COMP3630 / COMP6363

week 1: Regular Expressions and Languages

This Lecture Covers Chapter 3 of HMU: Regular Expressions and Languages

slides created by: Dirk Pattinson, based on material by Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

- > Introduction to regular expressions and regular languages
- > Equivalence of classes of regular languages and languages accepted
- > Algebraic laws of (abstract) regular expressions

Additional Reading: Chapter 3 of HMU.

Regular Expressions and Languages

> So far: DFAs, NFAs were given a machine-like description

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are $\underline{\mathsf{user}\text{-}\mathsf{friendly}}$ and $\underline{\mathsf{declarative}}$ formulation
- > Regular expressions find extensive use.

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are user-friendly and declarative formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- \rightarrow A regular expression over an alphabet Σ is a string consisting of:

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- \rightarrow A regular expression over an alphabet Σ is a string consisting of:
 - \rightarrow symbols from Σ
 - \rightarrow constants: \emptyset, ϵ
 - > operators: +, *
 - > parantheses: (,)

- > So far: DFAs, NFAs were given a machine-like description
- > Regular expressions are <u>user-friendly</u> and <u>declarative</u> formulation
- > Regular expressions find extensive use.
 - > Searching/finding strings/pattern matching or conformance in text-formatting systems (e.g., UNIX grep, egrep, fgrep)
 - > Lexical analyzers (in compilers) use regular expressions to identify tokens (e.g., Lex, Flex)
 - > In Web forms to (structurally) validate entries (passwords, dates, email IDs)
- \gt A regular expression over an alphabet Σ is a string consisting of:
 - \rightarrow symbols from Σ
 - \rightarrow constants: \emptyset, ϵ
 - \rightarrow operators: +, *
 - > parantheses: (,)
- > Each regular expression r denotes a language $L(r) \subseteq \Sigma^*$

> Regular expressions are defined inductively as follows:

- > Regular expressions are defined inductively as follows:
 - > Basis:

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \gt Induction: If r and s are regular expressions, then:

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \rightarrow Induction: If r and s are regular expressions, then:

I1 so is
$$r^*$$
 with $L(r^*)=(L(r))^*$ e.g., $L(a^*)=(L(a))^*=\{a\}^*=\{\epsilon,a,aa,\dots\}$

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- > Induction: If r and s are regular expressions, then:

I1 so is
$$r^*$$
 with $L(r^*) = (L(r))^*$
e.g., $L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}$
I2 so is $r + s$ with $L(r + s) = L(r) \cup L(s)$

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \rightarrow Induction: If r and s are regular expressions, then:

```
I1 so is r^* with L(r^*) = (L(r))^*

e.g., L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, ...\}

I2 so is r + s with L(r + s) = L(r) \cup L(s)

I3 so is r with L(rs) = L(r) \cdot L(s) (cf. Def. from day 1!)

e.g., L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, ...\} \cdot \{b\} = \{b, ab, aab, ...\}
```

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \rightarrow Induction: If r and s are regular expressions, then:

```
I1 so is r^* with L(r^*) = (L(r))^*
e.g., L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}
I2 so is r + s with L(r + s) = L(r) \cup L(s)
I3 so is rs with L(rs) = L(r) \cdot L(s) (cf. Def. from day 1!)
e.g., L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\}
I4 so is (r) with L((r)) = L(r).
```

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \rightarrow Induction: If r and s are regular expressions, then:

I1 so is
$$r^*$$
 with $L(r^*) = (L(r))^*$ e.g., $L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}$
I2 so is $r + s$ with $L(r + s) = L(r) \cup L(s)$
I3 so is r^* with $L(r^*) = L(r) \cdot L(s)$ (cf. Def. from day 1!) e.g., $L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\}$
I4 so is (r) with $L((r)) = L(r)$.

> Only those generated by the above induction are regular.

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- \rightarrow Induction: If r and s are regular expressions, then:

```
I1 so is r^* with L(r^*) = (L(r))^* e.g., L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}
I2 so is r + s with L(r + s) = L(r) \cup L(s)
I3 so is r^* with L(r^*) = L(r) \cdot L(s) (cf. Def. from day 1!) e.g., L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\}
I4 so is (r) with L(r) = L(r).
```

- > Only those generated by the above induction are regular.
- > **Remark**: Some authors/texts use | instead of +. HMU uses +.

