
COMP3630 / COMP6363

week 2: Context-free Grammars and Languages
This Lecture Covers Chapter 5 of HMU: Context-free Grammars and Languages

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025



Content of this Chapter

 (Context-free) Grammars

 (Leftmost and Rightmost) Derivations

 Parse Trees

 An Equivalence between Derivations and Parse Trees

 Ambiguity in Grammars

Additional Reading: Chapter 5 of HMU.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 2 / 20



Grammars

Grammars

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 3 / 20



Grammars

Introduction to Grammars

 We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

 Grammars are a generative means of defining languages.

 Grammars can be used to create a strictly larger class of languages.

 They are especially useful in compiler and parser design; they can be used to check if:

∠ parentheses are balanced in a program,
∠ else occurrences have a matching if, etc.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4 / 20



Grammars

Introduction to Grammars

 We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

 Grammars are a generative means of defining languages.

 Grammars can be used to create a strictly larger class of languages.

 They are especially useful in compiler and parser design; they can be used to check if:

∠ parentheses are balanced in a program,
∠ else occurrences have a matching if, etc.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4 / 20



Grammars

Introduction to Grammars

 We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

 Grammars are a generative means of defining languages.

 Grammars can be used to create a strictly larger class of languages.

 They are especially useful in compiler and parser design; they can be used to check if:

∠ parentheses are balanced in a program,
∠ else occurrences have a matching if, etc.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4 / 20



Grammars

Introduction to Grammars

 We have so far seen machine-like means (e.g., DFAs) and declarative means (e.g.,
regular expressions) of defining languages

 Grammars are a generative means of defining languages.

 Grammars can be used to create a strictly larger class of languages.

 They are especially useful in compiler and parser design; they can be used to check if:

∠ parentheses are balanced in a program,
∠ else occurrences have a matching if, etc.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 4 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Grammars

Grammars: Formal Definition

 A context-free grammar (CFG) G = (V ,T ,P, S), where

∠ V is a finite set whose elements are called variables or non-terminal symbols.
Notation: upper case letters, e.g., A,B, . . ..

∠ T is a finite set whose elements are called terminal symbols; T is precisely the
alphabet of the language generated by the grammar G .
Notation: lower case letters, e.g., s1, s2, . . ..

∠ P ⊆ V × (V ∪ T )∗ is a finite set of production rules.

∠ Each production rule (A, α) is also written as A −→ α.
Terminology: A , α are called the head and body of the production rule, resp.

∠ S ∈ V is the unique variable/non-terminal that ‘generates’ the language.

Notation

∠ Strings consisting of non-terminals and/or terminals will be denoted by
greek symbols, e.g., α, β, . . ..

∠ Strings of terminals will be denoted by lower case letters, e.g., w , u, v

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 5 / 20



Derivations

Derivations

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 6 / 20



Derivations

How do Grammars Generate Languages?

 A string w ∈ T ∗ is in the language L(G) generated by G = (V ,T ,P, S) iff we can
derive w from S , i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T ∗ is obtained.

Example 5.2.1

Let G = ({S}, {0, 1},P,S) be
a CFG with P given by

(1)

{
(S , ϵ), (S , 0), (S , 1)
(S , 0S0), (S , 1S1)

}

(2)

S −→ ϵ
S −→ 0
S −→ 1
S −→ 0S0
S −→ 1S1

(3) S −→ ϵ | 0 | 1 | 0S0 | 1S1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 7 / 20



Derivations

How do Grammars Generate Languages?

 A string w ∈ T ∗ is in the language L(G) generated by G = (V ,T ,P, S) iff we can
derive w from S , i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T ∗ is obtained.

Example 5.2.1

Let G = ({S}, {0, 1},P, S) be
a CFG with P given by

(1)

{
(S , ϵ), (S , 0), (S , 1)
(S , 0S0), (S , 1S1)

}

(2)

S −→ ϵ
S −→ 0
S −→ 1
S −→ 0S0
S −→ 1S1

(3) S −→ ϵ | 0 | 1 | 0S0 | 1S1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 7 / 20



Derivations

How do Grammars Generate Languages?

 A string w ∈ T ∗ is in the language L(G) generated by G = (V ,T ,P, S) iff we can
derive w from S , i.e.,

start from S and use production rule(s) repeatedly to replace
heads of the rules by their bodies until a string in T ∗ is obtained.

