
COMP3630 / COMP6363

week 1: Finite Automata
This Lecture Covers Chapter 2 of HMU: Finite Automata

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

COMP3630/6363: Theory of Computation

Textbook. Introduction to Automata Theory, Languages and Computation
by John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman [HMU].

Prerequisites. Chapter 1 of HMU (sets, functions, relations, induction)
(if you prefer lectures over reading, I uploaded one on YouTube)

Assessment. 5 assignments each @ 10%
1 final exam @ 50%

Labs. Participation is voluntary, but highly recommended.

Wednesday, 9 am to 11 am and 11 am to 1 pm
each tutorial covers the content of the same week
tutor of tutorials: Eric Hall
another (marking) tutor: Timothy Horscroft

Content. Languages / Automata / Computability / Complexity
This course is basically an advanced Math course.

Convenor. Pascal (Bercher), pascal.bercher@anu.edu.au

Lecturer. same!

Slides. Most of them mostly Dirk Pattinson

Pascal Bercher week 1: Finite Automata Semester 1, 2025 2 / 34

TEQSA Provider ID: PRV12002 (Australian University) | CRICOS Provider Code: 00120C

CSS

CLASS REPRESENTATIVES

Class Student Representation is an important component of the teaching and learning quality
assurance and quality improvement processes within the ANU College of Systems and Society

(CSS).

Each semester, we put out a call for Class Representatives for all ANU College of Systems and
Society (CSS) courses. Students can nominate themselves for one or more of the courses they

are enrolled in.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 3 / 34

The role of Student Representatives is to provide ongoing constructive feedback on
behalf of the student cohort to Course Conveners and to Associate Directors (Education)
for continuous improvements to the course.

• Act as the official liaison between your peers and convener.

• Be available and proactive in gathering feedback from yourclassmates.

• Attend regular meetings, and provide reports on course feedback to your course
convener

• Close the feedback loop by reporting back to the class the outcomesof your
meetings.

Note: Class representatives will need to be comfortable with their contact details being
made available via Wattle to all students in the class.

For more information regarding roles and responsibilities, contact:​

ANUSA CSS representatives​ (sa.cecc@anu.edu.au​).

Roles and responsibilities:

Im
ag

e
cr

ed
it

 h
er

e

ANU College of Systems and Society2

Pascal Bercher week 1: Finite Automata Semester 1, 2025 4 / 34

• Ensure students have a voice to their course convener, lecturer,
tutors, and College.

• Develop skills sought by employers, including interpersonal, dispute
resolution, leadership and communication skills.

• Become empowered. Play an active role in determining the direction
of your education.

• Become more aware of issues influencing your University and current
issues in higher education.

• Course design and delivery. Help shape the delivery of your current
courses, as well as future improvements for following years.

Why become a class representative?

Im
ag

e
cr

ed
it

 h
er

e

ANU College of Systems and Society3

Want to be a class representative?
Nominate today!

Please nominate yourself to your course convener by end of Week 2

Pascal Bercher week 1: Finite Automata Semester 1, 2025 5 / 34

Content of this Chapter

 Deterministic Finite Automata

 Nondeterministic Finite Automata

 NFA with ϵ-transitions

 An Equivalence among the above three.

(This was all covered in COMP1600)

Additional Reading: Chapter 2 of HMU.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 6 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

Preliminary Concepts

∠ Alphabet Σ: A finite set of symbols, e.g.,

∠ Σ = {0, 1} (binary alphabet)

∠ Σ = {a, b, . . . , z} (Roman alphabet)

∠ String (or word) is a finite sequence of symbols.
Strings are usually represented without commas, e.g., 0011 instead of (0, 0, 1, 1)

∠ Concatenation x · y of strings x and y is the string xy .

∠ ϵ is the identity element for concatenation, i.e., ϵ · x = x · ϵ = x .

∠ Concatenation of sets of strings: A · B = {a · b : a ∈ A, b ∈ B}

∠ Concatenation of the same set: A2 = AA; A3 = (AA)A, etc

(We often elide the concatenation operator and write AB for A · B)

∠ Kleene-∗ or closure operator: A∗ = {ϵ} ∪ A ∪ A2 ∪ A3 · · · =
⋃

n≥0 A
n

(Viewing Σ as a set of length-1 strings, Σ∗ is the set of all strings over Σ.)

