COMP3630 / COMP6363

week 2: Context-free Grammars and Languages
This Lecture Covers Chapter 5 of HMU: Context-free Grammars and Languages

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

> (Context-free) Grammars

> (Leftmost and Rightmost) Derivations

> Parse Trees

¥ An Equivalence between Derivations and Parse Trees

> Ambiguity in Grammars

Additional Reading: Chapter 5 of HMU.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 2/20

Grammars

Grammars

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 3/20

Grammars

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4/20

Grammars

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

> Grammars are a generative means of defining languages.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4/20

Grammars

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

> Grammars are a generative means of defining languages.

> Grammars can be used to create a strictly larger class of languages.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4/20

Grammars

Introduction to Grammars

> We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

> Grammars are a generative means of defining languages.
> Grammars can be used to create a strictly larger class of languages.
> They are especially useful in compiler and parser design; they can be used to check if:

> parentheses are balanced in a program,
> else occurrences have a matching if, etc.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,

> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,

> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,

> P CV x (VUT)*is a finite set of production rules.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,

> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,

> P CVx(VUT)"is a finite set of production rules.

> Each production rule (A, «) is also written as A — «.
Terminology: A, « are called the head and body of the production rule, resp.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T, P, S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,
> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,
> P CVx(VUT)"is a finite set of production rules.
> Each production rule (A, «) is also written as A — «.
Terminology: A, « are called the head and body of the production rule, resp.

> S € V is the unique variable/non-terminal that ‘generates’ the language.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Grammars

Grammars: Formal Definition

> A context-free grammar (CFG) G = (V, T,P,S), where

> V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A, B,
> T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G.
Notation: lower case letters, e.g., s1, %,
> P CVx(VUT)"is a finite set of production rules.
> Each production rule (A, «) is also written as A — «.
Terminology: A, « are called the head and body of the production rule, resp.

> S € V is the unique variable/non-terminal that ‘generates’ the language.

> Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., o, 3,
> Strings of terminals will be denoted by lower case letters, e.g., w, u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5/20

Derivations

Derivations

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 6/20

Derivations

How do Grammars Generate Languages?

> Astring w € T* is in the language L(G) generated by G = (V, T, P, S) iff we can
derive w from S, i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T™ is obtained.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 7/20

Derivations

How do Grammars Generate Languages?
¥ Astring w € T is in the language L(G) generated by G = (V, T, P, S) iff we can
derive w from S, i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T™ is obtained.

Example 5.2.1

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 7/20

Derivations

How do Grammars Generate Languages?
¥ Astring w € T is in the language L(G) generated by G = (V, T, P, S) iff we can
derive w from S, i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T™ is obtained.

Example 5.2.1 11011
101 111 1111 11111

11
N 1S o0

151 A, 10001
€ / \ /'

10501 —»10101
0 <‘——/S (Start) 01510 01110

' \ _— N 01010

050

0 / \\ 0110

00500
000 010
0000 . 00100

00000

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 7/20

Derivations

Derivation: Formal Definition

Definition

Given G = (V,T,P,S) and o, 8 € (VU T)*, a derivation of 8 from « is a finite
sequence of strings v :G> Y2 :G> e :G> vk for some k € N where

1. vi =« and v = B;
2.7, €(VUT)”

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vi =« and v = B;
2. 71,...,'Yk€(VU T)*

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vi =« and v = B;
2. 71,...,'Yk€(VU T)*

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

S = 0S0
5—050

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vi =« and v = B;
2. 71,...,'Yk€(VU T)*

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

S = 050 > 01510
5—050 5—1S51

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vi =« and v = B;
2. 71,...,'Yk€(VU T)*

3. Foreachi=1,...,k —1, viy1 is obtained from ~y; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

S = 050 > 01510 = 0105010
5—050 5—151 5—0S0

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where

1. vv =« and v = f;
2. 71,...,'Yk€(VU T)*

3. Foreachi=1,...,k — 1, viy1 is obtained from ~; by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

S = 050 > 01510 = 0105010 = 010151010
5—050 5—151 5—0S0 5—1S51

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Derivation: Formal Definition

