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Disclaimer

Why do we have this week 11 and 12 content?

∠ I wanted to provide additional examples to strengthen your current understanding
rather than including additional content (that was barely ever examined, anyway).
Compared to ≤ 2022 (I, Pascal, had it in 2023 the first time) you will miss out on:

Approximations: Being guaranteed to be within a factor of i to the optimum.
Probabilistic Algorithms (and TMs): TMs with error probabilities. (Of course
this comes with language classes that we can relate again!)

∠ Research-led teaching! I.e., to show and illustrate that:

The content is used in disciplines other than Theoretical Computer Science and
has actual applications/implications (e.g., algorithm and heuristic ideas/design)

∠ To promote this exciting discipline! For two purposes:

To spread the word! You (or your future boss or colleagues) might be able to use
it. Everybody knows Operations Research (SAT/SMT/ILP solving etc.) to
tackle NP-complete problems. But only a fragment knows AI planning for
tackling problems beyond NP.
To find PhD students! The ANU has at least 8 planning experts, and we are all
internationally connected (in case you want to do research Overseas). But note
that ANU’s Foundations Cluster has just as much staff with theory-heavy topics!
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Automated Planning Introduction

Automated Planning

Introduction
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Automated Planning Introduction Overview

What it is about

We always have:

∠ An initial world description (start state)

∠ A desired world description (possible end states)

∠ Actions (how can states be changed?)

There are tons of variants:

∠ Do we know/see everything? we: Yes

∠ Are action outcomes certain (deterministic)? we: Yes

∠ Are (other) agents involved? we: No

∠ Can we produce ’objects’ or use functions? we: No

∠ Do actions have durations? we: No

∠ Any additional constraints on solution plans? we: No and Yes
Well... Yes for HTN planning!

Classical Planning is the simplest form of planning! But HTN Planning is more complex.
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Examples

Examples
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Examples Blocksworld

Artificial Toy Problems, e.g., Blocksworld

A

C

B

Start Configuration

C

B

A

Desired Configuration

Standard Planning Benchmark in the International Planning Competition

. . . and every planning lecture! (Like this and the one below.)

Here (https://www.youtube.com/watch?v=pfNb0IAkbcQ&t=308s) you find a 90
minute hands-on lecture by me on modeling Blocksword using planning. (I.e., you
will actually model it during the lecture and use an online planner to solve it.)
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Examples Solitaire

Games, e.g., Solitaire

Source: https://commons.wikimedia.org/wiki/File:GNOME_Aisleriot_Solitaire.png

License: GNU General Public License v2 or later https://www.gnu.org/licenses/gpl.html

Copyright: Authors of Gnome Aisleriot https://gitlab.gnome.org/GNOME/aisleriot/blob/master/AUTHORS
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Examples Rush Hour

Games, e.g., Rush Hour (or: from practice to games to AI models)

∠ Start: any configuration of cars with an exit on one specific side.

∠ Goal: Get the red car out (i.e., any state not containing the red car).

Modeling this, including the automated video creation was a 6 pt. project in S1 2023.

Photo made out of HN between HN, Birch, and SD (Bercher, December 2020).
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Examples Greenhouse Factory

Automated Factories (here: Greenhouse)

Factory takes imagines of all plants, and decides on their further treatments.

Factory controls their movements via the conveyor belts.

Source: https://www.lemnatec.com/

Copyright: With kind permission from LemnaTec GmbH

Further reading: Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Logistics as a Planning Problem”.
In: Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS 2010).
AAAI Press, 2010, pp. 234-237
The IPC Scanalizer Domain in PDDL (see paper above).
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Examples Mars Rovers

Robotics (here: Mars Rovers Spirit and Opportunity)

Source: left https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg

middle https://commons.wikimedia.org/wiki/File:

Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg

right https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg

Copyright: public domain

Further reading: Pascal Bercher and Daniel Höller. “Interview with David E. Smith”. In: Künstliche Intelligenz 30.1 (2016).
Special Issue on Companion Technologies, pp. 101-105. DOI: 10.1007/s13218-015-0403-y
https://www.nasa.gov/ and papers about MAPGEN (for references, see also article above).