∠ A (formal) language is a subset of Σ∗.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 7 / 34

The Deterministic Finite Automaton

The Deterministic Finite

Automaton

Pascal Bercher week 1: Finite Automata Semester 1, 2025 8 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

∠ The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

∠ The input is read from left to right

∠ Each read operation changes the internal state of the finite-state machine (FSM)

∠ Input is accepted/rejected based on the final state after reading all symbols

Pascal Bercher week 1: Finite Automata Semester 1, 2025 9 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

∠ The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

∠ The input is read from left to right

∠ Each read operation changes the internal state of the finite-state machine (FSM)

∠ Input is accepted/rejected based on the final state after reading all symbols

Pascal Bercher week 1: Finite Automata Semester 1, 2025 9 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

∠ The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

∠ The input is read from left to right

∠ Each read operation changes the internal state of the finite-state machine (FSM)

∠ Input is accepted/rejected based on the final state after reading all symbols

Pascal Bercher week 1: Finite Automata Semester 1, 2025 9 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Informally:

s1 s2 s3 s‘: : : [Input tape]

Finite Control q0

q1

q3

q4

q5

q2

[Movable Reading Head]

∠ The device consisting of: (a) input tape; (b) reading head; and (c) finite control
(Finite-state machine)

∠ The input is read from left to right

∠ Each read operation changes the internal state of the finite-state machine (FSM)

∠ Input is accepted/rejected based on the final state after reading all symbols

Pascal Bercher week 1: Finite Automata Semester 1, 2025 9 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

The Deterministic Finite Automaton

Deterministic Finite Automaton (DFA)

Definition: DFA

∠ A DFA A = (Q,Σ, δ, q0,F)

∠ Q: A finite set (of internal states)

∠ Σ: The alphabet corresponding to the input

∠ δ : Q × Σ → Q , (Transition Function)
(If present state is q ∈ Q, and a ∈ Σ is read, the DFA moves to δ(q, a).)

∠ q0: The (unique) starting state of the DFA (prior to any reading). (q0 ∈ Q)

∠ F ⊆ Q is the set of final (or accepting) states

Transition Table: Transition Diagram:

q0

q1

q2

0 1

q2

q2

q0

q1 q1

q1

⇤

F = {q1}
‹(q0; 0) = q2

‹(q0; 1) = q0

q0
q1q2

1

10

0; 10

Pascal Bercher week 1: Finite Automata Semester 1, 2025 10 / 34

Languages accepted by DFAs

Languages accepted by DFAs

Pascal Bercher week 1: Finite Automata Semester 1, 2025 11 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

Language accepted by a DFA

∠ The language L(A) accepted by a DFA A = (Q,Σ, δ, q0,F) is:

∠ The set of all input strings that move the state of the DFA from q0 to a state in F

∠ This is formalized via the extended transition function δ̂ : Q × Σ∗ → Q:

∠ Basis:

δ̂(q, ϵ) = q (no state change)

∠ Induction:

δ̂(q,ws) = δ(δ̂(q,w), s) (process word w , then symbol s)

∠ L(A) := all strings that take q0 to some final state = {w ∈ Σ∗ : δ̂(q0,w) ∈ F}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 12 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

An Example

q0
q1q2

1

10

0; 10

A:

∠ Is 00 accepted by A?

∠ q0
0−→ q2

0−→ q2 /∈ F

∠ Thus, 00 /∈ L(A)

∠ Is 001 accepted by A?

∠ q0
0−→ q2

0−→ q2
1−→ q1 ∈ F

∠ Thus, 001 ∈ L(A)

∠ The only way one can reach q1 from q0 is if the string contains 01.

∠ L(A) is the set of strings containing 01.

∠ Remark 1: In general, each string corresponds to a unique path of states.

∠ Remark 2: Multiple strings can have the same path of states. For example, 0010 and
0011 have the same sequence of states.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 13 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Languages accepted by DFAs

Limitations of DFAs

∠ Can all languages be accepted by DFAs?

∠ DFAs have a finite number of states (and hence finite memory).

∠ Given a DFA, there is always a long pattern it cannot ’remember’ or ’track’

∠ e.g., L = {0n1n : n ∈ N} cannot be accepted by any DFA.

∠ Can generalize DFAs in one of many ways:

∠ Allow transitions to multiple states for each symbol read.

∠ Allow transitions without reading any symbol

∠ Allow the device to have an additional tape to store symbols

∠ Allow the device to edit the input tape

∠ Allow bidirectional head movement

Pascal Bercher week 1: Finite Automata Semester 1, 2025 14 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite

Automaton (NFA)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 15 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Non-deterministic Finite Automaton (NFA)

Non-deterministic Finite Automaton (NFA)

∠ Allow transitions to multiple states at each symbol reading.

