COMP3630 / COMP6363

week 1: Regular Expressions and Languages
This Lecture Covers Chapter 3 of HMU: Regular Expressions and Languages

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025



Content of this Chapter

> Introduction to regular expressions and regular languages
> Equivalence of classes of regular languages and languages accepted

> Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 2/26



Regular Expressions and Languages

Regular Expressions and

Languages

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 3/26



Regular Expressions and Languages

Regular Expressions: Overview

> So far: DFAs, NFAs were given a machine-like description

> Regular expressions are user-friendly and declarative formulation

> Regular expressions find extensive use.
> Searching/finding strings/pattern matching or conformance in text-formatting
systems (e.g., UNIX grep, egrep, fgrep)

> Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g.,
Lex, Flex)

> In Web forms to (structurally) validate entries (passwords, dates, email IDs)

> A regular expression over an alphabet X is a string consisting of:

> symbols from %
> constants: 0, €

> operators: +, *
> parentheses: (, )

> Each regular expression r denotes a language L(r) C X*.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 4/26



Regular Expressions and Languages

Regular Expressions: Definition

> Regular expressions are defined inductively as follows:

> Basis:
B1 () and ¢ are regular expressions, with L(#) = () and L(¢) = {€}.

B2 For each a € %, a is a regular expression with L(a) = {a}.
> Induction: If r and s are regular expressions, then:
11 sois r* with L(r*) = (L(r))*
e.g., L(a*) = (L(a))" ={a}* ={¢,a,aa,...}
12 sois r+s with L(r+s
I3 so is rs with L(rs) = L(r) - L(s) (cf. Def. from day 1!)
e.g., L(a*b) = L(a") - L(b) ={e,a,aa,...}-{b} ={b,ab,aab,...}
14 so is (r) with L((r)) = L(r).

> Only those generated by the above induction are regular.
> Remark: Some authors/texts use | instead of +. HMU uses +.

> Precedence Rules:
()>x>->+

where > is ‘binds more strongly than’, and both + and - associate to the left.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 5/26



Regular Expressions and Languages

Regular Expressions: Examples

> r=0+4 1110 is a regular expression

> with brackets that indicate precedence: r =0+ (1(1%)10)
> with more brackets indicating associativity: r = 0+ ((1(1*))1)0

> Computing the language:
L(r) = L(0) U L(11710)
={0}UL(1) L(1")- L(1)-L(0)
={0pu{1}-{1}"-{1}-{0}
={0}u{1}-{1"|n=>0} {1} {0}
={10]i#1}

> Q: What's a regular expression that describes alternating sequences of Os and 1s?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 6/26



DFAs and Regular Languages

DFAs and Regular Languages

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 7/26



DFAs and Regular Languages

Regular Languages

Definition: Regular Languages

We call a language regular if it can be described by a regular expression.

Remark: There are alternative definitions, as we will see later.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 8/26



DFAs and Regular Languages

Regular Languages: Some Basic Properties

Let w € X*. Then {w} is regular.

Proof of Theorem 3.2.1

> {w} being regular means there is a regular expression r with L(r) = {w}.
Proof by induction on the length of w. For w =€, {w} = {e} = L(€). For w of the
form w's, we have (by induction) r s.t. {w'} = L(r) so that {w} = {w's} = L(rs).

Let Ly and L, be regular languages. Then, L7, L1 U Ly and L1L, are also regular.

Proof of Theorem 3.2.2
By definition of L(r*), L(r+s) and L(rs).

> Corollary 1: The class of regular languages is closed under finite union and
concatenation, i.e., if Ly,..., L are regular languages for any k € N, then
LiU---ULgand Ly --- L are also regular languages.

> Corollary 2: Any finite language is regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 9/26



DFAs and Regular Languages

DFAs and Regular Languages

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3
> WLOG, let ¥ = {0,1}. Let M be a regular language. Then, M = L(E) for some
regular expression E.
> For each regular expression, we will devise an e-NFA.
0

> Basis: p-----mmmmmemeae oo ; P :
. Note that these automata

1A 0,1
) could be made smaller:
1

1 e
.

-
O

___________________ (0/€ only keep initial state

1 and no transitions since
runs with non-existent
transitions fail.

0/1 g» can be removed since
runs with non-existent
transitions fail.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 10 /26



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.3 (Cont'd)

> Induction 11: E*:

O
0O

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 11/26



DFAs and Regular Languages

DFAs and Regular Languages

—~
©
)
c
o
O
N—"
0
S
(3]
£
[
b’
o
(]
=
—
(e
(e}
Y
(o}
o
1
o

W
lT
w
&
c
2
i
O
3
o
=
N

12/26

Semester 1, 2025

week 1: Regular Expressions and Languages

Pascal Bercher



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.1 (Cont'd)

> Induction 13: EF

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 13 /26



DFAs and Regular Languages

So Far...

Languages accepted by
DFAs, NFAs, e-NFAs

Finite languages

> Is the inclusion strict?

> Are there languages accepted by DFAs that are not regular?

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 14 /26



DFAs and Regular Languages

DFAs and Regular Languages

Theorem 3.2.4
For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4
> Let DFA A= (Q, X, 9, qo, F) be given.

| \

> Let us rename the states so that Q@ = {qo, g1, @2, ..., qn—1}-
> For any string si ...sx € L(A), there is a path
q0i>qi1 i>CIi2"'i>Qik cF

> Define: R(i,j, k) be the set of all input strings that move the internal state of A
from g; to g using paths whose intermediate nodes comprise only of q¢, £ < k.