Pascal Bercher week 11: Examples from Classical Planning Semester 1, 2025 11 / 46

https://commons.wikimedia.org/wiki/File:KSC-03PD-0786.jpg
https://commons.wikimedia.org/wiki/File:Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
https://commons.wikimedia.org/wiki/File:Curiosity_Self-Portrait_at_%27Big_Sky%27_Drilling_Site.jpg
https://commons.wikimedia.org/wiki/File:NASA_Mars_Rover.jpg
https://www.nasa.gov/


Propositional Classical Planning

Propositional Classical

Planning
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Propositional Classical Planning Problem Definition

Informal Problem Introduction

We consider classical planning problems, which consist of:

∠ An initial state sI – all “world properties” true in the beginning.

∠ A set of available actions – how world states can be changed.

∠ A goal description g – all properties we’d like to hold.

What do we want?

→ Find a plan that transforms sI into g .

sI s⊇g

description of the
initial world situation

description of desired
world properties

︸ ︷︷ ︸
plan

intermediate states
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Propositional Classical Planning Problem Definition

Problem Definition

A classical (or STRIPS) planning problem ⟨V ,A, sI , g⟩ consists of:
∠ V is a finite set of state variables (also called: facts or propositions).

States are collections of state variables.
We assume the closed world assumption, i.e., all variables not mentioned in a
state s do not hold in that state (in contrast to: it’s not known whether they
hold or not).
S = 2V is called the state space.

∠ A ⊆ Σ∗ × 2V × 2V × 2V is a finite set of actions, where Σ is a set of characters. Each
action a ∈ A is a tuple (name, pre, add , del) consisting of a name name, precondition
pre, add list add , and delete list del . (Called lists, but they are sets.)

∠ sI ∈ S is the initial state (complete state description).

∠ g ⊆ V is the goal description (partial state description).

Q. Something (extremely important) is still missing... What is it?
A. What a solution is!
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Propositional Classical Planning Problem Definition

Problem Definition, cont’d (Solutions)

Action application:

∠ An action a ∈ A is called applicable (or executable) in a state s ∈ S if and only if
pre(a) ⊆ s. Often, this is given by a function: τ(a, s)⇔ pre(a) ⊆ s.

∠ If τ(a, s) holds, its application results into the successor state
γ(a, s) = (s \ del(a)) ∪ add(a). γ : A× S → S is called the state transition function.

∠ An action sequence ā = a0, . . . , an−1 is applicable in a state s0 if and only if for all
0 ≤ i ≤ n − 1 ai is applicable in si , where for all 1 ≤ i ≤ n si is the resulting state of
applying a0, . . . , ai to s0 = sI . Often, the state transition function is extended to work
on action sequences as well γ : A∗ × S → S .

Solution:

An action sequence ā ∈ A∗ consisting of 0 (empty sequence) or more actions is called a
plan or solution to a planning problem ⟨V ,A, sI , g⟩ if and only if:

∠ ā is applicable in sI .

∠ ā results into a goal state, i.e., γ(ā, sI ) ⊇ g .

PLANEX = {⟨P⟩ | P is a classical planning problem ⟨V ,A, sI , g⟩ that has a solution.}.
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Propositional Classical Planning Problem Definition

Example: Propositional Classical Planning Problem

Let sI = {AtLivingRoom,R,AtGarage,Remote,AtLivingRoom,Box,TVOff}

Available actions: (Replace R by M to obtain the other actions.)

