangleright right part uses non-terminals W, X, Y
- $T \rightarrow UV$ $W \rightarrow XY$
- $U \rightarrow aUb \mid \epsilon \quad X \rightarrow aX \mid \epsilon$
- $V \rightarrow cV \mid \epsilon \qquad Y \rightarrow bYc \mid \epsilon$

Q3. Why is this *language* ambiguous?

Problem. Both left part $a^i b^i c^k$ and right part $a^i b^j c^j$ has non-empty $intersection: aⁱbⁱcⁱ$

Ambiguity where a, b and c are equi-numerous, e.g., $a^1b^1c^1 = abc$:

So there are two parse trees for the same word!

Fact. There is no unambiguous grammar for this language (we don't prove this)

Q1. Can we *compute* an unambiguous grammar whenever one exists?

Q2. Can we even *determine* whether an unambiguous grammar exists?

A. If we interpret "compute" and "determine" as "by means of a program" (that works for an arbitrary CFL), then no.

- \triangleright There is no program that solves this problem for all grammars
- \triangleright input: CFG G, output: ambiguous or not. This problem is *undecidable* (More undecidable problems next week!)

Example: Subtraction

Example.

$$
S\quad\rightarrow\quad S-S\,\mid\mathrm{int}
$$

- ▶ int stands for integers
- \triangleright the intended meaning of $-$ is subtraction

Evaluation.

- \blacktriangleright left parse tree evaluates to 1
- ▶ right parse tree evaluates to 3
- so ambiguity matters! (As we also saw for the if/else statements.)

Technique 1: Associativity

Idea for ambiguity induced by binary operator (think: −)

- ▶ prescribe "implicit parentheses", e.g. $a b c \equiv (a b) c$
- \triangleright make operator associate to the left or the right

Left Associativity.

$$
S \rightarrow S-int \mid int
$$

Result.

- ▶ $5 3 1$ can only be read as $(5 3) 1$
- \blacktriangleright this is *left associativity*

Right Associativity.

$$
S \rightarrow \text{int} - S \mid \text{int}
$$

Idea. Break the symmetry

- ▶ one side of operator forced to lower level
- \triangleright here: force right hand side of *i* to lower level
- ▶ create example derivation trees for all three grammars to see why that helps

Example: Multiplication and Addition

Example. Grammar for addition and multiplication

$$
S \rightarrow S*S \mid S+S \mid int
$$

Ambiguity.

- ▶ 1 + 2 \ast 3 can be read as $(1 + 2) \ast 3$ and $1 + (2 \ast 3)$ with different results
- also $1 + 2 + 3$ is ambiguous but this doesn't matter here.
- **Take 1.** The trick we have just seen
	- ▶ strictly evaluate from left to right

Example: Multiplication and Addition

Example. Grammar for addition and multiplication

 $S \rightarrow S*S \mid S+S \mid int$

Ambiguity.

- ▶ 1 + 2 \ast 3 can be read as $(1 + 2) \ast 3$ and $1 + (2 \ast 3)$ with different results
- \triangleright also $1 + 2 + 3$ is ambiguous but this doesn't matter here.

Take 1. The trick we have just seen

- ▶ strictly evaluate from left to right
- but this gives $1 + 2 \times 3 \equiv (1 + 2) \times 3$, not intended!

Goal. Want $*$ to have *higher precedence* than $+$

Technique 2: Precedence

Example Grammar giving ∗ higher precedence:

 $S \rightarrow S + T$ | T $T \rightarrow T \times \text{int}$ | **int**

Given e.g. $1 + 2 \times 3$ or $2 \times 3 + 1$

- $▶$ forced to expand + first: otherwise only $*$
- \triangleright so $+$ will be *last* operation evaluated

Example. Derivation of $1 + 2 \times 3$ (which we want to interpret as $1 + (2 \times 3)$)

- ▶ suppose we start with $S \Rightarrow T \Rightarrow T \times \text{int}$
- \triangleright stuck, as cannot generate $1+2$ from T

Idea. Forcing operation with *higher* priority to *lower* level

- \triangleright three levels: S, (highest), T (middle) and integers
- ▶ lowest-priority operation generated by highest-level non-terminal

Example: Basic Arithmetic

Repeated use of + and *:

$$
S \rightarrow S+T \mid S-T \mid T
$$

$$
T \rightarrow T*U \mid T/U \mid U
$$

$$
U \rightarrow (S) \mid \text{int}
$$

Main Differences.