Example 5.2.1

Let G = ({S}, {0, 1},P, S) be
a CFG with P given by

(1)

{
(S , ϵ), (S , 0), (S , 1)
(S , 0S0), (S , 1S1)

}

(2)

S −→ ϵ
S −→ 0
S −→ 1
S −→ 0S0
S −→ 1S1

(3) S −→ ϵ | 0 | 1 | 0S0 | 1S1

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 7 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P,S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0

⇒
G

S→1S1

01S10

⇒
G

S→0S0

010S010

⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0

⇒
G

S→1S1

01S10

⇒
G

S→0S0

010S010

⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0

⇒
G

S→1S1

01S10

⇒
G

S→0S0

010S010

⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0 ⇒
G

S→1S1

01S10

⇒
G

S→0S0

010S010

⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0 ⇒
G

S→1S1

01S10 ⇒
G

S→0S0

010S010

⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0 ⇒
G

S→1S1

01S10 ⇒
G

S→0S0

010S010 ⇒
G

S→1S1

0101S1010

⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Derivation: Formal Definition

Definition

Given G = (V ,T ,P,S) and α, β ∈ (V ∪ T )∗, a derivation of β from α is a finite
sequence of strings γ1 ⇒

G
γ2 ⇒

G
· · · ⇒

G
γk for some k ∈ N where

1. γ1 = α and γk = β;

2. γ1, . . . , γk ∈ (V ∪ T )∗

3. For each i = 1, . . . , k − 1, γi+1 is obtained from γi by replacing the head of a
production rule of P by its body.

The following phrases are used interchangeably.

β is derived from α ⇔ there exists a derivation of β from α ⇔ α
∗⇒
G

β.

Example 5.2.2

For the grammar G = ({S}, {0, 1},P, S) with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1, the
following is a derivation of 010111010 from S

S ⇒
G

S→0S0

0S0 ⇒
G

S→1S1

01S10 ⇒
G

S→0S0

010S010 ⇒
G

S→1S1

0101S1010 ⇒
G

S→1

010111010.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 8 / 20



Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V ,T ,P,S), any string in (V ∪ T )∗ derived from S is a sentential form.

 The set of all sentential forms of G (denoted by SF(G)) is defined inductively:

∠ Basis: S ∈ SF(G)
∠ Induction: if αAγ ∈ SF(G) for some α, γ ∈ (V ∪ T )∗ and A ∈ V , and A −→ β is
a production rule, then αβγ ∈ SF(G).

∠ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V ,T ,P, S), the language L(G) generated by G is the set of sentential
forms that are also in T ∗, i.e., L(G) = SF(G) ∩ T ∗.

Example 5.2.3

For the CFG G = ({S}, {0, 1},P,S)with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1,

(1) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are all sentential forms.

(2) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9 / 20



Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V ,T ,P,S), any string in (V ∪ T )∗ derived from S is a sentential form.

 The set of all sentential forms of G (denoted by SF(G)) is defined inductively:

∠ Basis: S ∈ SF(G)
∠ Induction: if αAγ ∈ SF(G) for some α, γ ∈ (V ∪ T )∗ and A ∈ V , and A −→ β is
a production rule, then αβγ ∈ SF(G).

∠ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V ,T ,P, S), the language L(G) generated by G is the set of sentential
forms that are also in T ∗, i.e., L(G) = SF(G) ∩ T ∗.

Example 5.2.3

For the CFG G = ({S}, {0, 1},P,S)with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1,

(1) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are all sentential forms.

(2) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9 / 20



Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V ,T ,P,S), any string in (V ∪ T )∗ derived from S is a sentential form.

 The set of all sentential forms of G (denoted by SF(G)) is defined inductively:

∠ Basis: S ∈ SF(G)
∠ Induction: if αAγ ∈ SF(G) for some α, γ ∈ (V ∪ T )∗ and A ∈ V , and A −→ β is
a production rule, then αβγ ∈ SF(G).

∠ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V ,T ,P, S), the language L(G) generated by G is the set of sentential
forms that are also in T ∗, i.e., L(G) = SF(G) ∩ T ∗.

Example 5.2.3

For the CFG G = ({S}, {0, 1},P,S)with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1,

(1) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are all sentential forms.

(2) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9 / 20



Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V ,T ,P,S), any string in (V ∪ T )∗ derived from S is a sentential form.