Definition
Given G = (V, T,P,S) and o, € (VU T)*, a derivation of 3 from « is a finite
sequence of strings v =M T T % for some k € N where
1. vi =« and v = B;
2 y,...,k €E(VUT)*
3. Foreachi=1,...,k — 1, viy1 is obtained from ~; by replacing the head of a
production rule of P by its body.
The following phrases are used interchangeably.
B is derived from o < there exists a derivation of from a & « :Z> B.

\,

For the grammar G = ({S},{0,1},P,S) with P given by S — €¢|0|1|0S0| 151, the
following is a derivation of 010111010 from S

S = 050 > 01510 = 0105010 = 010151010 = 010111010.
5—050 5—151 5—0S0 S—151 S5—1

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8/20

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

Pascal Bercher week 2: Context-free Gi and L Semester 1, 2025 9/20

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

> The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
> Basis: S € SF(G)
> Induction: if aAy € SF(G) for some o,y € (VUT)" and A€ V,and A— S is
a production rule, then a8y € SF(G).
> Only those strings that are generated by the above induction are sentential forms.

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 9/20

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

> The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
> Basis: S € SF(G)
> Induction: if aAy € SF(G) for some o,y € (VUT)" and A€ V,and A— S is
a production rule, then a8y € SF(G).
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V, T,P,S), the language L(G) generated by G is the set of sentential
forms that are also in T*, i.e., L(G) = SF(G) N T™".

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 9/20

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

> The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
> Basis: S € SF(G)
> Induction: if aAy € SF(G) for some a,y € (VUT)" and A€ V,and A— B is
a production rule, then a8y € SF(G).
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V, T,P,S), the language L(G) generated by G is the set of sentential
forms that are also in T*, i.e., L(G) = SF(G) N T™".

For the CFG G = ({S},{0,1},P, S)with P given by S — ¢|0|1]|050| 151,
S, e¢,0,1 0S0, 00, 000, 010, 151, 11, 101, 111,... are all sentential forms.

.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9/20

Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V, T, P,S), any string in (VU T)* derived from S is a sentential form.

> The set of all sentential forms of G (denoted by SF(G)) is defined inductively:
> Basis: S € SF(G)
> Induction: if aAy € SF(G) for some a,y € (VUT)" and A€ V,and A— B is
a production rule, then a8y € SF(G).
> Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V, T,P,S), the language L(G) generated by G is the set of sentential
forms that are also in T*, i.e., L(G) = SF(G) N T™".

For the CFG G = ({S},{0,1},P, S)with P given by S — ¢|0|1]|050| 151,
S, e¢,0,1 0S0, 00, 000, 010, 151, 11, 101, 111,... are all sentential forms.
S, ¢,0,1 656, 00, 000, 010, 5%, 11, 101, 111,... are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9/20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example
Consider the CFG G = ({S},{(,)},P,S) with P given by S — SS|(S) | ().

In the above, 1 indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example
Consider the CFG G = ({S},{(,)},P,S) with P given by S — SS|(S) | ().

[Derivation] 52352552 (90200

In the above, 1 indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example
Consider the CFG G = ({S},{(,)},P,S

with P given by S — SS | (S) | ().
= 552 (552 (90 = (0)0

[Derivation]
& 1 @

-Un -

[Leftmost Derivation]

2552 (952 (5% (0O

¢t ¢

In the above, 1 indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Derivations

Other Sentential Forms

2 At each step of a derivation, one can replace any variable by a suitable production.

> If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or
rightmost) derivation, respectively. We let a = 3 (or o =) to denote the
LM RM

existence of a leftmost (or rightmost) derivation of 8 from «, respectively.

