
COMP3630 / COMP6363

week 4: Properties and Normal Forms of Context-free Languages
This Lecture Covers Chapter 7 of HMU: Properties of Context-free Languages

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

 Chomsky Normal Form

 Pumping Lemma for Context-free Languages (CFLs)

 Closure Properties of CFLs

 Decision Properties of CFLs

Additional Reading: Chapter 7 of HMU.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 2 / 36

Chomsky Normal Form (CNF) for CFG

Chomsky Normal Form

(CNF) for CFG

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 3 / 36

Chomsky Normal Form (CNF) for CFG

Chomsky Normal Forms

∠ A normal or canonical form (be it in algebra, matrices, or languages) is a
standardized way of presenting the object (in this case, languages).

∠ A normal form for CFGs provides a prescribed structure to the grammar without
compromising on its power to define all context-free languages.

∠ Motivation: Such normal forms can be exploited by algorithms (don’t have to deal
with all possible cases) and by proofs (same reason: can exploit this structure).

∠ Every non-empty language L with ϵ /∈ L has Chomsky Normal Form grammar
G = (V ,T ,P, S) where every production rule is of the form:

∠ A −→ BC for A,B,C ∈ V , or
∠ A −→ a for A ∈ V and a ∈ T .

and every variable in V is useful, i.e. appears in the derivation of at least one

terminal string: for all X ∈ V there is α, β,w such that S
∗⇒
G

αXβ
∗⇒
G

w .

∠ CNF disallows:

∠ ����A −→ ϵ [ϵ-productions].
∠ ((((A −→ B for A,B ∈ V . [Unit productions].
∠ (((((((
A −→ B1 · · ·Bk , A ∈ V , Bi ∈ V ∪ T for k ≥ 2 [Complex productions].

∠ Note that CNF can also be provided if ϵ ∈ L. We only need a few additional steps.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 4 / 36

Chomsky Normal Form (CNF) for CFG

Chomsky Normal Forms

∠ A normal or canonical form (be it in algebra, matrices, or languages) is a
standardized way of presenting the object (in this case, languages).

∠ A normal form for CFGs provides a prescribed structure to the grammar without
compromising on its power to define all context-free languages.

∠ Motivation: Such normal forms can be exploited by algorithms (don’t have to deal
with all possible cases) and by proofs (same reason: can exploit this structure).

∠ Every non-empty language L with ϵ /∈ L has Chomsky Normal Form grammar
G = (V ,T ,P, S) where every production rule is of the form:

∠ A −→ BC for A,B,C ∈ V , or
∠ A −→ a for A ∈ V and a ∈ T .

and every variable in V is useful, i.e. appears in the derivation of at least one

terminal string: for all X ∈ V there is α, β,w such that S
∗⇒
G

αXβ
∗⇒
G

w .

∠ CNF disallows:

∠ ����A −→ ϵ [ϵ-productions].
∠ ((((A −→ B for A,B ∈ V . [Unit productions].
∠ (((((((
A −→ B1 · · ·Bk , A ∈ V , Bi ∈ V ∪ T for k ≥ 2 [Complex productions].

∠ Note that CNF can also be provided if ϵ ∈ L. We only need a few additional steps.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 4 / 36

Chomsky Normal Form (CNF) for CFG

Chomsky Normal Forms

∠ A normal or canonical form (be it in algebra, matrices, or languages) is a
standardized way of presenting the object (in this case, languages).

∠ A normal form for CFGs provides a prescribed structure to the grammar without
compromising on its power to define all context-free languages.

∠ Motivation: Such normal forms can be exploited by algorithms (don’t have to deal
with all possible cases) and by proofs (same reason: can exploit this structure).

∠ Every non-empty language L with ϵ /∈ L has Chomsky Normal Form grammar
G = (V ,T ,P, S) where every production rule is of the form:

∠ A −→ BC for A,B,C ∈ V , or
∠ A −→ a for A ∈ V and a ∈ T .

and every variable in V is useful, i.e. appears in the derivation of at least one

terminal string: for all X ∈ V there is α, β,w such that S
∗⇒
G

αXβ
∗⇒
G

w .

∠ CNF disallows:

∠ ����A −→ ϵ [ϵ-productions].
∠ ((((A −→ B for A,B ∈ V . [Unit productions].
∠ (((((((
A −→ B1 · · ·Bk , A ∈ V , Bi ∈ V ∪ T for k ≥ 2 [Complex productions].

∠ Note that CNF can also be provided if ϵ ∈ L. We only need a few additional steps.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 4 / 36

Chomsky Normal Form (CNF) for CFG

Chomsky Normal Forms

∠ A normal or canonical form (be it in algebra, matrices, or languages) is a
standardized way of presenting the object (in this case, languages).

∠ A normal form for CFGs provides a prescribed structure to the grammar without
compromising on its power to define all context-free languages.

∠ Motivation: Such normal forms can be exploited by algorithms (don’t have to deal
with all possible cases) and by proofs (same reason: can exploit this structure).

∠ Every non-empty language L with ϵ /∈ L has Chomsky Normal Form grammar
G = (V ,T ,P, S) where every production rule is of the form:

∠ A −→ BC for A,B,C ∈ V , or
∠ A −→ a for A ∈ V and a ∈ T .

and every variable in V is useful, i.e. appears in the derivation of at least one

terminal string: for all X ∈ V there is α, β,w such that S
∗⇒
G

αXβ
∗⇒
G

w .

∠ CNF disallows:

∠ ����A −→ ϵ [ϵ-productions].
∠ ((((A −→ B for A,B ∈ V . [Unit productions].
∠ (((((((
A −→ B1 · · ·Bk , A ∈ V , Bi ∈ V ∪ T for k ≥ 2 [Complex productions].

∠ Note that CNF can also be provided if ϵ ∈ L. We only need a few additional steps.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 4 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

The goal is to eliminate all ϵ-productions (see next slide for a definition).

Example: Grammar with ϵ-productions

Suppose G = ({A,B,C}, {0, 1},P,A) with P:

∠ A −→ BC

∠ B −→ 0B | ϵ
∠ C −→ C11 | ϵ

How could an equivalent grammar look like without ϵ-productions?

Example: Grammar without ϵ-productions (with same language as above)

Now, G ′ = ({A,B,C}, {0, 1},P ′,A) with P ′:

∠ A −→ BC | B | C | �ϵ
∠ B −→ 0B | 0 | �ϵ
∠ C −→ C11 | 11 | �ϵ

Note that the ϵ is in the first language, but not in the second.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 5 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

The goal is to eliminate all ϵ-productions (see next slide for a definition).

Example: Grammar with ϵ-productions

Suppose G = ({A,B,C}, {0, 1},P,A) with P:

∠ A −→ BC

∠ B −→ 0B | ϵ
∠ C −→ C11 | ϵ

How could an equivalent grammar look like without ϵ-productions?

Example: Grammar without ϵ-productions (with same language as above)

Now, G ′ = ({A,B,C}, {0, 1},P ′,A) with P ′:

∠ A −→ BC | B | C | �ϵ
∠ B −→ 0B | 0 | �ϵ
∠ C −→ C11 | 11 | �ϵ

Note that the ϵ is in the first language, but not in the second.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 5 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

∠ ϵ-production: A −→ ϵ for some A ∈ V .