- have *parentheses* to break operator priorities, e.g. $(1 + 2) * 3$
- parentheses at *lowest* level, so *highest* priority
- lower-priority operator can be inside parentheses
- ▶ expressions of arbitrary complexity (no nesting in previous examples)

Example: Balanced Brackets

 $S \rightarrow \epsilon$ | (S) | SS

Ambiguity.

- ▶ associativity: create brackets from left or from right (as before).
- \triangleright at least wo ways of generating ():

►
$$
S \Rightarrow SS \Rightarrow S \Rightarrow (S) \Rightarrow ()
$$
 and
\n► $S \Rightarrow (S) \Rightarrow ()$

 \triangleright indeed, any expression has *infinitely many* parse trees

Reason. More than one way to derive *ϵ*.

Technique 3: Controlling *ϵ*

Alternative Grammar with only one way to derive *ϵ*:

 $S \rightarrow \epsilon \mid T$ $T \rightarrow T U \perp U$ $U \rightarrow ()$ | (T)

- \blacktriangleright ϵ can only be derived from S
- all other derivations go through T
- here: combined with multiple level technique
- ▶ ambiguity with *ϵ* can be hard to miss!

Pushdown Automata

From Grammars to Automata

So Far.

- ▶ regular languages correspond to regular grammars (by definition).
- ▶ regular languages are exactly those accepted by FSAs or regular expressions (or regular grammars, of course).

Q. What automata correspond to *context-free* grammars?

General Structure of Automata

- \triangleright *input tape* is a set of symbols
- \triangleright finite state control is just like for DFAs / NFAs
- ▶ symbols are processed and head advances
- ▶ new aspect: *auxiliary memory*

Auxiliary Memory classifies languages and grammars

- ▶ no auxiliary memory: NFAs / DFAs: regular languages
- ▶ stack: push-down automata: context-free languages
- ▶ unbounded tape: Turing machines: all languages

Actions of a push-down automaton

- \blacktriangleright change of internal state
- ▶ pushing or popping the stack
- ▶ advance to next input symbol

Actions of a push-down automaton

- \blacktriangleright change of internal state
- ▶ pushing or popping the stack
- ▶ advance to next input symbol

Action dependencies. Actions generally depend on

- \triangleright current state (of finite state control),
- ▶ input symbol, and
- \blacktriangleright symbol at the top of the stack

Actions of a push-down automaton

- ▶ change of internal state
- ▶ pushing or popping the stack
- ▶ advance to next input symbol

Action dependencies. Actions generally depend on

- \triangleright current state (of finite state control),
- ▶ input symbol, and
- \blacktriangleright symbol at the top of the stack

Acceptance. The machine accepts if

- \blacktriangleright input string is fully read
- \blacktriangleright machine is in accepting state

Actions of a push-down automaton

- ▶ change of internal state
- ▶ pushing or popping the stack
- ▶ advance to next input symbol

Action dependencies. Actions generally depend on

- \triangleright current state (of finite state control),
- ▶ input symbol, and
- \blacktriangleright symbol at the top of the stack

Acceptance. The machine accepts if

- \blacktriangleright input string is fully read
- \blacktriangleright machine is in accepting state

Variation.

- PDAs can equivalently be defined without final states F .
- ▶ Then, acceptance condition is having an empty stack (after the input word was completely read). **But we don't use that!**

Example

Language (that cannot be recognised by a DFA)

 $L = \{a^n b^n \mid n \ge 1\}$

- ▶ cannot be recognised by a DFA
- \triangleright can be generated by a context-free grammar
- **►** can be recognised by a PDA

PDA design. (ad hoc, but showcases the idea)

- \triangleright phase 1: (state s_1) push a's from the input onto the stack
- \triangleright phase 2: (state s₂) pop a's from the stack, if there is a b on input
- ▶ finalise: if the input is exhausted and the stack is empty, enter a final state (s_3) , i.e., accept the string.