 The set of all sentential forms of G (denoted by SF(G)) is defined inductively:

∠ Basis: S ∈ SF(G)
∠ Induction: if αAγ ∈ SF(G) for some α, γ ∈ (V ∪ T )∗ and A ∈ V , and A −→ β is
a production rule, then αβγ ∈ SF(G).

∠ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V ,T ,P, S), the language L(G) generated by G is the set of sentential
forms that are also in T ∗, i.e., L(G) = SF(G) ∩ T ∗.

Example 5.2.3

For the CFG G = ({S}, {0, 1},P,S)with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1,
(1) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are all sentential forms.

(2) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9 / 20



Derivations

Sentential Forms and Language Generated by a Grammar: Definitions

Definition

Given G = (V ,T ,P,S), any string in (V ∪ T )∗ derived from S is a sentential form.

 The set of all sentential forms of G (denoted by SF(G)) is defined inductively:

∠ Basis: S ∈ SF(G)
∠ Induction: if αAγ ∈ SF(G) for some α, γ ∈ (V ∪ T )∗ and A ∈ V , and A −→ β is
a production rule, then αβγ ∈ SF(G).

∠ Only those strings that are generated by the above induction are sentential forms.

Definition

Given CFG G = (V ,T ,P, S), the language L(G) generated by G is the set of sentential
forms that are also in T ∗, i.e., L(G) = SF(G) ∩ T ∗.

Example 5.2.3

For the CFG G = ({S}, {0, 1},P,S)with P given by S −→ ϵ | 0 | 1 | 0S0 | 1S1,
(1) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are all sentential forms.

(2) S , ϵ , 0 , 1 0S0, 00 , 000 , 010 , 1S1, 11 , 101 , 111 ,. . . are in L(G).

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 9 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Derivations

Other Sentential Forms

 At each step of a derivation, one can replace any variable by a suitable production.

 If at each non-trivial step of the derivation the leftmost (or rightmost) variable is
replaced by a production rule, then the derivation is said to be a leftmost (or

rightmost) derivation, respectively. We let α
∗⇒
LM

β (or α
∗⇒
RM

β) to denote the

existence of a leftmost (or rightmost) derivation of β from α, respectively.

 Sentential forms derived via leftmost (or rightmost) derivations are known as
leftmost (or rightmost) sentential forms, respectively.

Balanced Parantheses Example

Consider the CFG G = ({S}, {(, )},P,S) with P given by S −→ SS | (S) | ().

[Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S)S

↑
⇒
G

(S
↑
)() ⇒

G
(())()

[Leftmost Derivation] S
↑
⇒
G

S
↑
S ⇒

G
(S
↑
)S ⇒

G
(())S

↑
⇒
G

(())()

[Rightmost Derivation S
↑
⇒
G

SS
↑
⇒
G

S
↑
() ⇒

G
(S
↑
)() ⇒

G
(())()

In the above, ↑ indicates the variable that is replaced in the following step

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 10 / 20



Parse Trees

Parse Trees

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 11 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P,S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P,S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P, S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P, S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P, S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



Parse Trees

Parse Trees

 Parse trees are a graphical method of representing derivations.

 They are used in compilers to represent the source program.

Definition

Given a CFG G = (V ,T ,P, S), a parse tree for G is any
directed labelled tree that meets the following three
conditions:

∠ every interior node is labelled by a non-terminal (i.e.,
variable);

∠ every leaf node is labelled by a non-terminal, or a
terminal or ϵ; however if it is labelled by ϵ, it is the
sole child of its parent.

∠ if an interior node is labelled by A ∈ V , and its
children are labelled s1, . . . , sk ∈ V ∪ T ∪ {ϵ}, then
A −→ s1 · · · sk is a production rule in P.

The yield of a parse tree is the string formed from the
labels of the tree leaves read from left to right.
Note: The yield is not necessarily a string of terminals.

S

S S

( S ) ( S )

( S ) ›

› yield = (())()

G = ({S}; {(; )};P; S)

P : S �! SS|(S)|›

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 12 / 20



An Equivalence between Parse Trees and Derivations

An Equivalence between

Parse Trees and Derivations

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 13 / 20



An Equivalence between Parse Trees and Derivations

Derivations and Parse Trees

 Parse trees, derivations, leftmost derivations, and rightmost derivations are equivalent
means of generating words of the language L(G) of a CFG G .

 The proof for equivalence of rightmost derivations mirrors that of leftmost
derivations. (So we’ll not delve into rightmost derivations).