∠ Let us call a variable A ∈ V as nullable if A
∗⇒
G

ϵ.

∠ We can identify nullable variables as follows:

∠ Basis: A ∈ V is nullable if A −→ ϵ is a production rule in P.
∠ Induction: B ∈ V is nullable if B −→ A1 · · ·Ak is in P, and each Ai is nullable.

Procedure to Eliminate ϵ-Productions

∠ Given G = (V ,T ,P,S) define Gno-ϵ = (V ,T ,Pno-ϵ,S) as follows:

1. Start with Pno-ϵ = P. Find all nullable variables of G .
3. For each production rule in P do the following:

∠ If the body contains k > 0 nullable variables, add 2k − 1 productions to Pno-ϵ

obtained by choosing all subsets of nullable variables and removing them

4. Delete any production in Pno-ϵ of the form Y → ϵ for any Y ∈ V .

Examples: Suppose that in a given grammar, B,D are nullable and C is not.

∠ If A −→ BCD is a rule in P, then A −→ BCD|CD|BC |C are rules in Pno-ϵ.
∠ Similarly, if A −→ BD is a rule in P, then A −→ BD|B|D are rules in Pno-ϵ.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 6 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

∠ ϵ-production: A −→ ϵ for some A ∈ V .

∠ Let us call a variable A ∈ V as nullable if A
∗⇒
G

ϵ.

∠ We can identify nullable variables as follows:

∠ Basis: A ∈ V is nullable if A −→ ϵ is a production rule in P.
∠ Induction: B ∈ V is nullable if B −→ A1 · · ·Ak is in P, and each Ai is nullable.

Procedure to Eliminate ϵ-Productions

∠ Given G = (V ,T ,P,S) define Gno-ϵ = (V ,T ,Pno-ϵ,S) as follows:

1. Start with Pno-ϵ = P. Find all nullable variables of G .
3. For each production rule in P do the following:

∠ If the body contains k > 0 nullable variables, add 2k − 1 productions to Pno-ϵ

obtained by choosing all subsets of nullable variables and removing them

4. Delete any production in Pno-ϵ of the form Y → ϵ for any Y ∈ V .

Examples: Suppose that in a given grammar, B,D are nullable and C is not.

∠ If A −→ BCD is a rule in P, then A −→ BCD|CD|BC |C are rules in Pno-ϵ.
∠ Similarly, if A −→ BD is a rule in P, then A −→ BD|B|D are rules in Pno-ϵ.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 6 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

∠ ϵ-production: A −→ ϵ for some A ∈ V .

∠ Let us call a variable A ∈ V as nullable if A
∗⇒
G

ϵ.

∠ We can identify nullable variables as follows:

∠ Basis: A ∈ V is nullable if A −→ ϵ is a production rule in P.
∠ Induction: B ∈ V is nullable if B −→ A1 · · ·Ak is in P, and each Ai is nullable.

Procedure to Eliminate ϵ-Productions

∠ Given G = (V ,T ,P, S) define Gno-ϵ = (V ,T ,Pno-ϵ, S) as follows:

1. Start with Pno-ϵ = P. Find all nullable variables of G .
3. For each production rule in P do the following:

∠ If the body contains k > 0 nullable variables, add 2k − 1 productions to Pno-ϵ

obtained by choosing all subsets of nullable variables and removing them

4. Delete any production in Pno-ϵ of the form Y → ϵ for any Y ∈ V .

Examples: Suppose that in a given grammar, B,D are nullable and C is not.

∠ If A −→ BCD is a rule in P, then A −→ BCD|CD|BC |C are rules in Pno-ϵ.
∠ Similarly, if A −→ BD is a rule in P, then A −→ BD|B|D are rules in Pno-ϵ.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 6 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

∠ ϵ-production: A −→ ϵ for some A ∈ V .

∠ Let us call a variable A ∈ V as nullable if A
∗⇒
G

ϵ.

∠ We can identify nullable variables as follows:

∠ Basis: A ∈ V is nullable if A −→ ϵ is a production rule in P.
∠ Induction: B ∈ V is nullable if B −→ A1 · · ·Ak is in P, and each Ai is nullable.

Procedure to Eliminate ϵ-Productions

∠ Given G = (V ,T ,P, S) define Gno-ϵ = (V ,T ,Pno-ϵ, S) as follows:

1. Start with Pno-ϵ = P. Find all nullable variables of G .
3. For each production rule in P do the following:

∠ If the body contains k > 0 nullable variables, add 2k − 1 productions to Pno-ϵ

obtained by choosing all subsets of nullable variables and removing them

4. Delete any production in Pno-ϵ of the form Y → ϵ for any Y ∈ V .

Examples: Suppose that in a given grammar, B,D are nullable and C is not.

∠ If A −→ BCD is a rule in P, then A −→ BCD|CD|BC |C are rules in Pno-ϵ.
∠ Similarly, if A −→ BD is a rule in P, then A −→ BD|B|D are rules in Pno-ϵ.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 6 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

∠ ϵ-production: A −→ ϵ for some A ∈ V .

∠ Let us call a variable A ∈ V as nullable if A
∗⇒
G

ϵ.

∠ We can identify nullable variables as follows:

∠ Basis: A ∈ V is nullable if A −→ ϵ is a production rule in P.
∠ Induction: B ∈ V is nullable if B −→ A1 · · ·Ak is in P, and each Ai is nullable.

Procedure to Eliminate ϵ-Productions

∠ Given G = (V ,T ,P, S) define Gno-ϵ = (V ,T ,Pno-ϵ, S) as follows:

1. Start with Pno-ϵ = P. Find all nullable variables of G .
3. For each production rule in P do the following:

∠ If the body contains k > 0 nullable variables, add 2k − 1 productions to Pno-ϵ

obtained by choosing all subsets of nullable variables and removing them

4. Delete any production in Pno-ϵ of the form Y → ϵ for any Y ∈ V .

Examples: Suppose that in a given grammar, B,D are nullable and C is not.

∠ If A −→ BCD is a rule in P, then A −→ BCD|CD|BC |C are rules in Pno-ϵ.
∠ Similarly, if A −→ BD is a rule in P, then A −→ BD|B|D are rules in Pno-ϵ.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 6 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

Examples

∠ The one from Slide 5. (Eliminates ϵ from language.)

∠ The two from Slide 6. (Languages stay equivalent.)

Theorem 7.1.1

The induction procedure described in Slide 6 identifies all nullable variables.

Theorem 7.1.2

L(Gno-ϵ) = L(G) \ {ϵ}.a

aProof in the Additional Proofs Section at the end

Recall: We could extend the procudure to keep ϵ ∈ L(G).
Procedure: Add a new start symbol with two rules:

∠ One that goes into ϵ (only if ϵ ∈ L(G)),

∠ one that goes into the original start symbol.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 7 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

Examples

∠ The one from Slide 5. (Eliminates ϵ from language.)

∠ The two from Slide 6. (Languages stay equivalent.)

Theorem 7.1.1

The induction procedure described in Slide 6 identifies all nullable variables.

Theorem 7.1.2

L(Gno-ϵ) = L(G) \ {ϵ}.a

aProof in the Additional Proofs Section at the end

Recall: We could extend the procudure to keep ϵ ∈ L(G).
Procedure: Add a new start symbol with two rules:

∠ One that goes into ϵ (only if ϵ ∈ L(G)),

∠ one that goes into the original start symbol.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 7 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 1: Remove ϵ-Productions]

Examples

∠ The one from Slide 5. (Eliminates ϵ from language.)