¥ Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S},{(,)},P,S) with P given by S — SS|(S) | ().

[Derivation] S = .?5 = (5)? = (.?)() = (00

T ¢
[Leftmost Derivation] ? = %5 = (?)5 = (())? = 00O

[Rightmost Derivation ? = S? = ?() = (?)() > (9)0)

In the above, 1 indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 /20

Parse Trees

Parse Trees

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 11/20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 /20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.

9 They are used in compilers to represent the source program.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 /20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.

9 They are used in compilers to represent the source program.

Definition

\. |

Pascal Bercher week 2: Context-free Grammars and Languages

Semester 1, 2025

12/20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.
9 They are used in compilers to represent the source program.
Definition

Given a CFG G = (V, T, P,S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

v

Pascal Bercher week 2: Context-free Grammars and Languages

Semester 1, 2025

12/20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.
9 They are used in compilers to represent the source program.
Definition

Given a CFG G = (V, T, P,S), a parse tree for G is any

directed labelled tree that meets the following three
conditions:

> every interior node is labelled by a non-terminal (i.e.,
variable);

> every leaf node is labelled by a non-terminal, or a
terminal or €; however if it is labelled by ¢, it is the
sole child of its parent.

> if an interior node is labelled by A € V, and its
children are labelled s, . ..,sx € VU T U {e}, then
A — s1--- sk is a production rule in P.

v

Pascal Bercher week 2: Context-free Grammars and Languages

Semester 1, 2025

12/20

Parse Trees

Parse Trees

> Parse trees are a graphical method of representing derivations.

9 They are used in compilers to represent the source program.

Given a CFG G = (V, T, P,S), a parse tree for G is any 6 = ({SHIOLP.S)
directed labelled tree that meets the following three DS _> S S’\(é)|€
conditions: ’
> every interior node is labelled by a non-terminal (i.e., S
variable); / \

> every leaf node is labelled by a non-terminal, or a
terminal or €; however if it is labelled by ¢, it is the
sole child of its parent.

> if an interior node is labelled by A € V, and its
children are labelled s, . ..,sx € VU T U {e}, then
A — s1--- sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 /20

An Equivalence between Parse Trees and Derivations

An Equivalence between

Parse Trees and Derivations

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 13 /20

An Equivalence between Parse Trees and Derivations

Derivations and Parse Trees

> Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent
means of generating words of the language L(G) of a CFG G.

> The proof for equivalence of rightmost derivations mirrors that of leftmost
derivations. (So we'll not delve into rightmost derivations).

Let CFG G = (V,T,P,S) be given. Let A€ V and w € T*. Then,

A ::> w & A % w <& there exists a parse tree with root A and yield w < A % w.

Proof Idea

We'll show the following implications.
Existence of a parse tree
with root A and yield w

(b) (@)

o By Definition e
= A

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 14 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Let CFG G = (V,T,P,S) be given. Let A€ V and a € SF(G). If A % «, then there

exists a parse tree with root A and yield .

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Let CFG G = (V,T,P,S) be given. Let A€ V and a € SF(G). If A =Z> «, then there
exists a parse tree with root A and yield c.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Let CFG G = (V,T,P,S) be given. Let A€ V and a € SF(G). If A =Z> «, then there
exists a parse tree with root A and yield c.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

> Suppose A = « is a derivation of length 0.
G

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Y We use induction on the (length of the) derivation.

Let CFG G = (V,T,P,S) be given. Let A€ V and a € SF(G). If A =Z> «, then there
exists a parse tree with root A and yield c.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

> Suppose A = « is a derivation of length 0.
G

> Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A =:_> w = 3 Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length
k — 1 or lesser for some k > 1.

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 16 /20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A =:_> w = 3 Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length
k — 1 or lesser for some k > 1.

> Suppose a derivation of o from A in k steps exists.

ASMZTRI BT g Hag N

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 16 / 20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length
k — 1 or lesser for some k > 1.