∠ PushBoxLivingRoom,R: ({AtLivingRoom,Box,AtLivingRoom,R}, {AtLivingRoom,M}, ∅)
∠ PushBoxGarage,R: ({AtGarage,Box,AtGarage,R}, {AtGarage,M}, ∅)
∠ GoToGarageR: ({AtLivingRoom,R}, {AtGarage,R}, {AtLivingRoom,R})
∠ GoToLivingRoomR: ({AtGarage,R}, {AtLivingRoom,R}, {AtGarage,R})
∠ The next two actions represent four, just replace X by Box and Remote.

PickUpX ,Garage,R: ({AtGarage,R,AtGarage,X}, {HasX,R}, {AtGarage,X})
PickUpX ,LivingRoom,R: ({AtLivingRoom,R,AtLivingRoom,X}, {HasX,R}, {AtLivingRoom,X})

∠ Again, these actions represent four, again replace X by Box and Remote.

GiveX ,LivingRoom,R: ({Has(X,R),At(LivingRoom,R),At(LivingRoom,M)}, {Has(X,M)},
GiveX ,Garage,R: (Replace LivingRoom by Garage) {Has(X,R)})

∠ TurnTVOnR: ({HasRemote,R,AtLivingRoom,R,TVOff}, {TVOn}, {TVOff})

g = {TVOn}
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Propositional Classical Planning Problem Definition

Example Problem, Solutions

Recap: sI = {AtLivingRoom,Box,AtLivingRoom,R,AtGarage,Remote,TVOff}.

Solution 1 (Rick does it himself):

GoToGarageR: s1={AtLivingRoom,Box,AtGarage,R,AtGarage,Remote,TVOff}
PickUpRemote,Garage,R: s2={AtLivingRoom,Box,AtGarage,R,HasRemote,R,TVOff}
GoToLivingRoomR : s3={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOff}
TurnTVOnR: s4={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOn}

Solution 2 (Rick uses a Meeseeks):

PushBoxLivingRoom,R: s1={AtLivingRoom,Box,AtLivingRoom,R,AtGarage,Remote,AtLivingRoom,M,TVOff}
GoToGarageM: s2={AtLivingRoom,BMSox,AtLivingRoom,R,AtGarage,Remote,AtGarage,M,TVOff}
PickUpRemote,Garage,M: s3={AtLivingRoom,Box,AtLivingRoom,R,AtGarage,M,HasRemote,M,TVOff}
GoToLivingRoomM : s4={AtLivingRoom,Box,AtLivingRoom,R,AtLivingRoom,M,HasRemote,M,TVOff}
GiveRemote,LivingRoom,M: s5={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOff}
TurnTVOnR : s6={AtLivingRoom,Box,AtLivingRoom,R,HasRemote,R,TVOn}

Recap: g = {TVOn}.
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Complexity Results for Propositional Planning

Complexity Results for

Propositional Planning
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Complexity Results for Propositional Planning General Case

Complexity of the General Case

PLANEX = {⟨P⟩ | P is a solvable planning problem.}

Theorem w11.1 (Bylander (1994), Thm. 3.1)

PLANEX is PSPACE-complete

Proof overview.

Membership:

∠ Main idea follows QBF membership proof and Savitch’s theorem.

∠ I.e., recursive doubling: always check for plan existence up to a middle state.

∠ An alternative proof would be to give an encoding for Sokoban or Rush Hour!

Hardness:

∠ We reduce from a polyspace-bounded TM.

∠ Actions encode valid transitions.
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Complexity Results for Propositional Planning General Case

Classical Planning is in PSPACE

∠ Let P = ⟨V ,A, sI , g⟩ be our planning problem.

∠ Note that if a solution a exists then one exists with |a| ≤ 2|V |. This is because this is
the maximal number of distinct states. If there is a plan that’s longer, it contains a
loop, which can be removed.

∠ Guess and verify would however be too expensive...

∠ We want to use recursive doubling! Let P(s1, s2, k) represent whether there exists a
plan from state s1 to state s2 with size ≤ k.

