
COMP3630 / COMP6363

week 12: Examples from Hierarchical Planning
All taken from literature

slides created by: Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

Hierarchical Task Network (HTN) Planning:

 Examples

 Formal Problem Definition(s)

 Expressivity Analysis

 Complexity Analysis

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 2 / 27

Examples

Examples

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 3 / 27

Examples Introduction

Terminology and some Background

∠ HTN Planning is short for Hierarchical Task Network Planning.

∠ It’s an extension of classical planning where:

We don’t plan for some goal but want to refine some initial tasks.
We also can’t insert actions in every state, but need to adhere certain rules.

∠ Historical remarks:

Whereas first versions date back to the 70s, the first decent formalization comes
from the early 90s.
Some central idea was to introduce expert knowledge: What do we need to do
to achieve a certain task? (Like a production rule!)

∠ Why defining/solving a hierarchical problem?

As above: In many real-world applications, knowledge is given in form of control
rules: we know the steps required to perform some task.
More control on the generated plans, since all the “rules” need to be obeyed.
We can exclude (more) undesired plans! (Exactly how formal grammars do!)
Plans can be presented more abstract by relying on task hierarchies.
We can solve/express more complex problems! (Spoiler)

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 4 / 27

Examples Do-it-Yourself Assistant

Example: Do-It-Yourself (DIY) Assistant, The Task

The material:

Boards (need to be cut first)

Electrical devices like drills and saws

Attachments like drill bits
and materials like nails

Further reading: Pascal Bercher et al. “Do It Yourself, but Not Alone: Companion-Technology for Home Improvement – Bringing a Planning-Based
Interactive DIY Assistant to Life.” Künstliche Intelligenz – Special Issue on NLP and Semantics, 35: 367–375. 2021.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 5 / 27

Examples Do-it-Yourself Assistant

Example: Do-It-Yourself (DIY) Assistant, User Interface

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 6 / 27

Examples Do-it-Yourself Assistant

Example: Do-It-Yourself (DIY) Assistant, Task Hierarchy

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 7 / 27

Examples Hierarchical Blocksworld

Recap: Blocksworld via Classical Planning

We consider classical planning problems, which consist of:

∠ All existing state variables V .

∠ An initial state sI ∈ 2V .

∠ A set of available actions A.

∠ A goal description g ⊆ V .

→ Find an action sequence (i.e., a plan) that transforms sI into a state s ⊇ g .

For example, one of the available actions is:

unstack
(?a,?b)

gripperFree

clear(?a)

on(?a,?b)

¬gripperFree
holding(?a)
¬on(?a,?b)
¬clear(?a)
clear(?b)

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 8 / 27

A
B
C E

D

∠ For an action to be executable, all
preconditions must hold.

∠ Actions change states by adding or deleting
their effects.

Examples Hierarchical Blocksworld

Blocksworld via HTN Planning (and HDDL Excerpt)

makeClear(?b)

(empty)

done
pre: clear(?b)

makeClear(?b′) unstack(?b′, ?b) putdown(?b′)

one-step
pre: on(?b′, ?b)

(: t a s k makeClear : pa ramete r s (? b − b l o ck))

(:method one−step
: pa ramete r s (? b1 ?b2 − b l o ck)
: t a s k (makeClear ?b1)
: p r e c o n d i t i o n (and (on ?b2 ?b1))
: o rde red− ta sks (and (makeClear ?b2)

(uns tack ?b2 ?b1)
(putdown ?b2)))

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 9 / 27

A
B
C E

D

clear(A)

clear(D)

((((((hhhhhhmakeClear(A)
unstack(A,B)
putdown(A)

((((((hhhhhhmakeClear(B)
unstack(B,C)
putdown(B)

((((((hhhhhhmakeClear(C)

Formalism

Formalism

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 10 / 27

Formalism Problem Definition

Introduction to HTN Planning

primitive
tasks

compound
tasks

sI g

P = (V ,P, δ,C ,M, sI , cI , g)

∠ V a set of facts

∠ P a set of primitive task names

∠ δ : P → (2V)3 the task name mapping

∠ C a set of compound task names

∠ cI ∈ C the initial task

∠ M ⊆ C × 2TN the methods

∠ sI ∈ 2V the initial state

∠ g ⊆ V the (optional) goal description

We must find a task network tn, such that:

∠ it is a refinement of cI ,

∠ only contains primitive tasks, and

∠ has an executable linearization
that makes the goals in g true.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 11 / 27

Formalism Problem Definition

Introduction to HTN Planning

cI

sI g

P = (V ,P, δ,C ,M, sI , cI , g)

∠ V a set of facts

∠ P a set of primitive task names

∠ δ : P → (2V)3 the task name mapping

∠ C a set of compound task names

∠ cI ∈ C the initial task

∠ M ⊆ C × 2TN the methods

∠ sI ∈ 2V the initial state

∠ g ⊆ V the (optional) goal description

We must find a task network tn, such that:

∠ it is a refinement of cI ,

∠ only contains primitive tasks, and

∠ has an executable linearization
that makes the goals in g true.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 11 / 27

Formalism Problem Definition

Introduction to HTN Planning

cI

X

sI g

P = (V ,P, δ,C ,M, sI , cI , g)

∠ V a set of facts

∠ P a set of primitive task names

∠ δ : P → (2V)3 the task name mapping

∠ C a set of compound task names

∠ cI ∈ C the initial task

∠ M ⊆ C × 2TN the methods

∠ sI ∈ 2V the initial state

∠ g ⊆ V the (optional) goal description

We must find a task network tn, such that:

∠ it is a refinement of cI ,

∠ only contains primitive tasks, and

∠ has an executable linearization
that makes the goals in g true.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 11 / 27

Formalism Problem Definition

Introduction to HTN Planning

cI

X

X

X X

sI g

P = (V ,P, δ,C ,M, sI , cI , g)

∠ V a set of facts

∠ P a set of primitive task names

∠ δ : P → (2V)3 the task name mapping

∠ C a set of compound task names

∠ cI ∈ C the initial task

∠ M ⊆ C × 2TN the methods

∠ sI ∈ 2V the initial state

∠ g ⊆ V the (optional) goal description

We must find a task network tn, such that:

∠ it is a refinement of cI ,

∠ only contains primitive tasks, and

∠ has an executable linearization
that makes the goals in g true.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 11 / 27

Formalism Solution Definition

Decomposition, formally

∠ Task networks are tuples (T ,≺, α) consisting of a set of task IDs (labels) T and a
strict partial order ≺ ⊆ T × T . I.e., ≺ is irreflexive and transitive (and hence
asymmetric). α : T → P ∪ C maps task IDs to the actual tasks (i.e., their names).

∠ A decomposition method m ∈ M is a tuple m = (c, tnm) with a compound task c and
task network tnm = (Tm,≺m, αm).

∠ Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and α(t) = c is a
compound task to be decomposed by m = (c, tnm). We assume T ∩ Tm = ∅.
Then, the application of m to tn results into the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t′, t′′) | (t′, t) ∈ ≺, t′′ ∈ Tm} ∪
{(t′′, t′) | (t, t′) ∈ ≺, t′′ ∈ Tm}

where (X1, . . . ,Xn)|Y restricts the sets Xi to elements in Y

∠ Note that this definition becomes trivial if all methods are totally ordered.
It then perfectly coincides with the definition of using a production rule.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 12 / 27

Formalism Solution Definition

HTN Planning: Solution Criteria in more Detail

An action sequence p̄ ∈ P∗ is a solution if and only if:

∠ There is a sequence of decomposition methods m that transforms cI into some tn,

∠ tn contains only primitive tasks (those in p̄), and

∠ tn admits p̄ as linearization, is executable, leads to a goal state s ⊇ g .
cI

X

X

X X

sI g

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 13 / 27

An action sequence is called executable if every
action is executable in its state:

∠ Let s ∈ 2V be a state, p ∈ P, and δ(p) an
action with δ(p) = (pre, add , del) and
pre, add , del ⊆ V .

∠ Then, p is executable in s iff pre ⊆ s.

∠ Then, p executed in s leads to new state
s ′ = (s \ del) ∪ add .

Formalism Alternative (and maybe nicer?) Solution Definition

Alternative Definition of HTN Planning

∠ Actions were defined by their name: δ : P → 2V × 2V × 2V .
Thus, solutions are (the same as) sequences of task names.