States g, .., Gn-1

@)

States qo,. .., k-1

> Idea: prove that (a) each R(i,J, k) is regular, and (b) L(A) is a union of R(i,j, k)'s.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 15 /26



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont’d)

> Note that L(A) = U R(0,j,n). (i.e., paths that start in go and end in an accepting
Jiq€F
state with intermediate nodes qo, g1, . . ., ga—1 (all nodes))

v

L(A) will be regular if each R(i,j, k) is regular. We now proceed by induction to show
that each R(i,j, k) is regular.

v

Basis: Consider R(i,j,0) for i,j € {0,1,...,n—1}.
> R(i,j,0) consists of strings whose corresponding paths start in g; and end in g;
with intermediate nodes gy, ¢ < 0.

= No intermediate nodes

= R(i,/,0) contains strings that change state g; to g; directly
= R(i,j,0) C{e}UX

= R(i,/,0) is a regular language [Corollary 2]

> Induction: Let R(i,j, ) be regular for i,j € {0,...,n—1} and 0 < ¢ < k. Consider
R(i,j, k) for i,j €{0,...,n—1}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 16 / 26



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

> The strings in R(/,j, k) correspond to paths whose intermediate nodes belong to
{qO, ey Qk—l}-

> Partition R(i, j, k) as follows:
Case (a): Strings whose paths do not have gx_1 as an intermediate node.

Case (b): Strings whose paths do pass through gx_1 as an intermediate node.

States qo, - . ., k2

> R(i,j, k) = {Case (a) strings} U {Case (b) strings}.
> Case (a) Strings are exactly those in R(/,j, k — 1)
> Hence, R(i,j, k) = R(i,j, k — 1) U {Case (b) strings}.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 17 /26



DFAs and Regular Languages

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

A

TV
Case (b) path
> Each case (b) string is the concatenation of 3 strings:

1. A string that changes the state from g; to gx—1 through a path whose

intermediate nodes are qo, . .., qk—2, i.e., R(i,k — 1,k —1)

2. A finite concatenation of strings, each of which take gx_1 back to gx—1 via paths
that use only qo, . .., gk—2 as intermediate nodes. i.e., i.e., R(k—1,k—1,k—1)"

3. A string that takes gx—1 back to g; via a path that uses only qo, ..., gk—2 as
intermediate nodes, i.e., i.e., R(k —1,j, k — 1)

Thus,

R(i,j,k) = R(i,j,k—=1) U[R(i,k—1,k—1)R(k—1,k—1,k—1)*R(k—1,j, k—1)]

> From Thm 3.2.2, it follows that R(i,j, k) is regular for any i, j, k. Thus, L(A) is
regular.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 18 /26



DFAs and Regular Languages

Equivalence of Languages

> The following are indeed equivalent:
> The class of regular languages
> The class of languages accepted by DFAs
> The class of languages accepted by NFAs
> The class of languages accepted by e-NFAs

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 19/26



Properties of Regular Languages

Properties of Regular

Languages

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 20/26



Properties of Regular Languages

Properties of Regular Languages

> Regular languages are closed under finite union, concatenation, and Kleene-x
operation. (Theorem 3.2.2)

> They are also closed under:

> Complementation:
Given DFA A= (Q,X,8,q0, F), DFA A" = (Q, %, 3, qo, F©) accepts L(A)°.

> Intersection:
De Morgan's Law: RiNR> = (Rf UR5)¢

(Where F€ = Q\ F and LS, (for some language L over X) is ¥* \ Lx)

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 21/26



Abstract Regular Expressions

Abstract Regular Expressions

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 22/26



Abstract Regular Expressions
Abstract Regular Expressions

> We can also define abstract regular expressions over languages over ..
> Let V be a set of variables (which will be interpreted as languages)

> Use the induction definition for regular languages replacing B2 alone by:
B2 M is an (abstract) regular expression for every M € V

> Remark: Even though V could be infinite, every regular expression consists only of
finitely many variables.

> Unlike concrete regular expressions (such as 1%, 0 + 1), abstract regular expressions
(such as M*, M+ N) don't stand for a unique language.

> However, we can evaluate abstract regular expressions by assigning any languages to
variables, and inductively interpreting:
> Variable® — Kleene-x closure of its language
> Sum of variables — union of the languages assigned to them
> Concatenation of variables — concatenation of their the languages

> We can introduce a notion of equality of (abstract) regular expression:

For any assignment of languages to the
Abstract regular expressions E; = E; < variables contained in Ei, E;, their
evaluations equal (i.e., L(E1) = L(E>))

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 23/26



Abstract Regular Expressions

Algebraic Laws of Abstract Regular Expressions

> Commutativity: L+M =M+ L (Union is commutative)
LM # ML (Concatenation is not commutative)

> Associativity: (L 4+ M)+ N =L+ (M+ N) (Union is associative)
(LM)N = L(MN) (Concatenation is associative)

> Identity: A +L =L+ 0 =L (0 is the identity element for +)
€L = Le = L (e is the identity element for concatenation)

> Annihilator: )L = L) = 0
> ldempotent: L+L =L

> Distributive: L(M+ N) = LM+ LN
(M+DN)L =ML+ NL

> Kleene x: (L*)* =L%; 0" =¢ € =e

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 24 /26



Summary

Summary

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 25/26



Summary

We can now summarize:

> We know what formal languages are.
> DFAs and all NFAs accept the same class of languages.

> Also regular expression accept exactly the same class of languages as
DFAs/NFAs/e-NFAs.

> We saw some properties of regular languages (and will see more in the tutorials).

> We also saw abstract regular expressions.

Pascal Bercher week 1: Regular Expressions and Languages Semester 1, 2025 26/26



	Regular Expressions and Languages
	DFAs and Regular Languages
	Properties of Regular Languages
	Abstract Regular Expressions
	Summary