> Suppose a derivation of o from A in k steps exists.

A= = = = S v = =«
R T e g Tkt G Tk Parse tree for
*

A = Y1
> We know that y4—1 = SBw and a = SAw where (a) G B
B,we (VUT)*, (b) B€V,and (b) B— Xisa E— ——
production rule. B w
v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 16 / 20

An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A ::_> w = 3 Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

> Hypothesis: the claim is true for all derivations of length
k — 1 or lesser for some k > 1.

> Suppose a derivation of o from A in k steps exists.
A— e B =
71:G>72:G>’Y3:G> :G>’Yk 1:G>'Yk (e}

> We know that y4—1 = SBw and a = SAw where (a)
B,we (VUT)*", (b) BEV,and (b) B— Xisa
production rule.

> Extend the parse tree from the first k — 1 steps by:

o If A=Xi1... X, with Xq,..., X, € VUT, add
childen Xi,..., X, to node B.

Parse tree for
A ? Blw =«

Parse tree for
A % V-1

B

Pascal Bercher week 2: Context-free Grammars and Languages

—_— A——
w

B

Semester 1, 2025 16 / 20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*Ai w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 17 /20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*Ai w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0

> Then A is a leftmost derivation in zero steps.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 /20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*I\i w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e
> Then A is a leftmost derivation in zero steps. ,//\
> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—>a)eP
Induction'

X2
Depth
(-1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025

17/20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*A; w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e

> Then A is a leftmost derivation in zero steps. ,//\

> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—)a)G'P

> Consider the root and its (say k) children. This corre- ------——————————.
sponds to a production rule A — X - - - Xj. Induction:

A
X2
Depth
(-1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 /20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*A; w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e

> Then A is a leftmost derivation in zero steps. ,//\

> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—)a)G'P

> Consider the root and its (say k) children. This corre- ------——————————.
sponds to a production rule A — X - - - Xj. Induction:

> If X; is a leaf, then the yield of the sub-tree rooted at
Xi is w; = X; itself. Then trivially X; L:*Ia w;.

X1\ Xz Xk
T Depth
(-1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 /20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*I\; w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e

> Then A is a leftmost derivation in zero steps. ,//\

> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—)a)G'P

> Consider the root and its (say k) children. This corre- ------——————————.
sponds to a production rule A — X - - - Xj. Induction:

Q=1

> If X; is a leaf, then the yield of the sub-tree rooted at A
X; is w; = X; itself. Then trivially X; j w;. ‘//

> If X; is not a leaf, let w; be the yield of the parse x5 X X
(sub-)tree rooted at X; of depth £ — 1 or less. Then, /\ A .- Depth

by induction hypothesis, X; L:*,a w;.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 /20

An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree = A L:*A; w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

> Base case: the parse tree has height 0 e

> Then A is a leftmost derivation in zero steps. ,//\

> Induction: Let the claim be true for all parse trees of up a=s-
to height ¢ — 1. (A,a):(A—)a)G'P

> Consider the root and its (say k) children. This corre- ------——————————.
sponds to a production rule A — X - - - Xj. Induction:

> If X; is a leaf, then the yield of the sub-tree rooted at

1 ’ A
X; is w; = X; itself. Then trivially X; ﬁi w;. ‘//
> If X; is not a leaf, let w; be the yield of the parse x5 X X
(sub-)tree rooted at X; of depth £ — 1 or less. Then, A .- Depth
by induction hypothesis, X; L:*,a w;. -1

Then, the following is a leftmost derivation for a from A
A:>X1X2--'Xk:*> W1X2---Xk:*> W1W2X3---Xk=*>~--=*> Wy - Wi
G LM LM LM LM

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 /20

Ambiguous Grammars

Ambiguous Grammars

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 18 /20

Ambiguous Grammars

Ambiguity in CFGs

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19/20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

Pascal Bercher week 2: Context-free G and L

Semester 1, 2025 19/20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.