∠ The two from Slide 6. (Languages stay equivalent.)

Theorem 7.1.1

The induction procedure described in Slide 6 identifies all nullable variables.

Theorem 7.1.2

L(Gno-ϵ) = L(G) \ {ϵ}.a

aProof in the Additional Proofs Section at the end

Recall: We could extend the procudure to keep ϵ ∈ L(G).
Procedure: Add a new start symbol with two rules:

∠ One that goes into ϵ (only if ϵ ∈ L(G)),

∠ one that goes into the original start symbol.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 7 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

Example: Grammar with Unit Productions

Suppose G = ({A,B,C ,D}, {a, b},P,A) with P:

∠ A −→ aC | B
∠ B −→ bD | A
∠ C −→ aC | ϵ
∠ D −→ bD | ϵ

How could an equivalent grammar look like without unit productions?

Example: Grammar without Unit Productions

Suppose G = ({A,B,C ,D}, {a, b},P,A) with P:

∠ A −→ aC | bD��| B
∠ B −→ bD | aC��| A
∠ C −→ aC | ϵ
∠ D −→ bD | ϵ

Note: Rules with B being the head can never be used.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 8 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

Example: Grammar with Unit Productions

Suppose G = ({A,B,C ,D}, {a, b},P,A) with P:

∠ A −→ aC | B
∠ B −→ bD | A
∠ C −→ aC | ϵ
∠ D −→ bD | ϵ

How could an equivalent grammar look like without unit productions?

Example: Grammar without Unit Productions

Suppose G = ({A,B,C ,D}, {a, b},P,A) with P:

∠ A −→ aC | bD��| B
∠ B −→ bD | aC��| A
∠ C −→ aC | ϵ
∠ D −→ bD | ϵ

Note: Rules with B being the head can never be used.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 8 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

∠ Given a grammar G and variables A,B ∈ V , we say (A,B) form a unit pair if A
∗⇒
G

B

using unit productions alone.

∠ We can identify unit pairs as follows:

∠ Basis: For each A ∈ V , (A,A) is a unit pair (since A
∗⇒
G

A).

∠ Induction: If (A,B) is a unit pair, and B → C is a production in P, then (A,C) is
a unit pair.

∠ Note: Suppose A −→ BC and C −→ ϵ are productions then A
∗⇒
G

B, but (A,B) is

not a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

∠ Given G = (V ,T ,P,S) define Gno-unit = (V ,T ,Pno-unit,S) as follows:

1. Start with Pno-unit = P. Find all unit pairs of G .
2. For every unit pair (A,B) and non-unit production rule B −→ α, add rule

A −→ α to Pno-unit.
3. Delete all unit production rules in Pno-unit.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 9 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

∠ Given a grammar G and variables A,B ∈ V , we say (A,B) form a unit pair if A
∗⇒
G

B

using unit productions alone.

∠ We can identify unit pairs as follows:

∠ Basis: For each A ∈ V , (A,A) is a unit pair (since A
∗⇒
G

A).

∠ Induction: If (A,B) is a unit pair, and B → C is a production in P, then (A,C) is
a unit pair.

∠ Note: Suppose A −→ BC and C −→ ϵ are productions then A
∗⇒
G

B, but (A,B) is

not a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

∠ Given G = (V ,T ,P,S) define Gno-unit = (V ,T ,Pno-unit,S) as follows:

1. Start with Pno-unit = P. Find all unit pairs of G .
2. For every unit pair (A,B) and non-unit production rule B −→ α, add rule

A −→ α to Pno-unit.
3. Delete all unit production rules in Pno-unit.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 9 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

∠ Given a grammar G and variables A,B ∈ V , we say (A,B) form a unit pair if A
∗⇒
G

B

using unit productions alone.

∠ We can identify unit pairs as follows:

∠ Basis: For each A ∈ V , (A,A) is a unit pair (since A
∗⇒
G

A).

∠ Induction: If (A,B) is a unit pair, and B → C is a production in P, then (A,C) is
a unit pair.

∠ Note: Suppose A −→ BC and C −→ ϵ are productions then A
∗⇒
G

B, but (A,B) is

not a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

∠ Given G = (V ,T ,P, S) define Gno-unit = (V ,T ,Pno-unit,S) as follows:

1. Start with Pno-unit = P. Find all unit pairs of G .
2. For every unit pair (A,B) and non-unit production rule B −→ α, add rule

A −→ α to Pno-unit.
3. Delete all unit production rules in Pno-unit.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 9 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

∠ Given a grammar G and variables A,B ∈ V , we say (A,B) form a unit pair if A
∗⇒
G

B

using unit productions alone.

∠ We can identify unit pairs as follows:

∠ Basis: For each A ∈ V , (A,A) is a unit pair (since A
∗⇒
G

A).

∠ Induction: If (A,B) is a unit pair, and B → C is a production in P, then (A,C) is
a unit pair.

∠ Note: Suppose A −→ BC and C −→ ϵ are productions then A
∗⇒
G

B, but (A,B) is

not a unit pair. (Though we are going to use this step after the first anyway.)

Procedure to Eliminate Unit Productions

∠ Given G = (V ,T ,P, S) define Gno-unit = (V ,T ,Pno-unit,S) as follows:

1. Start with Pno-unit = P. Find all unit pairs of G .
2. For every unit pair (A,B) and non-unit production rule B −→ α, add rule

A −→ α to Pno-unit.
3. Delete all unit production rules in Pno-unit.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 9 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 2: Remove Unit Productions]

Example

See Slide 8.

Theorem 7.1.3

The induction procedure on Slide 9 identifies all unit pairs.

Theorem 7.1.4

L(Gno-unit) = L(G).b

bOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 10 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

∠ A symbol X ∈ V ∪ T is said to be

∠ generating if X
∗⇒
G

w for some w ∈ T ∗;

∠ reachable if S
∗⇒
G

αXβ for some α, β ∈ (V ∪ T)∗; and

∠ useful if S
∗⇒
G

αXβ
∗⇒
G

w for some w ∈ T ∗ and α, β ∈ (V ∪ T)∗.

(Useful ⇒ Reachable + Generating, but not necessarily vice versa!

Suppose X
∗⇒
G

a, so X is generating. Assume S
∗⇒
G

αXβ, so X is reachable.

Now assume each rule A −→ α with X ∈ α has another variabe B ∈ α with empty
language. So we can’t turn X into a terminal word, although X is generating!)

∠ Given a grammar G , we can identify generating variables as follows:

∠ Basis: For each a ∈ T , a
∗⇒
G

a. So a is generating.

∠ Induction: If A −→ α, and every symbol of α is generating, so is A.

∠ Given a grammar G , we can identify reachable variables as follows:

∠ Basis: S
∗⇒
G

S so S is reachable.

∠ Induction: If A −→ α, and A is reachable, so is every symbol of α.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 11 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

∠ A symbol X ∈ V ∪ T is said to be

∠ generating if X
∗⇒
G

w for some w ∈ T ∗;

∠ reachable if S
∗⇒
G

αXβ for some α, β ∈ (V ∪ T)∗; and

∠ useful if S
∗⇒
G

αXβ
∗⇒
G

w for some w ∈ T ∗ and α, β ∈ (V ∪ T)∗.