∠ We don’t have a goal state, but a goal description, so we can’t use P(sI , g , 2
|V |),

since g is just one of potentially exponentially many states. But we can:

put a new variable v1 /∈ V into V , now V ′, and into all action preconditions,
put v1 into sI and create new action (g , {v2},V ′), where v2 /∈ V is also new.
Now, g ′ = {v2} is our unique goal and P has a solution iff P ′ has one.
(We could also have iterated over all states s with s ⊇ g .)

∠ Now we can decide P(sI , g
′, 2|V |) in the usual way, i.e., P(s1, s2, k) iff there exists an

s, such that P(s1, s, k/2) and P(s, s2, k/2).

∠ Each state is only polynomially large, and we only need to do this split log(2|V |)
often. So we only need poly space to do this search (as we’ve seen in other proofs).

∠ Thus, PLANEX ∈ PSPACE.
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Complexity Results for Propositional Planning General Case

Classical Planning is PSPACE-hard

We reduce from a poly-space-bounded Turing Machine.

∠ We define sI = {in1,w1 , . . . in|w|,w|w| , in|w|+1,B , . . . , inpol(|w|),B , at1,q0} with
ini,x – Symbol x is in tape position i .
ati,q – TM’s head is over position i and its state is q.

∠ For the actions, assume TM is in state q, head is over i and reads x , and it shall
write y , move right, and transition into q′. This is implemented by three actions,
executed in order: (other cases analogous)

1 ({ati,q, ini,x}, {doi,q,x}, {ati,q})
2 ({doi,q,x , ini,x}, {ini,y}, {ini,x})
3 ({doi,q,x , ini,y}, {ati+1,q′}, {doi,q,x})
→ don’t provide actions for at0,q and atpol(|w|)+1,q (for any q)

We proved semi-infinite tapes are equivalent to infinite ones.

∠ Whenever the TM is in an accepting state, the problem is solved:

For all final states q ∈ F and all i , define ({ati,q}, {accept}, ∅).
Set g = {accept} (using the new variable accept).

∠ Also, every plan corresponds to a TM transition into an accepting state.

Thus, PLANEX is PSPACE-hard and hence -complete. (Proof(s) by Bylander, 1995)
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Complexity Results for Propositional Planning General Case

Recap on the hardness proof

Recap the three actions we had:

1 ({ati,q, ini,x}, {doi,q,x}, {ati,q})
2 ({doi,q,x , ini,x}, {ini,y}, {ini,x})
3 ({doi,q,x , ini,y}, {ati+1,q′}, {doi,q,x})

Q. Could we have provided just one action instead?
A. Yes! Just stack effects.

Q. So, why might we have used three instead?
A. This allows us to state a stronger result: Planning remains PSPACE-hard even if all

actions have only 2 preconditions and 2 effects!

Think of 2-SAT vs. 3-SAT! (Here, the 2 precs/effs correspond to the 3!)
So, what about having only 2 preconditions or effects? (Worth exploring...)
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Complexity Results for Propositional Planning Length-Bounded Propositional Planning

Length-Bounded Propositional Planning is PSPACE-complete

PLANMIN = {⟨P, k⟩ | P is a planning problem with a solution ā, |ā| ≤ k.}

Theorem w11.2 (Bylander (1994), Thm. 3.1)

PLANMIN is PSPACE-complete

Proof.

∠ PSPACE membership:

We know that if a solution exists at all, then one exists up to length 2|V |.
We can thus check for plan existence up to the number min(k, 2|V |).
We already have a decision procedure for bound 2|V |, which runs in PSPACE.
We still need to adapt it slightly to work with non-exponential numbers (e.g., 5).

∠ We now show PSPACE-hardness:

We again exploit that if there exists a plan at all, there is one up to length 2|V |.
We thus reduce from PLANEX: We take an arbitrary problem P ∈ PLANEX and
create a cost-bounded one by choosing k = 2|V |. This works because we can
encode k using only log(k) bits.
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Complexity Results for Propositional Planning Length-Bounded Propositional Planning

Unary Length-Bounded Classical Planning is NP-complete

unary-PLANMIN = {⟨P, k⟩ | P is a planning problem with a solution ā, |ā| ≤ k,
and k is encoded unarily (i.e., as a sequence of k 1s) }

Theorem w11.3

unary-PLANMIN is NP-complete

Proof.