∠ Multiple transitions allows the device to:

∠ clone itself, traverse through and consider all possible parallel outcomes.

∠ hypothesize/guess multiple eventualities concerning its input.

∠ Non-determinism seems bizarre, but aids in the simplification of describing an
automaton.

Definition: NFA

∠ NFA A = (Q,Σ, δ, q0,F) is defined similar to a DFA with the exception of the
transition function, which takes the following form.

∠ δ : Q × Σ → 2Q (Transition Function)

∠ Remark 1: δ(q, s) can be a set with two or more states, or even be empty!

∠ Remark 2: If δ(·, ·) is a singleton for all argument pairs, then NFA is a DFA.
(So every DFA is trivially an NFA).

Pascal Bercher week 1: Finite Automata Semester 1, 2025 16 / 34

Languages Accepted by NFAs

Languages Accepted by NFAs

Pascal Bercher week 1: Finite Automata Semester 1, 2025 17 / 34

Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 18 / 34

Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 18 / 34

Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 18 / 34

Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 18 / 34

Languages Accepted by NFAs

Language Accepted by an NFA

∠ The language accepted by an NFA is formally defined via the extended transition
function δ̂ : Q × Σ∗ → 2Q :

∠ Basis:

δ̂(q, ϵ) = {q} (no state change)

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

δ(p, s), s ∈ Σ,w ∈ Σ∗.

q

‹̂(q; w)

...

...

...

...

w

s

s

‹̂(q; ws)

∠ L(A) := {w ∈ Σ∗ : δ̂(q0,w) ∩ F ̸= ∅}.

In other words:

∠ ϵ ∈ L(A) ⇔ q0 ∈ F

∠ For k > 0,

w = s1s2 · · · sk ∈ L(A) ⇔ ∃ a path q0
s1−→ P1

s2−→ P2
s3−→ · · · sk−→ Pk ∈ F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 18 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

An Example

∠ L(A) = {w : penultimate∗ symbol in w is a 1}. (∗ = second to last!)

q0

q1

q2

0

q2

⇤
q0 q1 q2

1

0; 1

0; 1

1

q0 {q0; q1}
q2

; ;

∠ δ̂(q0, 00) = {q0} q0
0−→ q0

0−→ q0

∠ δ̂(q0, 01) = {q0, q1} q0
0−→ q0

1−→ q1 q0
0−→ q0

1−→ q0

∠ δ̂(q0, 10) = {q0, q2} q0
1−→ q0

0−→ q0 q0
1−→ q1

0−→ q2

∠ δ̂(q0, 100) = {q0} q0
1−→ q1

0−→ q0
0−→ q0

∠ An input can move the state from q0 to q2 only if it ends in 10 or 11.

∠ Each time the NFA reads a 1 (in state q0) it considers two parallel possibilities:

∠ the 1 is the penultimate symbol. (These paths die if the 1 is not actually the
penultimate symbol)

∠ the 1 is not the penultimate symbol.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 19 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

∠ Non-determinism was introduced to increase the computational power.

∠ So is there a language L that is accepted by an NFA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 20 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

∠ Non-determinism was introduced to increase the computational power.

∠ So is there a language L that is accepted by an NFA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 20 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

∠ Non-determinism was introduced to increase the computational power.

∠ So is there a language L that is accepted by an NFA, but not by any DFA?

Theorem 2.4.1

Every Language L that is accepted by an NFA is also accepted by some DFA.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 20 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ Let NFA N = (QN ,Σ, δN , q0,FN) generate the given language L

∠ Idea: Devise a DFA D such that at any time instant the state of the DFA is the set
of all states that NFA N can be in.

∠ Define DFA D = (QD ,Σ, δD , qD,0,FD) from N using the following subset
construction:

QD = 2QN qD,0 = {q0} FD = {S ⊆ QN : S ∩ FN ̸= ∅}

q0 q1 q2
1

0; 1

0; 1 ;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

N : D :

(transitions will be shown later)

∠ Hence, ϵ ∈ L(N) ⇔ q0 ∈ FN ⇔ {q0} ∈ FD ⇔ ϵ ∈ L(D)

Pascal Bercher week 1: Finite Automata Semester 1, 2025 21 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P

∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s

∠ Set δD(P, s) := P ′ =
⋃

p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Is Non-determinism Better?