(Useful ⇒ Reachable + Generating, but not necessarily vice versa!

Suppose X
∗⇒
G

a, so X is generating. Assume S
∗⇒
G

αXβ, so X is reachable.

Now assume each rule A −→ α with X ∈ α has another variabe B ∈ α with empty
language. So we can’t turn X into a terminal word, although X is generating!)

∠ Given a grammar G , we can identify generating variables as follows:

∠ Basis: For each a ∈ T , a
∗⇒
G

a. So a is generating.

∠ Induction: If A −→ α, and every symbol of α is generating, so is A.

∠ Given a grammar G , we can identify reachable variables as follows:

∠ Basis: S
∗⇒
G

S so S is reachable.

∠ Induction: If A −→ α, and A is reachable, so is every symbol of α.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 11 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

∠ A symbol X ∈ V ∪ T is said to be

∠ generating if X
∗⇒
G

w for some w ∈ T ∗;

∠ reachable if S
∗⇒
G

αXβ for some α, β ∈ (V ∪ T)∗; and

∠ useful if S
∗⇒
G

αXβ
∗⇒
G

w for some w ∈ T ∗ and α, β ∈ (V ∪ T)∗.

(Useful ⇒ Reachable + Generating, but not necessarily vice versa!

Suppose X
∗⇒
G

a, so X is generating. Assume S
∗⇒
G

αXβ, so X is reachable.

Now assume each rule A −→ α with X ∈ α has another variabe B ∈ α with empty
language. So we can’t turn X into a terminal word, although X is generating!)

∠ Given a grammar G , we can identify generating variables as follows:

∠ Basis: For each a ∈ T , a
∗⇒
G

a. So a is generating.

∠ Induction: If A −→ α, and every symbol of α is generating, so is A.

∠ Given a grammar G , we can identify reachable variables as follows:

∠ Basis: S
∗⇒
G

S so S is reachable.

∠ Induction: If A −→ α, and A is reachable, so is every symbol of α.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 11 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0},S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0},S −→ 0 and B −→ 0,S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0},S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0},S −→ 0 and B −→ 0,S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0},S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0},S −→ 0 and B −→ 0,S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0}, S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0}, S −→ 0 and B −→ 0, S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0}, S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0}, S −→ 0 and B −→ 0, S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0}, S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0}, S −→ 0 and B −→ 0, S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Procedure to Eliminate Useless Variables

∠ Given G = (V ,T ,P, S) define GG = (VG,T ,PG,S) as follows:

∠ Find all generating symbols of G .
∠ VG is the set of all generating variables.
∠ PG is the set of production rules involving only generating symbols.

∠ Now, define GGR = (VGR,TGR,PGR, S) as follows:

∠ Find all reachable symbols of GG.
∠ VGR is the set of all reachable variables.
∠ PGR is the set of production rules involving only reachable symbols.

The Order of Eliminating Variables is Important!

∠ Consider G = ({A,B,S}, {0, 1},P,S) with P : S −→ AB|0; A −→ 1A; B −→ 1.

∠ A is not generating. Removing A and the rules S −→ AB and A −→ 1A results in B
being unreachable. Removing B and B → 1 yields GGR = ({S}, {0}, S −→ 0,S).

∠ Reversing the order, we first see that all symbols are reachable; removing then the
non-generating symbol A and production rules S −→ AB and A −→ 1A yields
GRG = ({B, S}, {0}, S −→ 0 and B −→ 0, S). But B is unreachable now!

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 12 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 3: Remove Useless Variables]

Theorem 7.1.5

The induction procedure on Slide 11 identifies all generating variables.

Theorem 7.1.6

The induction procedure on Slide 11 identifies all reachable variables.

Theorem 7.1.7

(1) L(G) = L(GGR); and
(2) Every symbol in GGR is useful.c

cProof in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 13 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

∠ Given G = (V ,T ,P, S), define Ĝ = (V̂ ,T , P̂, S) as follows:

∠ Start with Ĝ = G and do the following operations.
∠ For every terminal a ∈ T that appears in the body of length 2 or more, introduce
a new variable A and a new production rule A −→ a.

∠ Replace the occurrence of all such terminals in the body of length 2 or more by
the introduced variables.

∠ Replace every rule A −→ B1 · · ·Bk for k > 2, by introducing k − 2 variables
D1, . . . ,Dk−2, and by replacing the rule by the following k − 1 rules:

A −→ B1D1 D2 −→ B3 D3 · · · Dk−2 −→ Bk−1Bk

D1 −→ B2D2 · · · Dk−3 −→ Bk−2 Dk−2

∠ Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

L(G) = L(Ĝ).d

dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 14 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

∠ Given G = (V ,T ,P, S), define Ĝ = (V̂ ,T , P̂, S) as follows:

∠ Start with Ĝ = G and do the following operations.
∠ For every terminal a ∈ T that appears in the body of length 2 or more, introduce
a new variable A and a new production rule A −→ a.

∠ Replace the occurrence of all such terminals in the body of length 2 or more by
the introduced variables.

∠ Replace every rule A −→ B1 · · ·Bk for k > 2, by introducing k − 2 variables
D1, . . . ,Dk−2, and by replacing the rule by the following k − 1 rules:

A −→ B1D1 D2 −→ B3 D3 · · · Dk−2 −→ Bk−1Bk

D1 −→ B2D2 · · · Dk−3 −→ Bk−2 Dk−2

∠ Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

L(G) = L(Ĝ).d

dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 14 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

∠ Given G = (V ,T ,P, S), define Ĝ = (V̂ ,T , P̂, S) as follows:

∠ Start with Ĝ = G and do the following operations.
∠ For every terminal a ∈ T that appears in the body of length 2 or more, introduce
a new variable A and a new production rule A −→ a.

∠ Replace the occurrence of all such terminals in the body of length 2 or more by
the introduced variables.

∠ Replace every rule A −→ B1 · · ·Bk for k > 2, by introducing k − 2 variables
D1, . . . ,Dk−2, and by replacing the rule by the following k − 1 rules:

A −→ B1D1 D2 −→ B3 D3 · · · Dk−2 −→ Bk−1Bk

D1 −→ B2D2 · · · Dk−3 −→ Bk−2 Dk−2

∠ Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

L(G) = L(Ĝ).d

dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 14 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

∠ Given G = (V ,T ,P, S), define Ĝ = (V̂ ,T , P̂, S) as follows:

∠ Start with Ĝ = G and do the following operations.
∠ For every terminal a ∈ T that appears in the body of length 2 or more, introduce
a new variable A and a new production rule A −→ a.

∠ Replace the occurrence of all such terminals in the body of length 2 or more by
the introduced variables.

∠ Replace every rule A −→ B1 · · ·Bk for k > 2, by introducing k − 2 variables
D1, . . . ,Dk−2, and by replacing the rule by the following k − 1 rules:

A −→ B1D1 D2 −→ B3 D3 · · · Dk−2 −→ Bk−1Bk

D1 −→ B2D2 · · · Dk−3 −→ Bk−2 Dk−2

∠ Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

L(G) = L(Ĝ).d

dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 14 / 36

Chomsky Normal Form (CNF) for CFG

Towards CNF [Step 4: Remove Complex Productions]

Procedure to Eliminate Complex Productions

∠ Given G = (V ,T ,P, S), define Ĝ = (V̂ ,T , P̂, S) as follows:

∠ Start with Ĝ = G and do the following operations.
∠ For every terminal a ∈ T that appears in the body of length 2 or more, introduce
a new variable A and a new production rule A −→ a.