Deterministic PDA – Definition

Definition. A deterministic PDA has the form $(S, s_0, F, \Sigma, \Gamma, Z, \delta)$, where

- ▶ S is the finite set of states, $s_0 \in S$ is the *initial state* and $F \subseteq S$ are the final states;
- \triangleright \triangleright is the finite *alphabet*, or set of *input symbols*;
- **▶ Γ** is the finite set of *stack symbols*, and $Z \in \Gamma$ is the *initial stack symbol*;
- \triangleright δ is a (partial) transition function

 δ : $S \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow S \times \Gamma^*$

 δ : (state, input token or ϵ , top-of-stack) \rightarrow (new state, new top of stack)

Additional Requirement to ensure determinism:

- $▶$ if $\delta(s, \epsilon, \gamma)$ is defined, then $\delta(s, x, \gamma)$ is undefined for all $x \in \Sigma$ and $\gamma \in \Gamma$
- ensures that automaton has at most one execution

Notation

Given. Deterministic PDA with transition function

 δ : $S \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow S \times \Gamma^*$

 δ : (state, input token or ϵ , top-of-stack) \rightarrow (new state, new top of stack)

Notation.

- \blacktriangleright write $\delta(s, x, \gamma) = s'/\sigma$
- \triangleright $\sigma \in \Gamma^*$ is a *string* that replaces top stack symbol

 \triangleright final states are usually underlined (s)

Rationale.

 \triangleright replacing top stack symbol gives just one operation for push and pop

$$
\text{ pop: } \delta(s, x, \gamma) = s'/\epsilon
$$

$$
\text{ push: } \delta(s, x, \gamma) = s'/w\gamma
$$

start \rightarrow $\begin{pmatrix} s_0 \end{pmatrix}$ s₁ s₂ s₂ s₂ s₂

a*,* a*/*aa

 $b, a/\epsilon$

a*,* Z*/*aZ

s3

ϵ, Z*/ϵ*

b*,* a*/ϵ*

Two types of PDA transition

Input-consuming transitions

- \triangleright *δ* contains $(s_1, x, \gamma) \mapsto s_2/\sigma$
- \blacktriangleright automaton reads symbol x
- \blacktriangleright symbol x is consumed

Two types of PDA transition

Input-consuming transitions

- $▶$ *δ* contains $(s_1, x, \gamma) \mapsto s_2/\sigma$
- \blacktriangleright automaton reads symbol x
- \blacktriangleright symbol x is consumed

Non-consuming transitions

- \blacktriangleright independent of input symbol
- can happen *any time* and does not consume input symbol
- $▶$ *δ* contains $(s_1, \epsilon, \gamma) \mapsto s_2/\sigma$ Recall that for the pair s_1 , γ , we can't have any other entry (s_1, x, γ) with $x \in \Sigma$ to stay deterministic! (See slide [50\)](#page-94-0) **Q.** How is this different from epsilon transitions in *ϵ*-NFAs?

Example cont'd

Language $L = \{a^n b^n \mid n \ge 1\}$

Push-down automaton

- \triangleright starts with Z (initial stack symbol) on stack
- \triangleright final state is s_3 (underlined)
- ▶ transition function (partial) given by

 $\delta(s_0, a, Z) \rightarrow s_1/aZ$ push first a $\delta(s_1, a, a) \rightarrow s_1/aa$ push further a's $\delta(s_1, b, a) \rightarrow s_2/\epsilon$ start popping a's $\delta(s_2, b, a) \mapsto s_2/\epsilon$ pop further a's $\delta(s_2, \epsilon, Z) \mapsto s_3/\epsilon$ accept

(*δ* is partial, i.e., undefined for many arguments) Also note that we don't have to delete Z in the last step. The stack doesn't have to be empty at the end.

s3

ϵ, Z*/ϵ*

(accept)

start \rightarrow s_0 \rightarrow s_1 \rightarrow s_2 s_1 \rightarrow s_2

a*,* a*/*aa

Accepting execution. Input exhausted, ends in final state (as usual!).

Example Execution.