∠ NP membership:

Guess a k ′ ≤ k, then guess a plan of length k.
Verify that plan and return YES if it works and no otherwise.

∠ NP-hardness:

We reduce from 3-SAT. Let it have n variables xi and m clauses Ci .
For each xi design two actions, one sets Xi − T , the other Xi − F . Enforce that
each plan can contain only one of each.
For each clause Ci , have three actions to make Ci true, according to the
respective literals. Set the goal to {C1, . . . ,Cm}.
How do we set k? To n +m, which is polynomial.
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Complexity Results for Propositional Planning Delete Relaxation

Motivation

∠ We know that – no matter which instance – planning problems are in PSPACE.

∠ But is every instance PSPACE-hard?

Clearly not! How easy is it to decide PLANEX for the problem (∅, ∅, ∅, ∅)?
Think of SAT. How hard is it to decide ¬x1? (Not very...)

∠ What’s wrong with those examples?

These were no structural special cases, they were single instances.
Single instances are always in O(1), since they don’t “scale”.
Actually, “instances” don’t have any complexity. Only languages do.

∠ What would be “structural restrictions” of SAT?

planary 3-SAT (though that’s “not really just syntax”)
2-SAT, polytime!
each clause has at most one positive literal (called Horn), polytime!

∠ What would be “structural restrictions” of PLANEX?

Number of preconditions (see before: hard, even for at most 2).
Number of (positive/negative) effects.
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Complexity Results for Propositional Planning Delete Relaxation

Motivation, part 1: The real World

Before you drink: After you drink:

The same applies to buying the beer: You have it, but you keep your money!
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Complexity Results for Propositional Planning Delete Relaxation

Motivation, part 2: Delete Relaxation

Before you drink: After you drink: (both!)

The same applies to buying the beer: You have it, but you keep your money!
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Complexity Results for Propositional Planning Delete Relaxation

Delete-free (or Delete-relaxed) Problems

∠ A problem (V ,A, sI , g) is called delete-free if the following holds:
for all (name, pre, add , del) ∈ A holds: del = ∅

∠ Given a problem P = (V ,A, sI , g), we call P ′ = (V ,A′, sI , g) its delete-relaxed
version of P if A′ = {(name, pre, add , ∅) | (name, pre, add , del) ∈ A}.

∠ PLANEXDR = {⟨P⟩ | P is a solvable classical delete-free planning problem.}

Now, what’s true?

∠ PLANEXDR is PSPACE-complete (?)

∠ PLANEXDR is NP-complete (?)

∠ PLANEXDR is in P (?)
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Complexity Results for Propositional Planning Delete Relaxation

Delete-free Planning is in P

Theorem w11.4 (Bylander (1994), footnote without proof on p.4)

PLANEXDR ∈ P.

Algorithm 1: Decision-procedure for delete-free planning.

Data: Set A of delete-free actions, initial state sI , goal description g
Result: Whether the delete-free problem is solvable
s ← sI ;
repeat

foreach action a ∈ A do
if pre(a) ⊆ s then

s = s ∪ add(a);
delete a from A;

until A is not modified;
return s ⊇ g ;

Observations:

Applying an action twice is pointless, so we can delete each applied action.
Each iteration costs at most O(|A|) and we can delete at most |A| times.
Thus, runtime is in O(|A|2).
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Complexity Results for Propositional Planning Delete Relaxation

Length-bound Delete-Free Planning is NP-complete

PLANMINDR = {⟨P, k⟩ | P is a delete-free planning problem with a solution ā, |ā| ≤ k.}

Theorem w11.5 (Bylander (1994), Thm. 4.2/Cor. 4.3)

PLANMINDR is NP-complete.