- > Regular expressions are defined inductively as follows:
 - > Basis:
- B1 \emptyset and ϵ are regular expressions, with $L(\emptyset) = \emptyset$ and $L(\epsilon) = \{\epsilon\}$.
- B2 For each $a \in \Sigma$, a is a regular expression with $L(a) = \{a\}$.
- > Induction: If r and s are regular expressions, then:

I1 so is
$$r^*$$
 with $L(r^*) = (L(r))^*$ e.g., $L(a^*) = (L(a))^* = \{a\}^* = \{\epsilon, a, aa, \dots\}$
I2 so is $r + s$ with $L(r + s) = L(r) \cup L(s)$
I3 so is r^* with $L(r^*) = L(r) \cdot L(s)$ (cf. Def. from day 1!) e.g., $L(a^*b) = L(a^*) \cdot L(b) = \{\epsilon, a, aa, \dots\} \cdot \{b\} = \{b, ab, aab, \dots\}$
I4 so is (r) with $L((r)) = L(r)$.

- > Only those generated by the above induction are regular.
- > Remark: Some authors/texts use | instead of +. HMU uses +.
- > Precedence Rules:

$$(\cdot) > * > \cdot > +$$

where > is 'binds more strongly than', and both + and \cdot associate to the left.

Regular Expressions: Examples

- r = 0 + 11*10 is a regular expression
 - > with brackets that indicate precedence: $r = 0 + (1(1^*)10)$
 - > with more brackets indicating associativity: $r = 0 + ((1(1^*))1)0$

> Q: What's a regular expression that describes alternating sequences of 0s and 1s?

Regular Expressions: Examples

- r = 0 + 11*10 is a regular expression
 - > with brackets that indicate precedence: $r = 0 + (1(1^*)10)$ > with more brackets indicating associativity: $r = 0 + ((1(1^*))1)0$
- > Computing the language:

$$L(r) = L(0) \cup L(11^*10)$$

$$= \{0\} \cup L(1) \cdot L(1^*) \cdot L(1) \cdot L(0)$$

$$= \{0\} \cup \{1\} \cdot \{1\}^* \cdot \{1\} \cdot \{0\}$$

$$= \{0\} \cup \{1\} \cdot \{1^n \mid n \ge 0\} \cdot \{1\} \cdot \{0\}$$

$$= \{1^i \mid i \ne 1\}$$

> Q: What's a regular expression that describes alternating sequences of 0s and 1s?

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> $\{w\}$ being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> $\{w\}$ being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> $\{w\}$ being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

By definition of $L(r^*)$, L(r+s) and L(rs).

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> $\{w\}$ being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

By definition of $L(r^*)$, L(r+s) and L(rs).

Corollary 1: The class of regular languages is closed under finite union and concatenation, i.e., if L_1, \ldots, L_k are regular languages for any $k \in \mathbb{N}$, then $L_1 \cup \cdots \cup L_k$ and $L_1 \cdots L_k$ are also regular languages.

Theorem 3.2.1

Let $w \in \Sigma^*$. Then $\{w\}$ is regular.

Proof of Theorem 3.2.1

> $\{w\}$ being regular means there is a regular expression r with $L(r) = \{w\}$. Proof by induction on the length of w. For $w = \epsilon$, $\{w\} = \{\epsilon\} = L(\epsilon)$. For w of the form w's, we have (by induction) r s.t. $\{w'\} = L(r)$ so that $\{w\} = \{w's\} = L(rs)$.

Theorem 3.2.2

Let L_1 and L_2 be regular languages. Then, L_1^* , $L_1 \cup L_2$ and L_1L_2 are also regular.

Proof of Theorem 3.2.2

By definition of $L(r^*)$, L(r+s) and L(rs).

- > **Corollary 1:** The class of regular languages is closed under finite union and concatenation, i.e., if L_1, \ldots, L_k are regular languages for any $k \in \mathbb{N}$, then $L_1 \cup \cdots \cup L_k$ and $L_1 \cdots L_k$ are also regular languages.
- > Corollary 2: Any finite language is regular.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M=L(A).

Proof of Theorem 3.2.3

> WLOG, let $\Sigma = \{0,1\}$. Let M be a regular language. Then, M = L(E) for some regular expression E.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0,1\}$. Let M be a regular language. Then, M = L(E) for some regular expression E.
- > For each regular expression, we will devise an ϵ -NFA.

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0,1\}$. Let M be a regular language. Then, M = L(E) for some regular expression E.
- > For each regular expression, we will devise an ϵ -NFA.

Pascal Bercher

Theorem 3.2.3

For every regular language M, there exists a DFA A such that M = L(A).

Proof of Theorem 3.2.3

- > WLOG, let $\Sigma = \{0,1\}$. Let M be a regular language. Then, M = L(E) for some regular expression E.
- > For each regular expression, we will devise an ϵ -NFA.