 $(s_0, a$ aabbb, $Z) \Rightarrow (s_1, a$ abbb, aZ) (push first a) \Rightarrow (s₁, abbb, aaZ) (push further a's) \Rightarrow (s₁, bbb, aaaZ) (push further a's) \Rightarrow (s₂, bb, aaZ) (start popping a's) \Rightarrow (s₂, b, aZ) (pop further a's) \Rightarrow (s₂, ϵ , Z) (pop further a's) \Rightarrow (s₃, ϵ , ϵ) (accept)

 b *, a* $/$ ϵ

 \mathfrak{s}_3

ϵ, Z*/ϵ*

b*,* a*/ϵ*

PDA configurations

- \triangleright triples: *(state, remaining input, stack)*
- \triangleright top of stack on the *left* (by convention)

Example cont'd — PDA Trace

a*,* Z*/*aZ

Non-accepting execution.

- \triangleright No transition possible, stuck without reaching final state
- rejection happens when transition function is undefined for current configuration (state, input, top of stack) or when word is consumed, and no epsilon transitions can bring us to a final state.

Example: Palindromes with 'Centre Mark'

Example Language.

$$
L = \{wcw^R \mid w \in \{a, b\}^* \land w^R \text{ is } w \text{ reversed}\}
$$

Deterministic PDA that accepts L

Example: Palindromes with 'Centre Mark'

Example Language.

$$
L = \{wcw^R \mid w \in \{a, b\}^* \land w^R \text{ is } w \text{ reversed}\}
$$

Deterministic PDA that accepts L

- \triangleright Push a's and b's onto the stack as we seem them:
- \blacktriangleright When we see c, change state;
- ▶ Now try to match the tokens we are reading with the tokens on top of the stack, popping as we go;
- If the top of the stack is the empty stack symbol Z , enter the final state via an *ϵ*-transition. Hopefully our input has been used up too!

Exercise. Define this formally!

Non-Deterministic PDAs

Deterministic PDAs

▶ transitions are a partial function

 δ : $S \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow S \times \Gamma^*$

 δ : (state, input token or ϵ , top-of-stack) \rightarrow (new state, new top of stack)

▶ side condition about *ϵ*-transitions

Non-Deterministic PDAs

 \blacktriangleright transitions given by *relation*

$$
\delta \subseteq S \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times S \times \Gamma^*
$$

 \triangleright no side condition (at all).

Main differences

- \triangleright for deterministic PDA: *at most* one transition possible
- \triangleright for non-deterministic PDA: zero or more transitions possible

Non-Deterministic PDAs cont'd

Finite Automata

- ▶ non-determinism is convenient
- but doesn't give extra power (subset construction)
- ▶ can convert every NFA to an equivalent DFA

Push-down Automata.

- \triangleright non-determinism *gives* extra power
- ▶ cannot convert *every* non-deterministic PDA to deterministic PDA
- \triangleright there are context- free languages that can only be recognised by non-deterministic PDA
- ▶ intuition: non-determinism allows "guessing"

Grammar / Automata correspondence

- ▶ non-deterministic PDAs are more important
- \blacktriangleright they correspond to context-free languages

Example: Even-Length Palindromes

Palindromes of even length, without centre-marks

$$
L = \{ww^R \mid w \in \{a, b\}^* \land w^R \text{ is } w \text{ reversed}\}
$$

- \blacktriangleright this is a context-free language
- ▶ cannot be recognised by deterministic PDA
- ▶ intuitive reason: no centre-mark, so don't know when first half of word is read

Non-deterministic PDA for *L* has the transition

$$
\delta(\mathsf{s},\epsilon,\gamma) \quad = \quad r/x
$$

▶ $x \in \{a, b, Z\}$, s is the 'push' state and r the 'match and pop' state.

Intuition

- ▶ "guess" (non-deterministically) whether we need to enter "match-and-pop" state
- ▶ automaton gets stuck if guess is not correct (no harm done)
- automaton accepts if guess is correct
Grammars and PDAs

Theorem. Context-free languages and *non-deterministic* PDAs are equivalent

- \triangleright for every CFL L there exists a PDA that accepts L
- \triangleright if L is accepted by a non-deterministic PDA, then L is a CFL.

Proof. We only do one direction: construct PDA from CFL (i.e., CFL to PDA).

- ▶ other direction (i.e., PDA to CFL) quite complex.
- for our proof, since we have a CFL, by definition, there is CFG.

From CFG to PDA

Given. Context-Free Grammar $G = (V_t, V_n, S, P)$

Construct non-deterministic PDA $A = (Q, q_0, F, \Sigma, \Gamma, Z, \delta)$

States. q_0 (initial state), q_1 (working state) and q_2 (final state).

