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Games

The Geography Game

Rules of Geography given a designated starting city (e.g. London)

@ Player 1 names a city that begins with the last letter of the designated city
(e.g., Newcastle) and makes this the designated city (i.e., Newcastle).
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The Geography Game

Rules of Geography given a designated starting city (e.g. London)

@ Player 1 names a city that begins with the last letter of the designated city
(e.g., Newcastle) and makes this the designated city (i.e., Newcastle).

@ Player 2 names a city that begins with the last letter of the city named by player 1
(e.g., Edinburgh) and makes this the designated city (i.e., Edinburgh).
Continue with rule 1

Winning Conditions.
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@ Player 1 names a city that begins with the last letter of the designated city
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Continue with rule 1

Winning Conditions.

> The game is lost by the player that cannot name a city and won by the other player.

Pascal Bercher week 10: Alternating Time Semester 1, 2025 4/23



Games

The Geography Game

Rules of Geography given a designated starting city (e.g. London)
@ Player 1 names a city that begins with the last letter of the designated city
(e.g., Newcastle) and makes this the designated city (i.e., Newcastle).

@ Player 2 names a city that begins with the last letter of the city named by player 1
(e.g., Edinburgh) and makes this the designated city (i.e., Edinburgh).

Continue with rule 1

Winning Conditions.

> The game is lost by the player that cannot name a city and won by the other player.

Question.

Does Player 1 have a winning strategy (i.e., can always win irrespective of the moves of
player 2)?

(In “reality” we have partial knowledge but a hypothesis about what the other player
knows (epistemic reasoning). Here we assume full knowledge (i.e., full observability.))
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Games

The Proof Game

Background.

> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)
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The Proof Game

Background.

> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)

Rules of the Proof Game for a given designated formula Ag:

An

@ Player 1 chooses a proof rule whose conclusion is the designated formula.
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> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)

Rules of the Proof Game for a given designated formula Ag:

@ Player 1 chooses a proof rule Al‘A%(;A” whose conclusion is the designated formula.
@ Player 2 chooses a premise A; of the rule, and makes A; the designated formula.

Continue with rule 1.

Winning conditions.
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Games

The Proof Game

Background.

> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)

Rules of the Proof Game for a given designated formula Ag:

AL .. A . .
@ Player 1 chooses a proof rule T whose conclusion is the designated formula.

@ Player 2 chooses a premise A; of the rule, and makes A; the designated formula.
Continue with rule 1.

Winning conditions.

> the player who cannot move loses the game. Why?
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o player 2 can’'t move: the chosen premise is an axiom (with no premises)
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Background.

> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)

Rules of the Proof Game for a given designated formula Ag:

@ Player 1 chooses a proof rule Al‘A%(;A” whose conclusion is the designated formula.
@ Player 2 chooses a premise A; of the rule, and makes A; the designated formula.

Continue with rule 1.

Winning conditions.

> the player who cannot move loses the game. Why?

o player 1 can't move: player 2 picked a premise that can't be proved by player 1
o player 2 can’'t move: the chosen premise is an axiom (with no premises)

> infinite plays are lost by player 1. Why?
That means the proof does not end in axioms but is cyclic.
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The Proof Game

Background.

> A formula A is provable if there is a proof rule with conclusion A, such that all its
premisses are provable (e.g. 224 —F5)

Rules of the Proof Game for a given designated formula Ag:

@ Player 1 chooses a proof rule Al‘A%(;A” whose conclusion is the designated formula.
@ Player 2 chooses a premise A; of the rule, and makes A; the designated formula.

Continue with rule 1.

Winning conditions.
> the player who cannot move loses the game. Why?

o player 1 can't move: player 2 picked a premise that can't be proved by player 1
o player 2 can’'t move: the chosen premise is an axiom (with no premises)

> infinite plays are lost by player 1. Why?
That means the proof does not end in axioms but is cyclic.
Question.

Does player 1 have a winning strategy?
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Games

The Generalized Geography Game

From Geography to Generalized Geography: Replace cities with directed graph:
The graph has a designated start start node.

Rules.
@ Player 1 chooses a successor of the designated node,
which is the new designated node for player 2.
@ Player 2 chooses a successor of the designated node,
which is the new designated node for player 1.

Continue with rule 1.