Proof overview.

Membership:

∠ Guess and Verify proof, as usual.

Hardness:

∠ We again reduce from 3-SAT.

∠ Very similar to the proof for unary length bounds. But now we don’t use delete
effects. (Maybe the other proof also didn’t use delete effects already, depending on
how you implemented it.)
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Complexity Results for Propositional Planning Delete Relaxation

Length-bound Delete-Free Planning is in NP

Membership proof:

∠ Let P (delete-free problem) and number k be given.

∠ Guess up to k actions and an order among them.

∠ Return true if sequence is executable and makes goal true. Right?

∠ No! That’s a NEXPTIME-procedure! k is encoded binarily...
Instead, we limit the number of actions that we guess.

∠ No action has to be executed twice! So we only guess up to |A| (distinct) actions.
∠ Thus, we perform the above procedure for a number bounded by min (k, |A|).
∠ We now have poly-runtime, and thus an NP membership procedure/proof.
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Complexity Results for Propositional Planning Delete Relaxation

Length-bound Delete-Free Planning is NP-hard

Hardness proof:

∠ We reduce from CNF-SAT.

∠ Let φ = {C1, . . . ,Cm}︸ ︷︷ ︸
clauses

, Cj = {φj1 , . . . , φjk }︸ ︷︷ ︸
literals

, and V = {x1, . . . , xn}︸ ︷︷ ︸
variables

.

∠ For each boolean variable xi ∈ V add two actions to A:

xi 7→ ⊤
xi −⊤
xi −set xi 7→ ⊥

xi −⊥
xi −set

∠ For each positive φji = xji or negative φji = ¬xji add

“xji = ⊤”
Cj 7→ ⊤

Cj −⊤xji
−⊤ or

“xji = ⊥”
Cj 7→ ⊤

Cj −⊤xji
−⊥

∠ g = {xi−set | 1 ≤ i ≤ n} ∪ {Cj−⊤ | 1 ≤ j ≤ m}
∠ φ is satisfiable if and only if a plan of size n +m exists.

You are not done yet! Don’t forget to show this is a reduction!

You could also make this work with only one effect: Create two new actions per xi with
precondition xi−⊤ (or xi−⊥, respectively) and effect xi−set. Then, replace n by 2n.

Pascal Bercher week 11: Examples from Classical Planning Semester 1, 2025 31 / 46



Lifted Classical Planning

Lifted Classical Planning
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Lifted Classical Planning

Problem Definition

A lifted classical planning problem ⟨T ,P,A,O, sI , g⟩ consists of:
∠ T is a finite set of types. They can form a hierarchy. Example(s): character – object

∠ P is a finite set of predicate symbols, each with fixed arity, i.e., it takes a sequence of
variables, each of some type. Examples: At(?room – room,?object – object)

∠ A is a finite set of action schemas of the form:

(name(x⃗), pre(x⃗), add(x⃗), del(x⃗))

where x⃗ is a list of (typed) variables. Examples: next slide!

∠ O is a finite set of (typed) objects used to ground action schemas (and predicates).
Examples: Rick, Meeseeks – character, Box, Remote – object

∠ sI is the initial state, given as a finite set of ground atoms (complete state).

∠ g is the goal description, a finite set of ground atoms (partial state).

Solutions are defined analogously to propositional planning: Any lifted problem is just a
compact representation of its ground instantiation – which is equivalent to a
propositional problem. (Each ground predicate equals a proposition.)
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Lifted Classical Planning

Example: Propositional Classical Planning Problem (Reminder)

Let sI = {AtLivingRoom,R,AtGarage,Remote,AtLivingRoom,Box,TVOff}

Available actions: (Replace R by M to obtain the other actions.)