Alphabet. $\Sigma = V_t$, terminal symbols of the grammar

Stack Alphabet. $\Gamma = V_t \cup V_n \cup \{Z\}$

Initialisation.

 \triangleright push start symbol S onto stack, enter working state q_1

$$
\blacktriangleright \; \delta(q_0,\epsilon,Z) \mapsto q_1/SZ
$$

Termination.

 \triangleright if the stack is empty (i.e., just contains Z), terminate

 \blacktriangleright $\delta(q_1, \epsilon, Z) \mapsto q_2/\epsilon$

From CFGs to PDAs: working state

Idea.

- ▶ build the derivation on the stack by expanding non-terminals according to productions
- \triangleright if a terminal appears that matches the input, pop it
- \blacktriangleright terminate, if the entire input has been consumed

Expand Non-Terminals.

- ▶ non-terminals on the stack are replaced by right hand side of productions
- \blacktriangleright $\delta(q_1, \epsilon, A) \mapsto q_1/\alpha$ for all productions $A \to \alpha$

Pop Terminals.

- \triangleright terminals on the stack are popped if they match the input
- \triangleright *δ*(q_1, x, x) \mapsto q_1 / ϵ for all terminals x

Result of Construction. Non-deterministic PDA

 \triangleright may have more than one production for a non-terminal

Example — Derive a PDA for a CFG

Arithmetic Expressions as a grammar:

$$
S \rightarrow S+T \mid T
$$

$$
T \rightarrow T * U \mid U
$$

$$
U \rightarrow (S) \mid \text{int}
$$

1. Initialise:

$$
\delta(q_0,\epsilon,Z)\;\;\mapsto\;\;q_1/SZ
$$

2. Expand non-terminals:

$$
\begin{array}{rcl}\n\delta(q_1,\epsilon,S) & \mapsto & q_1/S + \mathcal{T} \\
\delta(q_1,\epsilon,S) & \mapsto & q_1/\mathcal{T} \\
\delta(q_1,\epsilon,\mathcal{T}) & \mapsto & q_1/\mathcal{T} \times \mathcal{U} \\
\delta(q_1,\epsilon,\mathcal{T}) & \mapsto & q_1/\mathcal{T} \times \mathcal{U} \\
\delta(q_1,\epsilon,\mathcal{U}) & \mapsto & q_1/\mathsf{int}\n\end{array}
$$

CFG to PDA cont'd

3. Match and pop terminals:

$$
\begin{array}{rcl} \delta(q_1,+,+) & \mapsto & q_1/\epsilon \\ \delta(q_1,*,*) & \mapsto & q_1/\epsilon \\ \delta(q_1,\mathsf{int},\mathsf{int}) & \mapsto & q_1/\epsilon \\ \delta(q_1, (,) & \mapsto & q_1/\epsilon \\ \delta(q_1,),)) & \mapsto & q_1/\epsilon \end{array}
$$

4. Terminate:

$$
\delta(q_1,\epsilon,Z)\;\;\mapsto\;\;\underline{q_2}/\epsilon
$$

Example Trace

$$
(q_0, int*int, Z) \Rightarrow (q_1, int*int, SZ)
$$

\n
$$
\Rightarrow (q_1, int*int, TZ)
$$

\n
$$
\Rightarrow (q_1, int*int, T*UZ)
$$

\n
$$
\Rightarrow (q_1, int*int, U*UZ)
$$

\n
$$
\Rightarrow (q_1, int*int, int*UZ)
$$

\n
$$
\Rightarrow (q_1, int*int, int*UZ)
$$

\n
$$
\Rightarrow (q_1, int, UZ)
$$

\n
$$
\Rightarrow (q_1, int, int, UZ)
$$

\n
$$
\Rightarrow (q_1, int, int, intZ)
$$

\n
$$
\Rightarrow (q_1, \epsilon, Z)
$$

\n
$$
\Rightarrow (q_2, \epsilon, \epsilon)
$$

Summary about PDAs

- ▶ Definition of deterministic PDA
- ▶ Definition of non-deterministic PDA
- ▶ PDA configurations
- ▶ Relation of PDAs to CFGs/CFLs (same!)
- ▶ Compilation: CFGs to PDAs