Proof of Theorem 2.4.1

∠ To define δD(P, s) for each P ⊆ Q and s ∈ Σ:

∠ Assume NFA N is simultaneously in all states of P
∠ Let P ′ be the states to which N can transition from states in P upon reading s
∠ Set δD(P, s) := P ′ =

⋃
p∈P δN(p, s).

P P 0

s

N: D :

P P 0�!
s,

∠ By Induction: δ̂N(q0,w) = δ̂D({q0},w) for all w ∈ Σ∗

∠ Basis: Let s ∈ Σ

δ̂N(q0, ϵ)
def
= {q0}

def
= δ̂D({q0}, ϵ)

∠ Induction: assume δ̂N(q0,w) = δ̂D({q0},w) for w ∈ Σ∗

δ̂N(q0,ws)
def
=

⋃
p∈δ̂N (q0,w)

δN(p, s)
ind
=

⋃
p∈δ̂D ({q0},w)

δN(p, s)
def
= δD(δ̂D({q0},w), s)

def
= δ̂D({q0},ws)

∠ Thus, δ̂N(q0, ·) = δ̂D({q0}, ·), and hence the languages have to be identical.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 22 / 34

Languages Accepted by NFAs

Comments about the Subset Construction Method

∠ Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

∠ Not all states are reachable! (see example below)

∠ The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

Pascal Bercher week 1: Finite Automata Semester 1, 2025 23 / 34

Languages Accepted by NFAs

Comments about the Subset Construction Method

∠ Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

∠ Not all states are reachable! (see example below)

∠ The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

Pascal Bercher week 1: Finite Automata Semester 1, 2025 23 / 34

Languages Accepted by NFAs

Comments about the Subset Construction Method

∠ Generally, the DFA constructed using subset construction has 2n states (n = number
of states in the NFA).

∠ Not all states are reachable! (see example below)

∠ The state corresponding to the empty set is never a final state.

q0 q1 q2
1

0; 1

0; 1

;

{q0}

{q1}

{q2}

{q1; q2}

{q0; q1}

{q0; q2}

{q0; q1; q2}

0; 1

0

1

0; 1

0; 1

0; 1

1
0

1

0 0

1

D :

Pascal Bercher week 1: Finite Automata Semester 1, 2025 23 / 34

Languages Accepted by NFAs

Example (from COMP1600)

The “double digits” automaton

s1

0

 // s0

0,1

ZZ

0

>>

1

s2 0,1ee

s3

1

>>

Subset Construction: transition table

0 1
→ {s0}

{s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

Note.

∠ don’t have transition for all states, just those reachable from {s0}

∠ all others are not relevant

∠ having all states would require 24 = 16 entries.

∠ Once the table is complete replace each DFA state set by a simple name

Pascal Bercher week 1: Finite Automata Semester 1, 2025 24 / 34

Languages Accepted by NFAs

Example (from COMP1600)

The “double digits” automaton

s1

0

 // s0

0,1

ZZ

0

>>

1

s2 0,1ee

s3

1

>>

Subset Construction: transition table

0 1
→ {s0} {s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

Note.

∠ don’t have transition for all states, just those reachable from {s0}

∠ all others are not relevant

∠ having all states would require 24 = 16 entries.

∠ Once the table is complete replace each DFA state set by a simple name

Pascal Bercher week 1: Finite Automata Semester 1, 2025 24 / 34

Languages Accepted by NFAs

Determinisation Example, as Diagrams

Double Digits, as NFA.

Double Digits as DFA.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 25 / 34

s1

0

 // s0

0,1

ZZ

0

>>

1

s2 0,1ee

s3

1

>>

S01
0 //

1

��

S012

0

��

1

��

// S0

0

>>

1

S03

0

KK

1
// S023

1

XX

0

KK

0 1
→ {s0} {s0, s1} {s0, s3}
{s0, s1} {s0, s1, s2} {s0, s3}
{s0, s3} {s0, s1} {s0, s2, s3}

⊙ {s0, s1, s2} {s0, s1, s2} {s0, s2, s3}
⊙ {s0, s2, s3} {s0, s1, s2} {s0, s2, s3}

Transitions without Symbol Reading

Transitions without Symbol

Reading

Pascal Bercher week 1: Finite Automata Semester 1, 2025 26 / 34

Transitions without Symbol Reading

ϵ-Transitions

∠ State transitions occur without reading any symbols.

Definition: ϵ-transitions

An ϵ-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ϵ}) → 2Q

∠ An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

∠ Without reading any input symbols, the state of the ϵ-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 27 / 34

Transitions without Symbol Reading

ϵ-Transitions

∠ State transitions occur without reading any symbols.