∠ Replace the occurrence of all such terminals in the body of length 2 or more by
the introduced variables.

∠ Replace every rule A −→ B1 · · ·Bk for k > 2, by introducing k − 2 variables
D1, . . . ,Dk−2, and by replacing the rule by the following k − 1 rules:

A −→ B1D1 D2 −→ B3 D3 · · · Dk−2 −→ Bk−1Bk

D1 −→ B2D2 · · · Dk−3 −→ Bk−2 Dk−2

∠ Note: Each introduced variable appears in the head exactly once.

Theorem 7.1.8

L(G) = L(Ĝ).d

dOutline of the proof is given in the Additional Proofs Section at the end

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 14 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Chomsky Normal Form (CNF) for CFG

The Chomsky Normal Form

Theorem 7.1.9

For every context-free language L containing a non-empty string, there exists a grammar
G in Chomsky Normal Form such that L \ {ϵ} = L(G).

Proof

∠ Since L is a CFL, it must correspond to some CFG G .

∠ Eliminate ϵ productions (Step 1) to derive a grammar G1 from G such that
L(G1) = L(G) \ {ϵ}.

∠ Eliminate unit productions (Step 2) to derive a grammar G2 from G1 such that
L(G2) = L(G1).

∠ Eliminate useless variables (Step 3) to derive a grammar G3 from G2 such that
L(G3) = L(G2).

∠ Eliminate complex productions (Step 4) to derive a grammar G4 from G3 such that
L(G4) = L(G3).

∠ G4 contains no ϵ-productions, no unit productions, no useless variables, and all
productions have one terminal or two non-terminals in the body; Hence G4 is in CNF.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 15 / 36

Pumping Lemma for CFLs

Pumping Lemma for CFLs

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 16 / 36

Pumping Lemma for CFLs

Pumping Lemma

Theorem 7.2.1

Let L ̸= ∅ be a CFL. Then there exists n > 0 such that for any string z ∈ L with |z | ≥ n,

(1) z = uvwxy ; (2) vx ̸= ϵ; (3) |vwx | ≤ n; uv iwx iy ∈ L for any i ≥ 0.

Proof

∠ Since the claim only pertains to non-empty strings, we can show the claim for L \ {ϵ}.
∠ Let CNF grammar G generate L \ {ϵ}. Choose n = 2m where m = |V | in G .

∠ Pick any z with |z | ≥ n.

∠ Depth d ≥ m + 1.

|

{z

} ...
...

At most two
children per node

one child

A �! BC

A �! s
 2

 22

 23

 2d-1

 2d-1

yield = z and |z | � 2m

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 17 / 36

Pumping Lemma for CFLs

Pumping Lemma

Theorem 7.2.1

Let L ̸= ∅ be a CFL. Then there exists n > 0 such that for any string z ∈ L with |z | ≥ n,

(1) z = uvwxy ; (2) vx ̸= ϵ; (3) |vwx | ≤ n; uv iwx iy ∈ L for any i ≥ 0.

Proof

∠ Since the claim only pertains to non-empty strings, we can show the claim for L \ {ϵ}.

∠ Let CNF grammar G generate L \ {ϵ}. Choose n = 2m where m = |V | in G .

∠ Pick any z with |z | ≥ n.

∠ Depth d ≥ m + 1. |

{z

} ...
...

At most two
children per node

one child

A �! BC

A �! s
 2

 22

 23

 2d-1

 2d-1

yield = z and |z | � 2m

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 17 / 36

Pumping Lemma for CFLs

Pumping Lemma

Theorem 7.2.1

Let L ̸= ∅ be a CFL. Then there exists n > 0 such that for any string z ∈ L with |z | ≥ n,

(1) z = uvwxy ; (2) vx ̸= ϵ; (3) |vwx | ≤ n; uv iwx iy ∈ L for any i ≥ 0.

Proof

∠ Since the claim only pertains to non-empty strings, we can show the claim for L \ {ϵ}.
∠ Let CNF grammar G generate L \ {ϵ}. Choose n = 2m where m = |V | in G .

∠ Pick any z with |z | ≥ n.

∠ Depth d ≥ m + 1. |

{z

} ...
...

At most two
children per node

one child

A �! BC

A �! s
 2

 22

 23

 2d-1

 2d-1

yield = z and |z | � 2m

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 17 / 36

Pumping Lemma for CFLs

Pumping Lemma

Theorem 7.2.1

Let L ̸= ∅ be a CFL. Then there exists n > 0 such that for any string z ∈ L with |z | ≥ n,

(1) z = uvwxy ; (2) vx ̸= ϵ; (3) |vwx | ≤ n; uv iwx iy ∈ L for any i ≥ 0.

Proof

∠ Since the claim only pertains to non-empty strings, we can show the claim for L \ {ϵ}.
∠ Let CNF grammar G generate L \ {ϵ}. Choose n = 2m where m = |V | in G .

∠ Pick any z with |z | ≥ n.

∠ Depth d ≥ m + 1. |

{z

} ...
...

At most two
children per node

one child

A �! BC

A �! s
 2

 22

 23

 2d-1

 2d-1

yield = z and |z | � 2m

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 17 / 36

Pumping Lemma for CFLs

Pumping Lemma

Theorem 7.2.1

Let L ̸= ∅ be a CFL. Then there exists n > 0 such that for any string z ∈ L with |z | ≥ n,

(1) z = uvwxy ; (2) vx ̸= ϵ; (3) |vwx | ≤ n; uv iwx iy ∈ L for any i ≥ 0.

Proof

∠ Since the claim only pertains to non-empty strings, we can show the claim for L \ {ϵ}.
∠ Let CNF grammar G generate L \ {ϵ}. Choose n = 2m where m = |V | in G .

∠ Pick any z with |z | ≥ n.

∠ Depth d ≥ m + 1. |

{z

} ...
...

At most two
children per node

one child

A �! BC

A �! s
 2

 22

 23

 2d-1

 2d-1

yield = z and |z | � 2m

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 17 / 36

Pumping Lemma for CFLs

Pumping Lemma

Proof

∠ Since depth d ≥ m + 1, there must be a path with with at least m + 1 edges.

∠ This path has m + 2 nodes, hence m + 1 inner ones, hence ≥ 2 must match!

∠ Then, the Pumping Lemma claim follows from the following pictorial argument.

X

X

S

. . .

|{z} | {z }| {z } | {z }| {z }
u v w x y

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 18 / 36

Pumping Lemma for CFLs

Pumping Lemma

Proof

∠ Since depth d ≥ m + 1, there must be a path with with at least m + 1 edges.

∠ This path has m + 2 nodes, hence m + 1 inner ones, hence ≥ 2 must match!

∠ Then, the Pumping Lemma claim follows from the following pictorial argument.

X

X

S

. . .

|{z} | {z }| {z } | {z }| {z }
u v w x y

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 18 / 36

Pumping Lemma for CFLs

Pumping Lemma

Proof

∠ Since depth d ≥ m + 1, there must be a path with with at least m + 1 edges.