Winning Conditions.
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The Generalized Geography Game

From Geography to Generalized Geography: Replace cities with directed graph:
The graph has a designated start start node.

Rules.

@ Player 1 chooses a successor of the designated node,
which is the new designated node for player 2.

@ Player 2 chooses a successor of the designated node,
which is the new designated node for player 1.

Continue with rule 1.

Winning Conditions.
> who cannot move, loses

> Player 2 wins infinite plays
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Games

The Generalized Geography Game

From Geography to Generalized Geography: Replace cities with directed graph:
The graph has a designated start start node.

Rules.

@ Player 1 chooses a successor of the designated node,
which is the new designated node for player 2.

@ Player 2 chooses a successor of the designated node,
which is the new designated node for player 1.

Continue with rule 1.

Winning Conditions.
> who cannot move, loses

> Player 2 wins infinite plays

Question.
What is the complexity that — given graph G with designated initial node — of
determining whether Player 1 has a winning strategy?
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Games

Problem Reductions between these Games

From Geography to Generalised Geography.
Construct a graph where:
> the nodes are the names of cities

> there is an edge between city 1 and city 2 if the name of city 2 begins with the last
letter of the name of city 1

Pascal Bercher week 10: Alternating Time Semester 1, 2025 7/23



Games

Problem Reductions between these Games

From Geography to Generalised Geography.
Construct a graph where:
> the nodes are the names of cities

> there is an edge between city 1 and city 2 if the name of city 2 begins with the last
letter of the name of city 1

From Proof to Generalised Geography.
Construct a graph where:
> nodes are either formulae, or proof rules

> there is an edge between a formula node A and a proof rule node 2 Ap

if A= Ao
> there is an edge between a proof rule node £
if A= A;, forsome 1 </i<n.

Ao

An and a formula node A
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Games

Problem Reductions between these Games

From Geography to Generalised Geography.
Construct a graph where:
> the nodes are the names of cities

> there is an edge between city 1 and city 2 if the name of city 2 begins with the last
letter of the name of city 1

From Proof to Generalised Geography.
Construct a graph where:
> nodes are either formulae, or proof rules

> there is an edge between a formula node A and a proof rule node 2 Ap

if A= Ao
> there is an edge between a proof rule node £
if A= A;, forsome 1 </i<n.

Ao

An and a formula node A

In conclusion: Generalized Geography is at least as hard as the other two problems.
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Games

Winning Strategies (for any 2-Player Game!)

Player 1 has a winning strategy from node n if:
> there exists a move such that for all moves of player 2 to node n’,

> player 1 has a winning strategy from node n’ ...

Pattern for winning strategy:
> existential choice for player 1 (i.e., one has to work for player 1)

> universal “choice” for player 2 (i.e., all have to work for player 2, or, equivalently,
(hence “choice”!) one chosen one has not to work for player 1)

Can we model such a strategy using non-deterministic TMs?
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Winning Strategies (for any 2-Player Game!)

Player 1 has a winning strategy from node n if:
> there exists a move such that for all moves of player 2 to node n’,

> player 1 has a winning strategy from node n’ ...

Pattern for winning strategy:
> existential choice for player 1 (i.e., one has to work for player 1)

> universal “choice” for player 2 (i.e., all have to work for player 2, or, equivalently,
(hence “choice”!) one chosen one has not to work for player 1)

Can we model such a strategy using non-deterministic TMs? (Compare with the failed
NP = co-NP) proof! We don't know. :) But not easily: It mixes NP with co-NP, so
the acceptance criteria don't mix.
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Games

Winning Strategies (for any 2-Player Game!)

Player 1 has a winning strategy from node n if:
> there exists a move such that for all moves of player 2 to node n’,

> player 1 has a winning strategy from node n’ ...

Pattern for winning strategy:
> existential choice for player 1 (i.e., one has to work for player 1)

> universal “choice” for player 2 (i.e., all have to work for player 2, or, equivalently,
(hence “choice”!) one chosen one has not to work for player 1)

Can we model such a strategy using non-deterministic TMs? (Compare with the failed
NP = co-NP) proof! We don't know. :) But not easily: It mixes NP with co-NP, so
the acceptance criteria don't mix.