Definition: ϵ-transitions

An ϵ-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ϵ}) → 2Q

∠ An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

∠ Without reading any input symbols, the state of the ϵ-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 27 / 34

Transitions without Symbol Reading

ϵ-Transitions

∠ State transitions occur without reading any symbols.

Definition: ϵ-transitions

An ϵ-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ϵ}) → 2Q

∠ An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

∠ Without reading any input symbols, the state of the ϵ-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 27 / 34

Transitions without Symbol Reading

ϵ-Transitions

∠ State transitions occur without reading any symbols.

Definition: ϵ-transitions

An ϵ-Nondeterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0,F) defined similar to a
DFA with the exception of the transition function, which is defined to be:

δ : Q × (Σ ∪ {ϵ}) → 2Q

∠ An Example:

q0

q1 q2 q3

q4 q5 q6

›

› ›

›

›a

b
⇤

q0

q1

q2

› a b

q3

q4

q5

q6

{q2}
{q3}

{q5}

{q6}

;

{q1; q4}

;;

;

;;

{q3}

;
; ;
; ;;

; ;;

∠ Without reading any input symbols, the state of the ϵ-NFA can transition:

From q0 to q1, q4, q2, or q3. From q1 to q2, or q3.

From q2 to q3. From q5 to q6.
Pascal Bercher week 1: Finite Automata Semester 1, 2025 27 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ ϵ-closure of a state

∠ ECLOSE(q) = all states that are reachable from q by ϵ-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) =

{q0, q1, q4, q2, q3}

ECLOSE(q1) =

{q1, q2, q3}

ECLOSE(q2) =

{q2, q3}

ECLOSE(q3) =

{q3}

ECLOSE(q4) =

{q4}

ECLOSE(q5) =

{q5, q6}

ECLOSE(q6) =

{q6}

Pascal Bercher week 1: Finite Automata Semester 1, 2025 28 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ ϵ-closure of a state

∠ ECLOSE(q) = all states that are reachable from q by ϵ-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) =

{q0, q1, q4, q2, q3}

ECLOSE(q1) =

{q1, q2, q3}

ECLOSE(q2) =

{q2, q3}

ECLOSE(q3) =

{q3}

ECLOSE(q4) =

{q4}

ECLOSE(q5) =

{q5, q6}

ECLOSE(q6) =

{q6}

Pascal Bercher week 1: Finite Automata Semester 1, 2025 28 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ ϵ-closure of a state

∠ ECLOSE(q) = all states that are reachable from q by ϵ-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) =

{q0, q1, q4, q2, q3}

ECLOSE(q1) =

{q1, q2, q3}

ECLOSE(q2) =

{q2, q3}

ECLOSE(q3) =

{q3}

ECLOSE(q4) =

{q4}

ECLOSE(q5) =

{q5, q6}

ECLOSE(q6) =

{q6}

Pascal Bercher week 1: Finite Automata Semester 1, 2025 28 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ ϵ-closure of a state

∠ ECLOSE(q) = all states that are reachable from q by ϵ-transitions alone.

q0

q1 q2 q3

q4 q5 q6

›

›

›a

b

› ›

ECLOSE(q0) = {q0, q1, q4, q2, q3}
ECLOSE(q1) = {q1, q2, q3}
ECLOSE(q2) = {q2, q3}
ECLOSE(q3) = {q3}
ECLOSE(q4) = {q4}
ECLOSE(q5) = {q5, q6}
ECLOSE(q6) = {q6}

Pascal Bercher week 1: Finite Automata Semester 1, 2025 28 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)

q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

Pascal Bercher week 1: Finite Automata Semester 1, 2025 29 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)

q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

Pascal Bercher week 1: Finite Automata Semester 1, 2025 29 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

Pascal Bercher week 1: Finite Automata Semester 1, 2025 29 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

Pascal Bercher week 1: Finite Automata Semester 1, 2025 29 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

Given ϵ-NFA N = (Q,Σ, δ, q0,F) define extended transition function δ̂ : Q × Σ∗ → 2Q

by induction:

∠ Basis:

δ̂(q, ϵ) = ECLOSE(q)

› ›
q

›
: : : › = ›2 = ›3 = · · ·q1 q0

δ̂(q, s) =
⋃

p∈ECLOSE(q)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
[s = ϵ · · · ϵ︸ ︷︷ ︸

finitely many

s ϵ · · · ϵ︸ ︷︷ ︸
finitely many

]

› ›
q

›
: : :

s › ›
: : :