Pascal Bercher week 2: Context-free G and L

Semester 1, 2025 19/20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.

An Example

> CFG G = ({E},{0,1,...,9,+,%},P,E) with P : E —> E + E|E = E|0|1]---|9

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 /20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.

An Example

> CFG G = ({E},{0,1,...,9,+,%},P,E) with P: E— E + E|E * E|0|1]--- |9
> Consider the parse trees for 9 + 2 x 2.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 /20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.
An Example

> CFG G = ({E},{0,1,...,9,+,%},P,E) with P: E— E + E|E * E|0|1]--- |9
> Consider the parse trees for 9 + 2 x 2.

> Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

NN

©o

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 /20

Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w € L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w € L(G) has two different
leftmost (or rightmost) derivations.

> Ambiguity is a property of a grammar, and not the language it generates.

An Example
> CFG G = ({E},{0,1,...,9,+,%},P,E) with P: E— E + E|E * E|0|1]--- |9
> Consider the parse trees for 9 + 2 x 2.

> Since there are two distinct parse trees, a compiler will not know to reduce this to 13

| AN N
VNN
Py

> This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 /20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G1 = ({S},{(,)},P,S) with P: S — SS|(S)|()

> Gi is ambiguous for there are two leftmost derivations for ()()().

Pascal Bercher week 2: Context-free G and L Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G1 = ({S},{(,)},P,S) with P: S — SS|(S)|()

> Gi is ambiguous for there are two leftmost derivations for ()()().

$=55=(5=055=(005= 000
§=55=555=()SS = ()()S = 000

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G1 = ({S},{(,)},P,S) with P: S — SS|(S)|()

> Gi is ambiguous for there are two leftmost derivations for ()()().

$=55=(5=055=(005= 000
5= 55=1555=()55= (05 f; 000
> CFG Gy = ({B,R},{(,)}, Q. B) with Q: B — (RBle and R —)|(RR

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G = ({S},{(,)},P,S) with P : S — SS|(S)|()

> Gi is ambiguous for there are two leftmost derivations for ()()().

$=55=(5=055=005= 000
§=55=555=()SS = ()()S = 000
> CFG G, = ({B,R},{(,)}, Q, B) with Q : B —> (RBle and R —)|(RR

> Gy is not ambiguous, since there is precisely only one rule at any stage of derivation.

B = (RB= ()B= ()(RB= (0B = 0008 = 000

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example
> CFG G = ({S},{(,)},P,S) with P : S — SS|(S)|()

> Gi is ambiguous for there are two leftmost derivations for ()()().

$=55=(5=055=005= 000
§=55=555=()SS = ()()S = 000
> CFG G, = ({B,R},{(,)}, Q, B) with Q : B —> (RBle and R —)|(RR

> Gy is not ambiguous, since there is precisely only one rule at any stage of derivation.

B = (RB= ()B= ()(RB= (0B = 0008 = 000

> Some languages are intrinsically ambiguous, e.g., {0'1/2% : j = j or j = k}. All
grammars for such languages are ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

Ambiguous Grammars

Ambiguity in CFGs

> Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

> CFG G = ({S},{(,)},P,S) with P : S — S5[(5)|()
> Gi is ambiguous for there are two leftmost derivations for ()()().

$=55=(5=055=005= 000
§=55=555=()SS = ()()S = 000
> CFG G = ({B,R},{(,)}, Q, B) with Q: B —» (RB|e and R —)|(RR

> Gy is not ambiguous, since there is precisely only one rule at any stage of derivation.

B = (RB= ()B= ()(RB= (0B = 0008 = 000

> Some languages are intrinsically ambiguous, e.g., {0'1/2% : j = j or j = k}. All
grammars for such languages are ambiguous.

> In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20/20

	Grammars
	Derivations
	Parse Trees
	An Equivalence between Parse Trees and Derivations
	Ambiguous Grammars