So, what's the solution? A more complex model for Turing Machines!
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Alternating Turing Machines (ATMs)

Alternating Turing Machines
(ATMs)
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Alternating Turing Machines (ATMs)

Recap: Non-deterministic Machines

Complexity Class NP.
Have non-deterministic machine,
> where every run takes at most polynomially many steps

> there exists an accepting sequence of IDs

Complexity Class co-NP.
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Complexity Class NP.
Have non-deterministic machine,
> where every run takes at most polynomially many steps

> there exists an accepting sequence of IDs

Complexity Class co-NP.
Have non-deterministic machine,
> all as above, but
> that decides the complement of the problem

> this means that for yes-instances every sequence of IDs is accepting
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Recap: Non-deterministic Machines

Complexity Class NP.
Have non-deterministic machine,
> where every run takes at most polynomially many steps

> there exists an accepting sequence of IDs

Complexity Class co-NP.
Have non-deterministic machine,
> all as above, but
> that decides the complement of the problem

> this means that for yes-instances every sequence of IDs is accepting

Alternating Turing machines combine existential and universal runs
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Alternating Turing Machines (ATMs)

Alternating Turing Machines

Definition. An Alternating Turing machine (ATM) is a non-deterministic Turing machine
M= (Q,%,T,d, qo, F) where additionally Q = Q. U Q, is partitioned into a set of Q. of
existential states and Q, of universal states.
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Definition. An Alternating Turing machine (ATM) is a non-deterministic Turing machine

M= (Q,%,T,d, qo, F) where additionally Q = Q. U Q, is partitioned into a set of Q. of
existential states and Q, of universal states.

Instantaneous Descriptions (IDs)
> are defined as before
> the transition relation / - J between IDs is (also) defined as before

> an ID is existential if its state is existential, and universal if its state is universal.
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Alternating Turing Machines (ATMs)

Alternating Turing Machines

Definition. An Alternating Turing machine (ATM) is a non-deterministic Turing machine

M= (Q,%,T,d, qo, F) where additionally Q = Q. U Q, is partitioned into a set of Q. of
existential states and Q, of universal states.

Instantaneous Descriptions (IDs)

> are defined as before
> the transition relation / - J between IDs is (also) defined as before

> an ID is existential if its state is existential, and universal if its state is universal.

Q. What about acceptance ...?
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Alternating Turing Machines (ATMs)
Acceptance Conditions

Informally. An ATM M accepts string w iff there is a finite tree whose nodes are IDs and
> the root node is the initial ID (w on tape, state qo),
> every existential ID E has (exactly) one child J in the tree with E - J
> every universal ID U has all IDs J with U I= J as children, and
> all leaf nodes are universal (this implies there are no outgoing transitions).
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Alternating Turing Machines (ATMs)

Acceptance Conditions

Informally. An ATM M accepts string w iff there is a finite tree whose nodes are IDs and
> the root node is the initial ID (w on tape, state qo),
> every existential ID E has (exactly) one child J in the tree with E - J
> every universal ID U has all IDs J with U I= J as children, and
> all leaf nodes are universal (this implies there are no outgoing transitions).
Thus, L(M) = {w | There exists a tree as above with root ID gow }

What about accepting states?
> We don't need/use them! We keep F for compatibility with the standard definition.
> However, if we would have acceptance stati, then
o An existential ID with no successors would never be accepting.
o A universal ID with no successors would be accepting.
o Note that now IDs are accepting/rejecting, not states. (How is that different?)
> Each ID in a tree as above would be accepting.

How about loops?
> We require our tree to be finite (not a graph!), so we can't loop forever.
> The definition above does not require to “stick with decisions”, i.e., any ID (both
existential and universal) could occur several times. This is not a problem (since the
tree is still finite), but we could cut out these “detours” by making decisions for the
existential IDs that lead to the leafs earlier (hence making it a deterministic policy).
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Alternating Turing Machines (ATMs)

Informal Example: Generalised Geography

Solving via ATM.
> On tape: Graph and designated node.
> Two states, qo (initial and existential) and g: (universal)
> From one state to another:

o the player changes (that is exactly why the change states!)

o replace designated node by successor in graph

o we might need more existential states to encode changing the designated node
according to the graph (it should be clear that deterministic TMs can do that).

Explanation.
> IDs containing state qo are those where player 1 moves.
> IDs containing state g are those where player 2 moves.
> If an ID containing state go doesn’t have outgoing transitions: player 1 loses.