Note that these automata could be made smaller:

- \emptyset/ϵ only keep initial state and no transitions since runs with non-existent transitions fail
- $0/1 \ q_2$ can be removed since runs with non-existent transitions fail.

Proof of Theorem 3.2.3 (Cont'd) > Induction E*: Ε

Proof of Theorem 3.2.3 (Cont'd) > Induction E + F:

Proof of Theorem 3.2.1 (Cont'd)

> Induction I3':

So Far...

So Far...

- > Is the inclusion strict?
- > Are there languages accepted by DFAs that are not regular?

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A)=L(E).

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

> Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- \rightarrow Let DFA $A=(Q,\Sigma,\delta,q_0,F)$ be given.
- ullet Let us rename the states so that $Q=\{q_0,q_1,q_2,\ldots,q_{n-1}\}.$

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- ullet Let us rename the states so that $Q=\{q_0,q_1,q_2,\ldots,q_{n-1}\}.$
- > For any string $s_1 ... s_k$ ∈ L(A), there is a path

$$q_0 \xrightarrow{s_1} q_{i_1} \xrightarrow{s_2} q_{i_2} \cdots \xrightarrow{s_k} q_{i_k} \in F$$

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- \rightarrow Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$
- > For any string $s_1 ... s_k$ ∈ L(A), there is a path

$$q_0 \stackrel{s_1}{\longrightarrow} q_{i_1} \stackrel{s_2}{\longrightarrow} q_{i_2} \cdots \stackrel{s_k}{\longrightarrow} q_{i_k} \in F$$

> **Define:** R(i,j,k) be the set of <u>all</u> input strings that move the internal state of A from q_i to q_i using paths whose intermediate nodes comprise only of q_ℓ , $\ell < k$.

Theorem 3.2.4

For every DFA A, there is a regular expression E such that L(A) = L(E).

Proof of Theorem 3.2.4

- > Let DFA $A = (Q, \Sigma, \delta, q_0, F)$ be given.
- \rightarrow Let us rename the states so that $Q = \{q_0, q_1, q_2, \dots, q_{n-1}\}.$
- > For any string $s_1 \dots s_k \in L(A)$, there is a path

$$q_0 \stackrel{s_1}{\longrightarrow} q_{i_1} \stackrel{s_2}{\longrightarrow} q_{i_2} \cdots \stackrel{s_k}{\longrightarrow} q_{i_k} \in F$$

> **Define:** R(i, j, k) be the set of <u>all</u> input strings that move the internal state of A from q_i to q_i using paths whose intermediate nodes comprise only of q_{ℓ} , $\ell < k$.

> Idea: prove that (a) each R(i, j, k) is regular, and (b) L(A) is a union of R(i, j, k)'s.

Proof of Theorem 3.2.4 (Cont'd)

> Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))

Pascal Bercher

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes q_0,q_1,\ldots,q_{n-1} (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes q_0,q_1,\ldots,q_{n-1} (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **Basis:** Consider R(i,j,0) for $i,j \in \{0,1,\ldots,n-1\}$.

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- > **Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **> Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - ⇒ No intermediate nodes

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes q_0,q_1,\ldots,q_{n-1} (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **> Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - ⇒ No intermediate nodes
 - $\Rightarrow R(i,j,0)$ contains strings that change state q_i to q_i directly

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **> Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - ⇒ No intermediate nodes
 - $\Rightarrow R(i,j,0)$ contains strings that change state q_i to q_i directly
 - $\Rightarrow R(i, j, 0) \subset \{\epsilon\} \cup \Sigma$

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **> Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - ⇒ No intermediate nodes
 - $\Rightarrow R(i,j,0)$ contains strings that change state q_i to q_j directly
 - $\Rightarrow R(i,j,0) \subseteq \{\epsilon\} \cup \Sigma$
 - $\Rightarrow R(i,j,0)$ is a regular language [Corollary 2]

- > Note that $L(A) = \bigcup_{j:q_j \in F} R(0,j,n)$. (i.e., paths that start in q_0 and end in an accepting state with intermediate nodes $q_0, q_1, \ldots, q_{n-1}$ (all nodes))
- > L(A) will be regular if each R(i,j,k) to be regular. We now proceed by induction to show that each R(i,j,k) is regular.
- **> Basis:** Consider R(i, j, 0) for $i, j ∈ \{0, 1, ..., n 1\}$.
 - > R(i,j,0) consists of strings whose corresponding paths start in q_i and end in q_j with intermediate nodes q_ℓ , $\ell < 0$.
 - ⇒ No intermediate nodes
 - $\Rightarrow R(i, j, 0)$ contains strings that change state q_i to q_i directly
 - $\Rightarrow R(i, j, 0) \subset {\epsilon} \cup \Sigma$
 - $\Rightarrow R(i, j, 0)$ is a regular language [Corollary 2]
- > **Induction:** Let $R(i,j,\ell)$ be regular for $i,j \in \{0,\ldots,n-1\}$ and $0 \le \ell < k$. Consider R(i,j,k) for $i,j \in \{0,\ldots,n-1\}$.