∠ This path has m + 2 nodes, hence m + 1 inner ones, hence ≥ 2 must match!

∠ Then, the Pumping Lemma claim follows from the following pictorial argument.

X

X

S

. . .

|{z} | {z }| {z } | {z }| {z }
u v w x y

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 18 / 36

Pumping Lemma for CFLs

Pumping Lemma

Proof

∠ Since depth d ≥ m + 1, there must be a path with with at least m + 1 edges.

∠ This path has m + 2 nodes, hence m + 1 inner ones, hence ≥ 2 must match!

∠ Then, the Pumping Lemma claim follows from the following pictorial argument.

X

X

S

. . .

X

S

. . .

X

X

S

. . .

X

|{z} | {z }| {z } | {z }| {z }
u v w x y

u w y

u v

w

x y

xv

...

)

)

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 18 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Pumping Lemma for CFLs

Uses of Pumping Lemma

∠ The Pumping Lemma (PL) can be used to argue that some langauges are not CFLs.

Proof that L = {0n1n2n : n ≥ 0} is Not Context-Free

∠ Suppose it were.

∠ There exists an n such that for strings z longer than n pumping lemma applies.

∠ Applying the PL to z = 0n1n2n, we see that z = uvwxy such that |vwx | ≤ n.

0 1 2· · · 0 · · · · · ·1 2

z }| { z }| { z }| {n n n

vwx vwx

2 possible options for vwx

∠ There are 3 cases with only one letter. (Show that String is not in L.)

∠ vwx cannot contain both zeros and twos. Two cases arise:

∠ Case (a): Suppose vwx contains no 2s. Then uwy contains fewer 1s or 0s than
2s. Such a string is not in L.

∠ Case (b): Suppose vwx contains no 0s. Then uwy contains fewer 1s or 2s than
0s. Such a string is not in L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 19 / 36

Closure Properties

Closure Properties

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 20 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

∠ Let L be a CFL on Σ1, and let h be a substitution, i.e., for each a ∈ Σ1, h(a) is a
language over some alphabet Σa.

∠ We can extend the substitution to words by concatenation, i.e.,
h(s1 · · · sk) = h(s1)h(s2) · · · h(sk). // here, we concatenate languages!

∠ One can then extend the substitution to languages by unioning, i.e.,

h(L) :=
⋃

s1···sℓ∈L

h(s1 · · · sℓ) =
⋃

s1···sℓ∈L

h(s1) · · · h(sℓ)

i.e., h(L) is the language formed by substituting each symbol in a string in the
language L by a corresponding language.

An Example

Let h(a) = {0} and h(b) = {1, 11}, L = {anbn : n ≥ 0}, and w = aabb ∈ L. Then,

∠ h(w) = h(a)h(a)h(b)h(b) = {0}{0}{1, 11}{1, 11} = {00}{11, 111, 111, 1111}
= {00}{11, 111, 1111} = {0011, 00111, 001111} = {021m : 2 ≤ m ≤ 2 · 2 = 4}

∠ h(L) = {0n1m : n,m ≥ 0, such that n ≤ m ≤ 2n}

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 21 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Let G be a CFG generating L.

S
⇤) a1 · · · a‘ (in G)

S
⇤) Sa1 · · ·Sa‘ (in Ĝ as well as Gsub)

For i = 1; : : : ; ‘,

S
⇤) Sa1 · · ·Sa‘

⇤) wa1Sa2 · · ·Sa‘
⇤) wa1wa2Sa3 · · ·Sa‘

⇤) · · · ⇤) wa1 · · ·wa‘

Sai
⇤) wai (in Gai)

Sai
⇤) wai (in Gsub)

+

++
z }| {z }| {

+

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Proof

∠ Let G = (V ,Σ1,P, S) be a grammar that generates L.

∠ For each a ∈ Σ1, let Ga = (Va,Σa,Pa, Sa) be a grammar that generates h(a).

∠ WLOG, assume that V ∩ Va = ∅ for each a ∈ Σ1.

∠ Now define Ĝ = (V , {Sa : a ∈ Σ1}, P̂, S) by

∠ Every rule of P̂ is a rule of P obtained by replacing each a ∈ Σ1 by Sa.
∠ For example, X → aXb in P will correspond to X → SaXSb in P̂ if a, b ∈ Σ1.

∠ Let Gsub = (V ∪ (∪a∈Σ1Va),∪a∈Σ1Σa, P̂ ∪ (∪a∈Σ1Pa),S). Claim: Gsub generates h(L).

∠ Note that w ∈ h(L) can be written as wa1 · · ·waℓ for wai ∈ h(ai) for each i , and for
some a1 · · · aℓ ∈ L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Proof

∠ Let G = (V ,Σ1,P, S) be a grammar that generates L.

∠ For each a ∈ Σ1, let Ga = (Va,Σa,Pa, Sa) be a grammar that generates h(a).

∠ WLOG, assume that V ∩ Va = ∅ for each a ∈ Σ1.

∠ Now define Ĝ = (V , {Sa : a ∈ Σ1}, P̂, S) by

∠ Every rule of P̂ is a rule of P obtained by replacing each a ∈ Σ1 by Sa.
∠ For example, X → aXb in P will correspond to X → SaXSb in P̂ if a, b ∈ Σ1.

∠ Let Gsub = (V ∪ (∪a∈Σ1Va),∪a∈Σ1Σa, P̂ ∪ (∪a∈Σ1Pa),S). Claim: Gsub generates h(L).

∠ Note that w ∈ h(L) can be written as wa1 · · ·waℓ for wai ∈ h(ai) for each i , and for
some a1 · · · aℓ ∈ L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Proof

∠ Let G = (V ,Σ1,P, S) be a grammar that generates L.

∠ For each a ∈ Σ1, let Ga = (Va,Σa,Pa, Sa) be a grammar that generates h(a).

∠ WLOG, assume that V ∩ Va = ∅ for each a ∈ Σ1.

∠ Now define Ĝ = (V , {Sa : a ∈ Σ1}, P̂, S) by

∠ Every rule of P̂ is a rule of P obtained by replacing each a ∈ Σ1 by Sa.
∠ For example, X → aXb in P will correspond to X → SaXSb in P̂ if a, b ∈ Σ1.

∠ Let Gsub = (V ∪ (∪a∈Σ1Va),∪a∈Σ1Σa, P̂ ∪ (∪a∈Σ1Pa),S). Claim: Gsub generates h(L).

∠ Note that w ∈ h(L) can be written as wa1 · · ·waℓ for wai ∈ h(ai) for each i , and for
some a1 · · · aℓ ∈ L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Proof

∠ Let G = (V ,Σ1,P, S) be a grammar that generates L.

∠ For each a ∈ Σ1, let Ga = (Va,Σa,Pa, Sa) be a grammar that generates h(a).

∠ WLOG, assume that V ∩ Va = ∅ for each a ∈ Σ1.

∠ Now define Ĝ = (V , {Sa : a ∈ Σ1}, P̂, S) by

∠ Every rule of P̂ is a rule of P obtained by replacing each a ∈ Σ1 by Sa.
∠ For example, X → aXb in P will correspond to X → SaXSb in P̂ if a, b ∈ Σ1.