∠ PushBoxLivingRoom,R: ({AtLivingRoom,Box,AtLivingRoom,R}, {AtLivingRoom,M}, ∅)
∠ PushBoxGarage,R: ({AtGarage,Box,AtGarage,R}, {AtGarage,M}, ∅)
∠ GoToGarageR: ({AtLivingRoom,R}, {AtGarage,R}, {AtLivingRoom,R})
∠ GoToLivingRoomR: ({AtGarage,R}, {AtLivingRoom,R}, {AtGarage,R})
∠ The next two actions represent four, just replace X by Box and Remote.

PickUpX ,Garage,R: ({AtGarage,R,AtGarage,X}, {HasX,R}, {AtGarage,X})
PickUpX ,LivingRoom,R: ({AtLivingRoom,R,AtLivingRoom,X}, {HasX,R}, {AtLivingRoom,X})

∠ Again, these actions represent four, again replace X by Box and Remote.

GiveX ,LivingRoom,R: ({Has(X,R),At(LivingRoom,R),At(LivingRoom,M)}, {Has(X,M)},
GiveX ,Garage,R: (Replace LivingRoom by Garage) {Has(X,R)})

∠ TurnTVOnR: ({HasRemote,R,AtLivingRoom,R,TVOff}, {TVOn}, {TVOff})

g = {TVOn}
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Lifted Classical Planning

Example: Lifted Classical Planning Problem

Types: room, object; character – object (i.e., character is-a object)
Objects: Remote, Box – object; R, M – character; LivingRoom, Garage – room

Let sI = {At(LivingRoom,R),At(Garage,Remote),At(LivingRoom,Box),TV-Off()}

Available action schemata:

∠ PushBox(?room,?character): ({At(?room,Box),At(?room,?character)}, {At(?room,M)}, ∅)
∠ GoTo(?room-f,?room-t,?character): ({At(?room-f,?character)}, {At(?room-t,?character)},

{At(?room-f,?character)})
∠ PickUp(?object,?room,?character): ({At(?room,?character),At(?room,?object)},

{Has(?object,?character)}, {At(?room,?object)})
∠ Give(?object,?room,?character-f,?character-t):

({Has(?object,?character-f),At(?room,?character-f),At(?room,?character-t)},
{Has(?object,?character-t)}, {Has(?object,?character-f)})

∠ TurnTVOn(?character): ({Has(Remote,?character),At(LivingRoom,?character),TV-Off()},
{TV-On()}, {TV-Off()})

g = {TV-On()}
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Lifted Classical Planning

Further Practice for Lifted Planning

Need further practice on lifted planning?

∠ Check out a 60-minute hands-on lecture on classical planning:

video/lecture: https://www.youtube.com/watch?v=pfNb0IAkbcQ
hands-on material: https://bercher.net/data/teaching/2022/
2022-S1--CCSE--PlanningIntroHandsOn.zip

∠ It covers both propositional and lifted planning.

∠ It teaches how to model in PDDL, approx. 20 to 30 minutes had to be invested into
exercises.
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Complexity Results for Lifted Planning

Complexity Results for Lifted

Planning
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Complexity Results for Lifted Planning General Case

Complexity of the General Case

PLANEXL = {⟨P⟩ | P is a solvable lifted planning problem.}

Theorem w11.1 (Erol et al. (1991), Thm. 5.7)

PLANEXL is EXPSPACE-complete

Proof.

Membership:

∠ Generate the fully instantiated ground problem, which is exponentially larger. (An
action schema with o objects and arity a has oa many ground action instantiations.)

∠ Then, decide it in PSPACE w.r.t. the new size, which gives EXPSPACE membership.

Hardness:

∠ We reduce from an expspace-bounded TM.

∠ Exact encoding given in tutorials. (Follows similar idea as PSPACE hardness proof.)
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Complexity Results for Lifted Planning Length-Bounded Lifted Planning

Length-Bounded Lifted Planning is NEXPTIME-complete

PLANMINL = {⟨P, k⟩ | P is a lifted planning problem with a solution ā, |ā| ≤ k.}

Theorem w11.2 (Erol et al. (1991), Thm. 5.12)

PLANMINL is NEXPTIME-complete

Proof.