Proof of Theorem 3.2.4 (Cont'd)

> The strings in R(i,j,k) correspond to paths whose intermediate nodes belong to $\{q_0,\ldots,q_{k-1}\}.$

- > The strings in R(i,j,k) correspond to paths whose intermediate nodes belong to $\{q_0,\ldots,q_{k-1}\}.$
- > Partition R(i,j,k) as follows:

- > The strings in R(i,j,k) correspond to paths whose intermediate nodes belong to $\{q_0,\ldots,q_{k-1}\}.$
- > Partition R(i,j,k) as follows:
 - Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.
 - Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

Proof of Theorem 3.2.4 (Cont'd)

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \dots, q_{k-1}\}.$
- > Partition R(i,j,k) as follows:

Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.

Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

 $\rightarrow R(i, j, k) = \{ \text{Case (a) strings} \} \cup \{ \text{Case (b) strings} \}.$

- > The strings in R(i, j, k) correspond to paths whose intermediate nodes belong to $\{q_0, \dots, q_{k-1}\}.$
- > Partition R(i,j,k) as follows:
 - Case (a): Strings whose paths **do not have** q_{k-1} as an intermediate node.
 - Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

- $\rightarrow R(i, j, k) = \{ \text{Case (a) strings} \} \cup \{ \text{Case (b) strings} \}.$
- \rightarrow Case (a) Strings are exactly those in R(i, j, k-1)

- > The strings in R(i,j,k) correspond to paths whose intermediate nodes belong to $\{q_0,\ldots,q_{k-1}\}.$
- > Partition R(i,j,k) as follows:
 - Case (a): Strings whose paths do not have q_{k-1} as an intermediate node.
 - Case (b): Strings whose paths do pass through q_{k-1} as an intermediate node.

- $\rightarrow R(i, j, k) = \{ \text{Case (a) strings} \} \cup \{ \text{Case (b) strings} \}.$
- > Case (a) Strings are exactly those in R(i, j, k-1)
- \rightarrow Hence, $R(i, j, k) = R(i, j, k 1) \cup \{Case (b) strings\}.$

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path

> Each case (b) string is the concatenation of 3 strings:

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$
 - 3. A string that takes q_{k-1} back to q_j via a path that uses only q_0, \ldots, q_{k-2} as intermediate nodes, i.e., R(k-1, j, k-1)

DFAs and Regular Languages

Proof of Theorem 3.2.4 (Cont'd)

Case (b) path

- > Each case (b) string is the concatenation of 3 strings:
 - 1. A string that changes the state from q_i to q_{k-1} through a path whose intermediate nodes are q_0, \ldots, q_{k-2} , i.e., R(i, k-1, k-1)
 - 2. A finite concatenation of strings, each of which take q_{k-1} back to q_{k-1} via paths that use only q_0, \ldots, q_{k-2} as intermediate nodes. i.e., i.e., $R(k-1, k-1, k-1)^*$
 - 3. A string that takes q_{k-1} back to q_j via a path that uses only q_0, \ldots, q_{k-2} as intermediate nodes, i.e., i.e., R(k-1, j, k-1)

Thus,

$$R(i, j, k) = R(i, j, k-1) \cup [R(i, k-1, k-1)R(k-1, k-1, k-1)^*R(k-1, j, k-1)]$$

> From Thm 3.2.2, it follows that R(i,j,k) is regular for any i,j,k. Thus, L(A) is regular.

Equivalence of Languages

- > The following are indeed equivalent:
 - > The class of regular languages
 - > The class of languages accepted by DFAs
 - > The class of languages accepted by NFAs
 - > The class of languages accepted by $\epsilon\text{-NFAs}$

> Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are also closed under:

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are also closed under:
 - > Complementation:

Given DFA
$$A = (Q, \Sigma, \delta, q_0, F)$$
, DFA $A' = (Q, \Sigma, \delta, q_0, F^c)$ accepts $L(A)^c$.