∠ Let Gsub = (V ∪ (∪a∈Σ1Va),∪a∈Σ1Σa, P̂ ∪ (∪a∈Σ1Pa),S). Claim: Gsub generates h(L).

∠ Note that w ∈ h(L) can be written as wa1 · · ·waℓ for wai ∈ h(ai) for each i , and for
some a1 · · · aℓ ∈ L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Substitution of Symbols with Languages

Theorem 7.3.1

If L is a CFL over Σ1 and h(a) is a CFL for every a ∈ Σ1, then h(L) is also a CFL.

Proof

∠ Let G = (V ,Σ1,P, S) be a grammar that generates L.

∠ For each a ∈ Σ1, let Ga = (Va,Σa,Pa, Sa) be a grammar that generates h(a).

∠ WLOG, assume that V ∩ Va = ∅ for each a ∈ Σ1.

∠ Now define Ĝ = (V , {Sa : a ∈ Σ1}, P̂, S) by

∠ Every rule of P̂ is a rule of P obtained by replacing each a ∈ Σ1 by Sa.
∠ For example, X → aXb in P will correspond to X → SaXSb in P̂ if a, b ∈ Σ1.

∠ Let Gsub = (V ∪ (∪a∈Σ1Va),∪a∈Σ1Σa, P̂ ∪ (∪a∈Σ1Pa),S). Claim: Gsub generates h(L).

∠ Note that w ∈ h(L) can be written as wa1 · · ·waℓ for wai ∈ h(ai) for each i , and for
some a1 · · · aℓ ∈ L.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 22 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.

Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.

Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.

Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.

Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.

Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.

Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.
Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.
Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.
Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Closure under substitution means...

Closure under:

∠ (Finite) Union: Let L1, · · · , Lk CFLs. Then, L1 ∪ · · · ∪ Lk is a CFL.
Proof: Let L = {1, 2, . . . , k} (which is finite, hence regular, hence a CFL) and
h(i) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 ∪ · · · ∪ Lk is a CFL.

∠ (Finite) Concatenation: Let L1, · · · , Lk CFLs. Then, L1 · · · Lk is a CFL.
Proof: Let L = {a1a2 · · · ak} (which is finite, hence regular, hence a CFL) and
h(ai) = Li for each i = 1, . . . , k. By Theorem 7.3.1, h(L) = L1 · · · Lk is a CFL.

∠ Kleene-∗ closure: Let L = {a}∗ and h(a) = La be a CFL. By Theorem 7.3.1,
h(L) = (La)

∗ is a CFL.

∠ Positive closure: Let L = {a}+ := {an : n ≥ 1} and h(a) = La be a CFL. By
Theorem 7.3.1, h(L) = La(La)

∗ is a CFL.

∠ Homomorphism: Let L be a CFL and g be a homomorphism (i.e., h maps symbols to
strings of symbols over some alphabet). Define h(a) = {g(a)}, which is a regular
(hence CF) language. Then, h(L) = g(L) and by Theorem 7.3.1, it is a CFL.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 23 / 36

Closure Properties

Some More Closure Properties – 1

Theorem 7.3.2

If L is CFL, then so is LR .

Proof

∠ If G = (V ,T ,P, S) generates L, then GR = (V ,T ,PR , S) generates LR where

A → X1 · · ·Xℓ in P ⇐⇒ A → (X1 · · ·Xℓ)
R = XℓXℓ−1 · · ·X1 in PR

Theorem 7.3.3

If L is a CFL, R is a regular language, then L ∩ R is a CFL.

Proof of Theorem 7.3.3

∠ Product PDA approach: Run the PDA accepting L and DFA accepting R in parallel.
Accept input string iff both machines accept.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 24 / 36

Closure Properties

Some More Closure Properties – 1

Theorem 7.3.2

If L is CFL, then so is LR .

Proof

∠ If G = (V ,T ,P, S) generates L, then GR = (V ,T ,PR , S) generates LR where

A → X1 · · ·Xℓ in P ⇐⇒ A → (X1 · · ·Xℓ)
R = XℓXℓ−1 · · ·X1 in PR

Theorem 7.3.3

If L is a CFL, R is a regular language, then L ∩ R is a CFL.

Proof of Theorem 7.3.3

∠ Product PDA approach: Run the PDA accepting L and DFA accepting R in parallel.
Accept input string iff both machines accept.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 24 / 36

Closure Properties

Some More Closure Properties – 1

Theorem 7.3.2

If L is CFL, then so is LR .

Proof

∠ If G = (V ,T ,P, S) generates L, then GR = (V ,T ,PR , S) generates LR where

A → X1 · · ·Xℓ in P ⇐⇒ A → (X1 · · ·Xℓ)
R = XℓXℓ−1 · · ·X1 in PR

Theorem 7.3.3

If L is a CFL, R is a regular language, then L ∩ R is a CFL.

Proof of Theorem 7.3.3

∠ Product PDA approach: Run the PDA accepting L and DFA accepting R in parallel.
Accept input string iff both machines accept.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 24 / 36

Closure Properties

Some More Closure Properties – 1

Theorem 7.3.2

If L is CFL, then so is LR .

Proof

∠ If G = (V ,T ,P, S) generates L, then GR = (V ,T ,PR , S) generates LR where

A → X1 · · ·Xℓ in P ⇐⇒ A → (X1 · · ·Xℓ)
R = XℓXℓ−1 · · ·X1 in PR

Theorem 7.3.3

If L is a CFL, R is a regular language, then L ∩ R is a CFL.

Proof of Theorem 7.3.3

∠ Product PDA approach: Run the PDA accepting L and DFA accepting R in parallel.
Accept input string iff both machines accept.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 24 / 36

Closure Properties

Some More Closure Properties – 2

Theorem 7.3.4

If L is a CFL and h is a homomorphism, h−1(L) = {w : h(w) ∈ L} is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

∠ h : Σ1 → Σ2 (since homomorphisms can map to another alphabet)

∠ L is defined over Σ2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

∠ For L′ = h−1(L) to be a CFL it suffices to show that there is a PDA P ′, such that:
P ′ accepts w iff h(w) ∈ L, i.e., iff P accepts h(w).

Example and Idea:

∠ Turn each w into h(w), then use P.

∠ Let Σ1 = {0, 1}, Σ2 = {a, b}, h(0) = aa, h(1) = bbb, w = 011

/Aessno

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 25 / 36

Closure Properties

Some More Closure Properties – 2

Theorem 7.3.4

If L is a CFL and h is a homomorphism, h−1(L) = {w : h(w) ∈ L} is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

∠ h : Σ1 → Σ2 (since homomorphisms can map to another alphabet)

∠ L is defined over Σ2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

∠ For L′ = h−1(L) to be a CFL it suffices to show that there is a PDA P ′, such that:
P ′ accepts w iff h(w) ∈ L, i.e., iff P accepts h(w).

Example and Idea:

∠ Turn each w into h(w), then use P.

∠ Let Σ1 = {0, 1}, Σ2 = {a, b}, h(0) = aa, h(1) = bbb, w = 011

/Aessno

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 25 / 36

Closure Properties

Some More Closure Properties – 2

Theorem 7.3.4

If L is a CFL and h is a homomorphism, h−1(L) = {w : h(w) ∈ L} is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

∠ h : Σ1 → Σ2 (since homomorphisms can map to another alphabet)

∠ L is defined over Σ2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

∠ For L′ = h−1(L) to be a CFL it suffices to show that there is a PDA P ′, such that:
P ′ accepts w iff h(w) ∈ L, i.e., iff P accepts h(w).