›
q1 q0 p0 p1 p

∠ Induction:

δ̂(q,ws) =
⋃

p∈δ̂(q,w)

(⋃
p′∈δ(p,s)

ECLOSE(p′)

)
q

w

‹̂(q; w)

s
›

‹̂(q; ws)

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅
Pascal Bercher week 1: Finite Automata Semester 1, 2025 29 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

∠ In other words:

∠ ϵ ∈ L(N) ⇔ ECLOSE(q0) ∩ F ̸= ∅

› › ›: : :q0 p1 pr 2 F

∠ For k > 0, w = s1s2 . . . sk ∈ L(N) ⇔ ∃ a path such as the following:

Pascal Bercher week 1: Finite Automata Semester 1, 2025 30 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

∠ In other words:

∠ ϵ ∈ L(N) ⇔ ECLOSE(q0) ∩ F ̸= ∅
› › ›: : :q0 p1 pr 2 F

∠ For k > 0, w = s1s2 . . . sk ∈ L(N) ⇔ ∃ a path such as the following:

Pascal Bercher week 1: Finite Automata Semester 1, 2025 30 / 34

Transitions without Symbol Reading

Language Accepted by an ϵ-NFA

∠ w ∈ L(N) if and only if δ̂(q0,w) ∩ F ̸= ∅

∠ In other words:

∠ ϵ ∈ L(N) ⇔ ECLOSE(q0) ∩ F ̸= ∅
› › ›: : :q0 p1 pr 2 F

∠ For k > 0, w = s1s2 . . . sk ∈ L(N) ⇔ ∃ a path such as the following:

Pascal Bercher week 1: Finite Automata Semester 1, 2025 30 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Theorem 2.5.1

Every Language L that is accepted by an ϵ-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1 (Abstract idea)

N :

m

p1

p2

s2

sk

pk

,

q
s1

...

ECLOSE(pk) \ FN 6= ;

N 0 :

m
s1 : : : sk is accepted by ›-NFA N s1 : : : sk is accepted by NFA N 0

› ›
q0

›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 31 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Theorem 2.5.1

Every Language L that is accepted by an ϵ-NFA is also accepted by some DFA.

Proof of Theorem 2.5.1 (Abstract idea)

N :

m

p1

p2

s2

sk

pk

,

q
s1

...

ECLOSE(pk) \ FN 6= ;

N 0 :

m
s1 : : : sk is accepted by ›-NFA N s1 : : : sk is accepted by NFA N 0

› ›
q0

›
: : :

›

p1

p2

s1

s2

sk

p1

...

: : :

: : :

› › ›

› › ›

: : :
›

›

› ›

pkpk�1

pk qF 2 F

Pascal Bercher week 1: Finite Automata Semester 1, 2025 31 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 32 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 32 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 32 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 32 / 34

Transitions without Symbol Reading

Do ϵ-NFAs Accept More Languages?

Proof of Theorem 2.5.1 (Cont’d)

∠ Given L that is accepted by some ϵ-NFA, we must find an NFA that accepts L. ([NFA
to DFA conversion can then be done as in Theorem 2.4.1].

∠ Let ϵ-NFA N = (QN ,Σ, δN , q0,FN) accept L.

∠ Let us devise NFA N ′ = (QN′ ,Σ, δN′ , q′
0,FN′) as follows:

QN′ = QN q′
0 = q0 F ′

N = {q ∈ QN : ECLOSE(q) ∩ FN ̸= ∅}

δN′ : QN′ × Σ → 2QN′ defined by: δN′(q, s) =
⋃

p∈ECLOSE(q)

δ(p, s)

› ›
q

›
: : :

s
pN : p0

N 0 : p0q
s

m
N :

N 0: q can transition to p0 after reading s.

q can transition to p0 after a few ›-transitions, and a single read of s 2 ⌃.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 32 / 34

Summary

Summary

Pascal Bercher week 1: Finite Automata Semester 1, 2025 33 / 34

Summary

To Summarize...

Languages accepted
by DFAs

=
Languages accepted

by NFAs
=

Languages accepted
by ϵ-NFAs

∠ Allowing non-determinism and/or ϵ-transitions does not improve the language
acceptance power of (finite) automata.

Pascal Bercher week 1: Finite Automata Semester 1, 2025 34 / 34

	The Deterministic Finite Automaton
	Languages accepted by DFAs
	Non-deterministic Finite Automaton (NFA)
	Languages Accepted by NFAs
	Transitions without Symbol Reading
	Summary