> If an ID containing state q; doesn't have outgoing transitions: player 1 wins.

We'll re-visit this algorithm more formally in a few slides!
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Alternating Turing Machines (ATMs)

Informal Example: Generalised Geography, cont'd

Geography Graph. Winning Strategy.

> In general, existential states and universal states don’t have to alternate!
Here we have this since we use the ATM for solving a turn-taking 2-player game.

> existential states are red, universal states are blue
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Alternating Turing Machines (ATMs)

First (ATM) Algorithm for Geography

Algorithm Geography (Graph G, start node n):
let cur = n;
forever do {
existentially guess (a successor node e of cur);
// if this is not possible, we don’t accept

universally guess (a successor node u of e);
// if there are no successors, we accept
cur := u; }

Comments.

> This hints at Geography being solvable using an ATM (modulo translation to a
NTM). Why just hinting at? What's missing?
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Alternating Turing Machines (ATMs)

First (ATM) Algorithm for Geography

Algorithm Geography (Graph G, start node n):
let cur = n;
forever do {
existentially guess (a successor node e of cur);
// if this is not possible, we don’t accept

universally guess (a successor node u of e);
// if there are no successors, we accept

cur := u; }

Comments.

> This hints at Geography being solvable using an ATM (modulo translation to a
NTM). Why just hinting at? What's missing?

> It's not a decider yet! It might loop forever if there are loops in the graph.
(We'll revisit this Algorithm later.)
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The class AP

Theclass AP
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The class AP

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID gow is at most p(|w|) steps long.

(We do not require the solution tree to be poly-bounded! Just ist maximal path!)

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.
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The class AP

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID gow is at most p(|w|) steps long.

(We do not require the solution tree to be poly-bounded! Just ist maximal path!)

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.

Observation.
> NP C AP. Why? Because we only need existential states; almost!

> co-NP C AP Why? Because we only need universal states; requires more reasoning!
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The class AP

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID gow is at most p(|w|) steps long.

(We do not require the solution tree to be poly-bounded! Just ist maximal path!)

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.

Observation.
> NP C AP. Why? Because we only need existential states; almost!
> co-NP C AP Why? Because we only need universal states; requires more reasoning!

> Both will also follow directly because — spoiler — we are going to show
AP = PSPACE, and both statements are known with regard to PSPACE.

Wait, if these classes are identical, why did we even define this TM and class?!
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Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID gow is at most p(|w|) steps long.

(We do not require the solution tree to be poly-bounded! Just ist maximal path!)

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.

Observation.
> NP C AP. Why? Because we only need existential states; almost!
> co-NP C AP Why? Because we only need universal states; requires more reasoning!

> Both will also follow directly because — spoiler — we are going to show
AP = PSPACE, and both statements are known with regard to PSPACE.

Wait, if these classes are identical, why did we even define this TM and class?!

o Because we can! So, as always, we want to know whether that changes anything.
o Because it might make some proofs easier. Think of games! (But much more.)
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The class AP

Restrictions of ATMs

Definition. An ATM is polytime bounded if there exists a polynomial p such that every
sequence of IDs from an initial ID gow is at most p(|w|) steps long.

(We do not require the solution tree to be poly-bounded! Just ist maximal path!)

The class AP of alternating polytime languages is the class of languages accepted by an
ATM that is polytime bounded.

Observation.
> NP C AP. Why? Because we only need existential states; almost!
> co-NP C AP Why? Because we only need universal states; requires more reasoning!

> Both will also follow directly because — spoiler — we are going to show
AP = PSPACE, and both statements are known with regard to PSPACE.

Wait, if these classes are identical, why did we even define this TM and class?!

o Because we can! So, as always, we want to know whether that changes anything.
o Because it might make some proofs easier. Think of games! (But much more.)

Reductions/Hardness/Membership.
As always: defined as before.
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The class AP

Example Revisited: Geography

Earlier Algorithm.