Theorem 5.5.1

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and w ∈ T ∗. Then,

A
∗⇒
G

w ⇔ A
∗⇒
LM

w ⇔ there exists a parse tree with root A and yield w ⇔ A
∗⇒
RM

w .

Proof Idea

We’ll show the following implications.

Existence of a parse tree
with root A and yield w

A
⇤)
LM
w A

⇤)
G
w

(a)(b)

By Definition

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 14 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

 We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and α ∈ SF(G). If A
∗⇒
G

α, then there

exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

∠ Suppose A
∗⇒
G

α is a derivation of length 0.

∠ Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

 We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and α ∈ SF(G). If A
∗⇒
G

α, then there

exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

∠ Suppose A
∗⇒
G

α is a derivation of length 0.

∠ Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

 We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and α ∈ SF(G). If A
∗⇒
G

α, then there

exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

∠ Suppose A
∗⇒
G

α is a derivation of length 0.

∠ Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

 We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and α ∈ SF(G). If A
∗⇒
G

α, then there

exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

∠ Suppose A
∗⇒
G

α is a derivation of length 0.

∠ Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

 We use induction on the (length of the) derivation.

Lemma 5.5.2

Let CFG G = (V ,T ,P, S) be given. Let A ∈ V and α ∈ SF(G). If A
∗⇒
G

α, then there

exists a parse tree with root A and yield α.

Proof of Lemma 5.5.2 (Induction on the length of derivation)

∠ Suppose A
∗⇒
G

α is a derivation of length 0.

∠ Then A is a parse tree with root A and yield A.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 15 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

∠ Hypothesis: the claim is true for all derivations of length
k − 1 or lesser for some k ≥ 1.

∠ Suppose a derivation of α from A in k steps exists.

A = γ1 ⇒
G

γ2 ⇒
G

γ3 ⇒
G

· · · ⇒
G

γk−1 ⇒
G

γk = α

∠ We know that γk−1 = βBω and α = βλω where (a)
β, ω ∈ (V ∪ T )∗, (b) B ∈ V , and (b) B −→ λ is a
production rule.

∠ Extend the parse tree from the first k − 1 steps by:

If λ = X1 . . .Xn with X1, . . . ,Xn ∈ V ∪ T , add
childen X1, . . . ,Xn to node B.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 16 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

∠ Hypothesis: the claim is true for all derivations of length
k − 1 or lesser for some k ≥ 1.

∠ Suppose a derivation of α from A in k steps exists.

A = γ1 ⇒
G

γ2 ⇒
G

γ3 ⇒
G

· · · ⇒
G

γk−1 ⇒
G

γk = α

∠ We know that γk−1 = βBω and α = βλω where (a)
β, ω ∈ (V ∪ T )∗, (b) B ∈ V , and (b) B −→ λ is a
production rule.

∠ Extend the parse tree from the first k − 1 steps by:

If λ = X1 . . .Xn with X1, . . . ,Xn ∈ V ∪ T , add
childen X1, . . . ,Xn to node B.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 16 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

∠ Hypothesis: the claim is true for all derivations of length
k − 1 or lesser for some k ≥ 1.

∠ Suppose a derivation of α from A in k steps exists.

A = γ1 ⇒
G

γ2 ⇒
G

γ3 ⇒
G

· · · ⇒
G

γk−1 ⇒
G

γk = α

∠ We know that γk−1 = βBω and α = βλω where (a)
β, ω ∈ (V ∪ T )∗, (b) B ∈ V , and (b) B −→ λ is a
production rule.

∠ Extend the parse tree from the first k − 1 steps by:

If λ = X1 . . .Xn with X1, . . . ,Xn ∈ V ∪ T , add
childen X1, . . . ,Xn to node B.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 16 / 20



An Equivalence between Parse Trees and Derivations

Part (a) of Proof of Theorem 5.5.1: A
∗⇒
G

w ⇒ ∃ Parse Tree

Proof of Lemma 5.5.2 (Induction on derivations)

∠ Hypothesis: the claim is true for all derivations of length
k − 1 or lesser for some k ≥ 1.

∠ Suppose a derivation of α from A in k steps exists.

A = γ1 ⇒
G

γ2 ⇒
G

γ3 ⇒
G

· · · ⇒
G

γk−1 ⇒
G

γk = α

∠ We know that γk−1 = βBω and α = βλω where (a)
β, ω ∈ (V ∪ T )∗, (b) B ∈ V , and (b) B −→ λ is a
production rule.