∠ Thus, any solution set sol(P) is a language. Let:

LH(P) = {p̄ | p̄ ∈ sol(P ′), where P ′ ignores all facts }
LC (P) = {p̄ | p̄ ∈ sol(P ′), where P ′ is the induced classical problem }

∠ This means:

LH just looks at the words produced by the hierarchy, (ignores executability)
LC just looks at the executable words that produce the goal. (ignores hierarchy)

→ Thus: sol(P) = LH(P) ∩ LC (P).

This observation gives a new/simplified view on HTN planning:

HTN planning = classical planning + grammar to filter solutions

!! Maybe the most important interpretation of knowledge about HTN Planning !!

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 14 / 27

Expressivity Analysis

Expressivity Analysis

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 15 / 27

Expressivity Analysis

Recap: Chomsky Hierarchy, extended

We can define the following Language classes:

∠ All = {L | L is a language}
∠ CSL = {L | L is a context-sensitive language}
∠ CF = {L | L is a context-free language}
∠ Reg = {L | L is a regular language}
∠ CLASSIC = {L(P) | P is a (propositional) classical planning problem.}

We know that CLASSIC ⊊ Reg ⊊ CF ⊊ CSL ⊊ All .

Now, we also have:

∠ HT N = {L(P) | P is an HTN planning problem.}
∠ T OHT N = {L(P) | P is a total-order HTN planning problem.}

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 16 / 27

Expressivity Analysis

Expressivity of HTN Problems

Theorem w12.1 (Höller et al. (2014), Thm. 6)

T OHT N = CF

Proof.

We first show T OHT N ⊇ CF .

∠ Let G be a CF grammar. Use rules as methods, compound task names as terminal
symbols, and primitive task names as terminal symbols.

∠ For each terminal symbol define a no-operation. Set g = ∅.
∠ With this, every CF grammar is a TO HTN problem!

Now we show T OHT N ⊆ CF .

∠ We know that L(P) = LH(P) ∩ LC (P) for all HTN problems P.

∠ We know that:

LH(P) is context-free (we established that above)
LC (P) is regular (we established that last week).

∠ It is known that the intersection of a context-free and regular language is context-free.
(We didn’t prove that yet, but the idea is a product automaton of PDA and DFA.)

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 17 / 27

Expressivity Analysis

On the (Non?)equivalence of PO and TO HTN models

Each partially ordered task network is just a compact representation of its linearizations:

A B

C

D

= + , right?

A B C D

A B D C

Let:

C C1 D D1 D2

Can we create the following task network?

A B D1 C1 D2

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 18 / 27

No! Not anymore...

Expressivity Analysis

More Expressivity Results

Recall: (the last two are new)

∠ HT N = {L(P) | P is an HTN planning problem.}
∠ T OHT N = {L(P) | P is a total-order HTN planning problem.}
∠ ACYC-HT N = {L(P) | P is an acyclic HTN planning problem.}
∠ NOOP-HT N = {LH(P) | P is an HTN planning problem.}

An excerpt of other expressivity results (not shown here):

∠ ACYC-HT N ⊊ Reg Because their languages are finite!

∠ CF = T OHT N ⊊ NOOP-HT N ⊊ HT N ⊊ CSL

Note: There are more special cases that were considered in literature.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 19 / 27

Complexities

Complexities

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 20 / 27

Complexities

Complexity of HTN Planning (General Case)

PLANEXHTN = {⟨P⟩ | P is a solvable HTN planning problem.}

Theorem w12.1 (Erol et al. (1996), Thm. 1)

PLANEXHTN is undecidable

Proof.

We reduce from the (undecidable) CF grammar intersection problem.

Given the CF grammars G and G ′, construct HTN problem to answer L(G) ∩ L(G ′)
?

̸= ∅
using the following decision procedure:

∠ Construct an HTN planning problem P that has a solution if and only if the correct
answer to the grammar/language intersection problem is yes.

∠ Translate the production rules to decomposition methods in a way that only words in
both L(G) and L(G ′) can be produced.

∠ Our desired primitive task network tn contains only one executable linearization
ω = ω1, ω2, . . . , ω2n−1, ω2n:

ω1 = ω1, ω3, . . . , ω2n−1, |ω1| = n, and ω1 ∈ L(G)
ω2 = ω2, ω4, . . . , ω2n, |ω2| = |ω1|, and ω2 ∈ L(G ′)

∠ Encoding given in next slide!