Algorithm Geography (Graph G, start node n):
let cur = n;
forever do {
existentially guess (a successor node e of cur);
// if this is not possible, we don’t accept

universally guess (a successor node u of e);
// if there are none, we accept

cur := u; }

> not necessarily terminating, e.g., w (assume “fitting” transitions)

> let alone in polynomially many steps!
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The class AP

Geography, Terminating

Idea. Universal nodes don’t need to repeat:
l.e., the existential player doesn't repeat decisions.
guesses 2

Recap:

guesses 4
> Any algorithm needs to be a decider, i.e., have finite runtime.

o The existential player creating “some loops” doesn't hurt
semantically: if there is a solution, eventually the right choice
has to be made.

o But we can make this “correct choice” right away, i.e., never
repeat anything.

guesses 7

guesses 9

> Any solution is a finite tree (not graph), i.e., can’t have loops: ° guesses 5

can't guess

But ... Will this lead to termination although we do not restrict the
moves by the universal player?
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The class AP

Geography, Terminating

Idea. Universal nodes don’t need to repeat:

l.e., the existential player doesn't repeat decisions. a
guesses 2
Recap: a guesses 4
> Any algorithm needs to be a decider, i.e., have finite runtime.
> Any solution is a finite tree (not graph), i.e., can’t have loops: ° guesses 5
o The existential player creating “some loops” doesn't hurt e guesses 7
semantically: if there is a solution, eventually the right choice
has to be made. . . . . a guesses
o But we can make this “correct choice” right away, i.e., never
repeat anything. e can't guess

But ... Will this lead to termination although we do not restrict the
moves by the universal player?

Yes! The length of each computation is bounded by twice the
number of nodes in graph! Why?
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The class AP

Geography, Terminating

Idea. Universal nodes don’t need to repeat:

l.e., the existential player doesn't repeat decisions. a
guesses 2
Recap: a guesses 4
> Any algorithm needs to be a decider, i.e., have finite runtime.
> Any solution is a finite tree (not graph), i.e., can’t have loops: ° guesses 5
o The existential player creating “some loops” doesn't hurt e guesses 7
semantically: if there is a solution, eventually the right choice
has to be made. . . . . a guesses
o But we can make this “correct choice” right away, i.e., never
repeat anything. e can't guess

But ... Will this lead to termination although we do not restrict the
moves by the universal player?

Yes! The length of each computation is bounded by twice the
number of nodes in graph! Why?

The existential player can make at most | V| (all nodes) moves,
each followed by any (unrestricted) follow-up move.
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The class AP

Geography, Terminating

Idea. Universal nodes don’t need to repeat:

Geography is in AP:

l.e., the existential player doesn't repeat decisions. a
guesses 2
Algorithm Geography2 (Graph G, start node cur): a guesses 4
let seen := { cur };
forever do { // Player 1: ° guesses 5
existentially guess (cur := unseen successor of cur)
// if this fails, we terminate, representing reject e guesses 7
// Player 2: a guesses 9
universally guess (cur := successor of cur);
// if this fails, we terminate, representing accept e can't guess

seen := seen U { cur } // update seen nodes }

> The algorithm takes only polynomially many steps.

> It recognizes the right language (although the code
does not explicitly accept or reject anything).
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The class AP

AP vs. co-AP

Observation. Given polytime-bounded ATM M, construct ATM M’ by swapping
existential and universal states. Then, M’ accepts w if and only if M rejects w.

Corollary. co-AP = AP (Again, this also follows from AP = PSPACE)

Example. What are the strings accepted by the ATM and its dual version below, where *
indicates any letter?

*/ % */ %
—EO» —O0
*/* */*
L L
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AP vs. co-AP

Observation. Given polytime-bounded ATM M, construct ATM M’ by swapping
existential and universal states. Then, M’ accepts w if and only if M rejects w.

Corollary. co-AP = AP (Again, this also follows from AP = PSPACE)

Example. What are the strings accepted by the ATM and its dual version below, where *
indicates any letter?

Note that the universal states always have a successor state (i.e., for all symbols), so it
cannot accept anything.
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The class AP

AP vs. co-AP

Observation. Given polytime-bounded ATM M, construct ATM M’ by swapping
existential and universal states. Then, M’ accepts w if and only if M rejects w.

Corollary. co-AP = AP (Again, this also follows from AP = PSPACE)

Example. What are the strings accepted by the ATM and its dual version below, where *
indicates any letter?

*/ % */ %
—EO» —O0

*/* */*

L L

Note that the universal states always have a successor state (i.e., for all symbols), so it
cannot accept anything.

Exercise. Construct a more complex (but still simple) ATM that terminates on all runs
and check above's claim.