∠ Extend the parse tree from the first k − 1 steps by:

If λ = X1 . . .Xn with X1, . . . ,Xn ∈ V ∪ T , add
childen X1, . . . ,Xn to node B.

| {z } | {z }

| {z }

Parse tree for
A

⇤)
G

˛–! = ¸

Parse tree for
A

⇤)
G

‚k�1

B

˛ !

–

B �! –

A

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 16 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



An Equivalence between Parse Trees and Derivations

Part (b) of Proof of Theorem 5.5.1: Parse Tree ⇒ A
∗⇒
LM

w

Proof of Theorem 5.5.1 (Induction on the height of the tree)

∠ Base case: the parse tree has height 0

∠ Then A is a leftmost derivation in zero steps.

∠ Induction: Let the claim be true for all parse trees of up
to height ℓ− 1.

∠ Consider the root and its (say k) children. This corre-
sponds to a production rule A −→ X1 · · ·Xk .

∠ If Xi is a leaf, then the yield of the sub-tree rooted at
Xi is wi = Xi itself. Then trivially Xi

∗⇒
LM

wi .

∠ If Xi is not a leaf, let wi be the yield of the parse
(sub-)tree rooted at Xi of depth ℓ− 1 or less. Then,

by induction hypothesis, Xi
∗⇒
LM

wi .

A

· · ·X1 X2 Xk

Depth
‘� 1

Induction:

A

s1 s2 s‘· · ·

Basis:

¸ = s1 · · · s‘
(A;¸) ⌘ (A �! ¸) 2 P

Then, the following is a leftmost derivation for α from A

A ⇒
G

X1X2 · · ·Xk
∗⇒
LM

w1X2 · · ·Xk
∗⇒
LM

w1w2X3 · · ·Xk
∗⇒
LM

· · · ∗⇒
LM

w1 · · ·wk

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 17 / 20



Ambiguous Grammars

Ambiguous Grammars

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 18 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9

∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.

∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

Definition

A given CFG G is ambiguous if a string w ∈ L(G) is the yield of two different parse
trees. Equivalently, a CFG G is ambiguous if a string w ∈ L(G) has two different
leftmost (or rightmost) derivations.

∠ Ambiguity is a property of a grammar, and not the language it generates.

An Example

∠ CFG G = ({E}, {0, 1, . . . , 9,+, ∗},P,E) with P : E −→ E + E |E ∗ E |0|1| · · · |9
∠ Consider the parse trees for 9+ 2 ∗ 2.
∠ Since there are two distinct parse trees, a compiler will not know to reduce this to 13
or to 22.

E

+

⇤

9 22

E E

E E

E

+

⇤

9 22

EE

E E

∠ This ambiguity is addressed by precedence rules for operators.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 19 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P,S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR

∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20



Ambiguous Grammars

Ambiguity in CFGs

∠ Some languages are generated by unambiguous as well as ambiguous grammars.

Balanced Parantheses Example

∠ CFG G1 = ({S}, {(, )},P, S) with P : S −→ SS |(S)|()
∠ G1 is ambiguous for there are two leftmost derivations for ()()().

S ⇒
LM

SS ⇒
LM

()S ⇒
LM

()SS ⇒
LM

()()S ⇒
LM

()()()

S ⇒
LM

SS ⇒
LM

SSS ⇒
LM

()SS ⇒
LM

()()S
∗⇒
LM

()()()

∠ CFG G2 = ({B,R}, {(, )},Q,B) with Q : B −→ (RB|ϵ and R −→)|(RR
∠ G2 is not ambiguous, since there is precisely only one rule at any stage of derivation.

B
∗⇒
LM

(RB ⇒
LM

()B ⇒
LM

()(RB ⇒
LM

()()B ⇒
LM

()()()B ⇒
LM

()()()ϵ

∠ Some languages are intrinsically ambiguous, e.g., {0i1j2k : i = j or j = k}. All
grammars for such languages are ambiguous.

∠ In general, there is no way to tell if a grammar is ambiguous.

Pascal Bercher week 2: Context-free Grammars and Languages Semester 1, 2025 20 / 20


	Grammars
	Derivations
	Parse Trees
	An Equivalence between Parse Trees and Derivations
	Ambiguous Grammars