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 21 / 27

Complexities

Reduction, Shown by Example

Let G = (

non-terminals︷ ︸︸ ︷
N = {H,Q} ,

terminals︷ ︸︸ ︷
Σ = {a, b} ,

rules︷︸︸︷
R ,

start symbol︷︸︸︷
H)

and G ′ = (N ′ = {D,F} , Σ′ = {a, b} , R ′ , D).

Production rules R: H 7→ aQb Q 7→ aQ | bQ | a | b
Production rules R ′: D 7→ aFD | ab F 7→ a | b

δ = { a 7→ ({vturn:G}, {vturn:G ′ , va}, {vturn:G}),

P = ({vturn:G , vturn:G ′ , va, vb},

C︷ ︸︸ ︷
{H,Q,D,F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G})

b 7→ ({vturn:G}, {vturn:G ′ , vb}, {vturn:G}),
a′ 7→ ({vturn:G ′ , va}, {vturn:G}, {vturn:G ′ , va}),
b′ 7→ ({vturn:G ′ , vb}, {vturn:G}, {vturn:G ′ , vb})}

M = M(G) ∪M(G ′) (translated production rules of G and G ′)

tnI = ({t, t′}︸ ︷︷ ︸
T

, ∅︸︷︷︸
≺

, {t 7→ H, t′ 7→ D}︸ ︷︷ ︸
α

)

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 22 / 27

Complexities

Complexity of HTN Planning

PLANEXTOHTN = {⟨P⟩ | P is a solvable TO HTN planning problem.}

Theorem w12.2 (Erol et al. (1996), Thm. 4, Alford et al. (2016), Thm. 5.1)

PLANEXTOHTN is EXPTIME-complete.

Proof.

Membership:

∠ Dynamic programming procedure that does a bottom-up analysis.

∠ Check all pairs of (state,task,state) for executability/decomposability.

∠ Details covered in the tutorial!

Hardness:

∠ Reduction from a polyspace-bounded ATM.
(We know AP = PSPACE, but it also holds: APSPACE = EXPTIME)

∠ Proof skipped.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 23 / 27

Conclusion

Conclusion

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 24 / 27

Conclusion This Week

Conclusion on HTN planning

∠ HTN planning is classical planning plus a grammar to filter solutions.

∠ HTN planning is both more expressive and more complex than classical planning.

∠ HTN planning is undecidable in general, but restrictions on the hierarchy or ordering
make it simpler.

∠ Recall one interesting result from week 10: Delete-relaxed HTN planning is
NP-complete, although even the shortest solution may be exponential.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 25 / 27

Conclusion All Weeks

Conclusion of the Course

∠ The first few weeks we were investigating the “expressivity” of various kinds of
machine models. Noteworthy are:

the languages from the Chomsky Hierarchy (and the Pumping lemmas)
the classes R, RE , non-RE

∠ The last weeks we were investigating the “computational complexity” of various
languages. Noteworthy are:

The investigated complexity classes and their relationship. (Which are known?)
The difference between NP and co-NP.
The difference of membership, hardness, completeness – and reductions.

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 26 / 27

Conclusion Farewell

Final Remarks

∠ Don’t forget that:

We have about 8 (internationally known) AI Planning experts at the ANU.
(In case you want to do a PhD or research project.)
Many (most?) in the Foundations group (might) have theory-heavy research
projects to offer.

∠ Please take part in SELT. (No matter whether you liked it or not.)

∠ Keep monitoring the forum! Read all questions/answers !!

∠ I hope you enjoyed the course!

∠ Good luck in the exam! (And your other exams.)

Thank you for taking this course!

A special Thank you to those who attended in person! :)

Pascal Bercher week 12: Examples from Hierarchical Planning Semester 1, 2025 27 / 27

	Examples
	Introduction
	Do-it-Yourself Assistant
	Hierarchical Blocksworld

	Formalism
	Problem Definition
	Solution Definition
	Alternative (and maybe nicer?) Solution Definition

	Expressivity Analysis
	Complexities
	Conclusion
	This Week
	All Weeks
	Farewell