(Where
$$F^c = Q \setminus F$$
 and L_{Σ}^c (for some language L over Σ) is $\Sigma^* \setminus L_{\Sigma}$)

- > Regular languages are closed under finite union, concatenation, and Kleene-* operation. (Theorem 3.2.2)
- > They are also closed under:
 - > Complementation: Given DFA $A = (Q, \Sigma, \delta, q_0, F)$, DFA $A' = (Q, \Sigma, \delta, q_0, F^c)$ accepts $L(A)^c$.
 - > Intersection: De Morgan's Law: $R_1 \cap R_2 = (R_1^c \cup R_2^c)^c$

(Where $F^c = Q \setminus F$ and L_{Σ}^c (for some language L over Σ) is $\Sigma^* \setminus L_{\Sigma}$)

> We can also define abstract regular expressions over languages over Σ .

- > We can also define **abstract** regular expressions over languages over Σ .
- > Let ${\cal V}$ be a set of **variables** (which will be interpreted as languages)

- > We can also define abstract regular expressions over languages over Σ .
- \rightarrow Let $\mathcal V$ be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every M ∈ V

- > We can also define abstract regular expressions over languages over Σ .
- \rightarrow Let $\mathcal V$ be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every M ∈ V
- > Remark: Even though V could be infinite, every regular expression consists only of finitely many variables.

- > We can also define **abstract** regular expressions over languages over Σ .
- \rightarrow Let $\mathcal V$ be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every $M \in \mathcal{V}$
- > Remark: Even though V could be infinite, every regular expression consists only of finitely many variables.
- > Unlike **concrete** regular expressions (such as 1*, 0 + 1), **abstract** regular expressions (such as M*, M + N) don't stand for a **unique** language.

- > We can also define abstract regular expressions over languages over Σ .
- \rightarrow Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every M ∈ V
- > Remark: Even though ${\cal V}$ could be infinite, every regular expression consists only of finitely many variables.
- > Unlike concrete regular expressions (such as 1*, 0 + 1), abstract regular expressions (such as M*, M + N) don't stand for a unique language.
- > However, we can **evaluate** abstract regular expressions by **assigning** any languages to variables, and inductively interpreting:
 - > Variable* --- Kleene-* closure of its language
 - \rightarrow Sum of variables \longrightarrow union of the languages assigned to them
 - > Concatenation of variables --> concatenation of their the languages

- > We can also define abstract regular expressions over languages over Σ .
- \rightarrow Let \mathcal{V} be a set of **variables** (which will be interpreted as languages)
- > Use the induction definition for regular languages replacing B2 alone by: B2 M is an (abstract) regular expression for every M ∈ V
- > Remark: Even though ${\cal V}$ could be infinite, every regular expression consists only of finitely many variables.
- > Unlike **concrete** regular expressions (such as 1^* , 0+1), **abstract** regular expressions (such as M^* , M+N) don't stand for a **unique** language.
- > However, we can **evaluate** abstract regular expressions by **assigning** any languages to variables, and inductively interpreting:
 - \rightarrow Variable* \longrightarrow Kleene-* closure of its language
 - ightarrow Sum of variables \longrightarrow union of the languages assigned to them
 - > Concatenation of variables --> concatenation of their the languages
- > We can introduce a notion of equality of (abstract) regular expression:

Abstract regular expressions $E_1 = E_2 \Leftrightarrow$

For any assignment of languages to the variables contained in E_1 , E_2 , their evaluations equal (i.e., $L(E_1) = L(E_2)$)

Algebraic Laws of Abstract Regular Expressions

- > Commutativity: L + M = M + L (Union is commutative) LM ≠ ML (Concatenation is not commutative)
- > Associativity: (L + M) + N = L + (M + N) (Union is associative) (LM)N = L(MN) (Concatenation is associative)
- > Identity: $\emptyset + L = L + \emptyset = L$ (\emptyset is the identity element for +) $\epsilon L = L\epsilon = L$ (ϵ is the identity element for concatenation)
- > Annihilator: $\emptyset L = L\emptyset = \emptyset$
- > Idempotent: L + L = L
- > Distributive: L(M + N) = LM + LN(M + N)L = ML + NL
- > Kleene *: $(L^*)^* = L^*$; $\emptyset^* = \epsilon$; $\epsilon^* = \epsilon$.

Summary

Summary

We can now summarize:

- > We know what formal languages are.
- > DFAs and all NFAs accept the same class of languages.
- > Also regular expression accept exactly the same class of languages as DFAs/NFAs/ ϵ -NFAs.
- > We saw some properties of regular languages (and will see more in the tutorials).
- > We also saw abstract regular expressions.