Pascal Bercher week 10: Alternating Time Semester 1, 2025 20/23



The class AP

Solving QBF via ATM

Idea. 3 ~~ existential guess, V ~~ universal guess

Algorithm evalgbf(formula A):
case A of {
literal x or NOT x: if true under the current assignment:
enter a universal state without transitions
else: enter an existential configuration without transitions

A1 OR A2: existentially choose i in {1, 2}, then evalgbf (Ai)
A1 AND A2: universally choose i in {1, 2}, then evalqgbf (Ai)
NOT A: evalgbf_neg(A) // the dual of this machine

exists x A: existentially guess v in {0,1}, then evalgbf(A[x := v])
forall x A: universally guess v in {0,1}, then evalgbf(A[x := v])
}

where A[x := v] replaces all free occurrences of x in A with v.

Theorem w10.1
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The class AP

PSPACE C AP ( Solving QBF via ATM)

Idea. 3 ~~ existential guess, V ~~ universal guess

Algorithm evalgbf(formula A):
case A of {
literal x or NOT x: if true under the current assignment:
enter a universal state without transitions
else: enter an existential configuration without transitions

A1 OR A2: existentially choose i in {1, 2}, then evalgbf (Ai)
A1 AND A2: universally choose i in {1, 2}, then evalqgbf (Ai)
NOT A: evalgbf_neg(A) // the dual of this machine

exists x A: existentially guess v in {0,1}, then evalgbf(A[x := v])
forall x A: universally guess v in {0,1}, then evalgbf(A[x := v])
}

where A[x := v] replaces all free occurrences of x in A with v.

Theorem w10.1
> QBF is in AP (by algorithm above)
> PSPACE C AP (as QBF is PSPACE-hard)
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The class AP

Simulating ATM on TM

Use the following algorithm for the initial configuration of an ATM.

Algorithm ATMaccept (ATM-ID I):
if (I is existential) {

}

let accept? := false;

foreach J with I |- J { accept? :

return accept?;
else if (I is universal) {
let accept? := true;

foreach J with I |- J { accept? :

return accept?;

Observations:
> If the ATM M is an AP decider,

o recursion depth is in O(p(n)),
o all IDs of size O(p(n)).

> So, space of this DTM is in O(p*(n)).

accept? OR ATMaccept(J); }

accept? AND ATMaccept(J); }
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PSPACE D AP ( Simulating ATM on TM)

Use the following algorithm for the initial configuration of an ATM.

Algorithm ATMaccept (ATM-ID I):

if (I is existential) {
let accept? := false;
foreach J with I |- J { accept? := accept? OR ATMaccept(J); }
return accept?;

} else if (I is universal) {
let accept? := true;
foreach J with I |- J { accept? := accept? AND ATMaccept(J); }
return accept?;

}

Observations:
> If the ATM M is an AP decider,
o recursion depth is in O(p(n)),
o all IDs of size O(p(n)).
> So, space of this DTM is in O(p*(n)).

Theorem w10.2

AP C PSPACE. ‘
o
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Complexity Overviews

Theorem w10.3

he class AP

AP = PSPACE.

We hence directly get: AP = co-AP
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Theorem w10.3

he class AP

AP = PSPACE.

We hence directly get: AP = co-AP

Why is there no NAP?
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The class AP

Complexity Overviews

Theorem w10.3
AP = PSPACE.

We hence directly get: AP = co-AP
Why is there no NAP? It already subsumes non-determinism using its existential states!

So... Is any NTM an ATM? (Cf. slide from the beginning.)

Pascal Bercher week 10: Alternating Time Semester 1, 2025 23/23



The class AP

Complexity Overviews

Theorem w10.3
AP = PSPACE.

We hence directly get: AP = co-AP
Why is there no NAP? It already subsumes non-determinism using its existential states!

So... Is any NTM an ATM? (Cf. slide from the beginning.)

> No! If we only have existential states, then
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The class AP

Complexity Overviews

Theorem w10.3
AP = PSPACE.

We hence directly get: AP = co-AP
Why is there no NAP? It already subsumes non-determinism using its existential states!

So... Is any NTM an ATM? (Cf. slide from the beginning.)
> No! If we only have existential states, then the ATM's language is empty!

> So, for each accepting state in the NTM, we need to introduce a universal state
without outgoing transition.

> Thus, every NTM can trivially be considered an ATM.
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