Membership:

∠ Guess a number k ′ ≤ k. Guess a plan of length k, which is in O(2|k|).
∠ Return yes iff if the plan was successful.

Hardness:

∠ We reduce from an exponential-time-bounded non-deterministic TM.

∠ Exact encoding given in tutorials. (Follows similar idea as PSPACE hardness proof.)
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Expressivity Analysis

Expressivity Analysis
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Expressivity Analysis Foundations

Language of a Planning Problem

Recap: A language L is a set of strings over symbols.

∠ Let P be a (classical) planning problem and sol(P) its set of solutions. If we interpret
any action as a symbol, then sol(P) is a language!

∠ Recall that every action had a name, which was a string. We didn’t require it to be
unique, but that was just for the sake of simplicity!

∠ So, we now assume that each action (3-tuple of preconditions/effects) can be
represented by their name.

∠ Thus, each plan can equivalently be described by its action name sequence.

∠ So, we can define: L(P) := sol(P) if P is a classical problem.

∠ We can now compare planning problems (and their special cases) with regard to the
Chomsky Hierarchy.
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Expressivity Analysis Foundations

Chomsky Hierarchy, extended

We can define the following Language classes:

∠ Let All = {L | L is a language}
∠ Let CSL = {L | L is a context-sensitive language}
∠ Let CF = {L | L is a context-free language}
∠ Let Reg = {L | L is a regular language}
∠ Let CLASSIC = {L(P) | P is a (propositional) classical planning problem.}

We know that Reg ⊊ CF ⊊ CSL ⊊ All .

So ... Where does CLASSIC sit?
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Expressivity Analysis Expressivity of Classical Problems

Expressivity of Classical Problems

Theorem w11.1 (Höller et al. (2016), Thm. 1, Thm. 2)

CLASSIC ⊊ Reg

Proof.

We first show CLASSIC ⊆ Reg .
∠ For this, notice that each planning problem P encodes a DFA D.

The nodes are states, the edges are action names.
D is exponentially larger than the propositional planning problem P (it’s
“factored”), or doubly-exponentially larger when lifted. (But still just a DFA.)
Solving a P means finding a path in D from the initial state to a goal state.

∠ We know that each DFA describes a regular language, thus showing the claim.

We now show CLASSIC ⊊ Reg .
∠ We prove that for all P, L(P) ̸= {aa}. (But {aa} ∈ Reg .)
∠ Assume aa ∈ L(P) for some classical problem P. Show that aaa ∈ L(P).
∠ Since a is applicable in the state after executing a in sI , pre(a) must be contained in
the state resulting from aa. But then, aaa is also executable.
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Summary

Summary
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Summary

Summary and Conclusions

We saw/know:

∠ DFAs are exactly regular, yet classical problems are not, so even DFAs are more
expressive than classical problems.

∠ Finding a word in the language of a DFA is in P.

∠ Yet, for – the less expressive – classical planning, it’s between PSPACE and
EXPSPACE.

∠ So, there is no direct relationship between expressivity and computational complexity.

Next week, we will:

∠ Investigate HTN planning, which adds more constraints on solutions.

∠ Specifically,

Complexity Results
Expressivity Results
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Summary

Literture/References

Complexity Results in Planning:

∠ The Computational Complexity of Propositional STRIPS Planning by T. Bylander,
AIJ 1994: is the “complexity compendium” for propositional planning.

∠ Complexity, Decidability and Undecidability Results for Domain-Independent Planning
by K. Erol et al., AIJ 1995 and techreport 1991: complexities for lifted planning.
(The ’91 work contains the proofs for the results mentioned in the ’95 work.)

Expressivity Results in Planning:

∠ Assessing the Expressivity of Planning Formalisms through the Comparison to Formal
Languages by D. Höller et al., ICAPS 2016: the title says it all.
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