Example and Idea:

∠ Turn each w into h(w), then use P.

∠ Let Σ1 = {0, 1}, Σ2 = {a, b}, h(0) = aa, h(1) = bbb, w = 011

/Aessno

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 25 / 36

Closure Properties

Some More Closure Properties – 2

Theorem 7.3.4

If L is a CFL and h is a homomorphism, h−1(L) = {w : h(w) ∈ L} is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

∠ h : Σ1 → Σ2 (since homomorphisms can map to another alphabet)

∠ L is defined over Σ2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

∠ For L′ = h−1(L) to be a CFL it suffices to show that there is a PDA P ′, such that:
P ′ accepts w iff h(w) ∈ L, i.e., iff P accepts h(w).

Example and Idea:

∠ Turn each w into h(w), then use P.

∠ Let Σ1 = {0, 1}, Σ2 = {a, b}, h(0) = aa, h(1) = bbb, w = 011

/Aessno

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 25 / 36

Closure Properties

Some More Closure Properties – 2

Theorem 7.3.4

If L is a CFL and h is a homomorphism, h−1(L) = {w : h(w) ∈ L} is also a CFL.

A Coarse Outline of Proof of Theorem 7.3.4, Part 1

What we know:

∠ h : Σ1 → Σ2 (since homomorphisms can map to another alphabet)

∠ L is defined over Σ2 and a CFL. Thus there is a PDA P with L(P) = L.

What we need:

∠ For L′ = h−1(L) to be a CFL it suffices to show that there is a PDA P ′, such that:
P ′ accepts w iff h(w) ∈ L, i.e., iff P accepts h(w).

Example and Idea:

∠ Turn each w into h(w), then use P.

∠ Let Σ1 = {0, 1}, Σ2 = {a, b}, h(0) = aa, h(1) = bbb, w = 011

/Aessno
Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 25 / 36

Closure Properties

Some More Closure Properties – 2 (cont’d)

A Coarse Outline of Proof of Theorem 7.3.4, Part 2

Problem:

∠ A PDA can’t manipulate the input string! (Only Turing Machines can do that.)

Solution:

∠ We store the outcome of h in the state itself!

∠ Recall: h(0) = aa, h(1) = bbb.

∠ Let the states of PDA P be q0, . . . , qk . Then, the PDA P ′ that accepts h−1(L) has
6k states, namely (qi , aa), (qi , a), (qi , ϵ), (qi , bbb), (qi , bb), and (qi , b).

∠ The transition between states of P ′ is defined as if the second component is the input
tape (e.g., (qi , aa) transitions to (qi , a)). Once the second component is empty, we
can move on reading another symbol from {0, 1} and filling the second component
again accordingly.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 26 / 36

Closure Properties

Some Non-Closure Properties

∠ CFLs are not closed under intersection.

∠ Let L1 = {0n1n2m : n,m ≥ 0}, L2 = {0n1m2n : n,m ≥ 0}. Both are CFLs.
However, L1 ∩ L2 = {0n1n2n : n ≥ 0} is not a CFL.

∠ CFLs are not closed under complementation.

∠ Suppose CFLs are closed under complementation. Let L1, L2 be the
aforementioned CFLs. Then L1 ∩ L2 = (Lc

1 ∪ Lc
2)

c must be a CFL (see slide 23),
but it is not. Hence, CFLs cannot be closed under complementation.

∠ Note: There exist CFLs L such that Lc is a CFL as well.

∠ CFLs are not closed under set difference.

∠ Since CFLs are not closed under complementation, choose a CFL L such that Lc

is not a CFL. But Lc = Σ∗ \ L and Σ∗ is a CFL. Hence, CFLs are not closed under
set difference.

∠ Note: There exist CFLs L1, L2 such that L1 \ L2 is a CFL as well.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 27 / 36

Closure Properties

Some Non-Closure Properties

∠ CFLs are not closed under intersection.

∠ Let L1 = {0n1n2m : n,m ≥ 0}, L2 = {0n1m2n : n,m ≥ 0}. Both are CFLs.
However, L1 ∩ L2 = {0n1n2n : n ≥ 0} is not a CFL.

∠ CFLs are not closed under complementation.

∠ Suppose CFLs are closed under complementation. Let L1, L2 be the
aforementioned CFLs. Then L1 ∩ L2 = (Lc

1 ∪ Lc
2)

c must be a CFL (see slide 23),
but it is not. Hence, CFLs cannot be closed under complementation.

∠ Note: There exist CFLs L such that Lc is a CFL as well.

∠ CFLs are not closed under set difference.

∠ Since CFLs are not closed under complementation, choose a CFL L such that Lc

is not a CFL. But Lc = Σ∗ \ L and Σ∗ is a CFL. Hence, CFLs are not closed under
set difference.

∠ Note: There exist CFLs L1, L2 such that L1 \ L2 is a CFL as well.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 27 / 36

Closure Properties

Some Non-Closure Properties

∠ CFLs are not closed under intersection.

∠ Let L1 = {0n1n2m : n,m ≥ 0}, L2 = {0n1m2n : n,m ≥ 0}. Both are CFLs.
However, L1 ∩ L2 = {0n1n2n : n ≥ 0} is not a CFL.

∠ CFLs are not closed under complementation.

∠ Suppose CFLs are closed under complementation. Let L1, L2 be the
aforementioned CFLs. Then L1 ∩ L2 = (Lc

1 ∪ Lc
2)

c must be a CFL (see slide 23),
but it is not. Hence, CFLs cannot be closed under complementation.

∠ Note: There exist CFLs L such that Lc is a CFL as well.

∠ CFLs are not closed under set difference.

∠ Since CFLs are not closed under complementation, choose a CFL L such that Lc

is not a CFL. But Lc = Σ∗ \ L and Σ∗ is a CFL. Hence, CFLs are not closed under
set difference.

∠ Note: There exist CFLs L1, L2 such that L1 \ L2 is a CFL as well.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 27 / 36

Decision Properties

Decision Properties

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 28 / 36

Decision Properties

Language Emptiness

∠ Conversion of a grammar G to a corresponding PDA, PDA to a corresponding
grammar G , and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL L

∠ Let a grammar G = (V ,T ,P, S) generating the language L be given. (If PDA is
given, convert it to a grammar G).

∠ G is non-empty ⇐⇒ S is generating.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 29 / 36

Decision Properties

Language Emptiness

∠ Conversion of a grammar G to a corresponding PDA, PDA to a corresponding
grammar G , and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL L

∠ Let a grammar G = (V ,T ,P, S) generating the language L be given. (If PDA is
given, convert it to a grammar G).

∠ G is non-empty ⇐⇒ S is generating.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 29 / 36

Decision Properties

Language Emptiness

∠ Conversion of a grammar G to a corresponding PDA, PDA to a corresponding
grammar G , and a grammar to CNF can each be achieved in polynomial time.

Emptiness of a CFL L

∠ Let a grammar G = (V ,T ,P, S) generating the language L be given. (If PDA is
given, convert it to a grammar G).

∠ G is non-empty ⇐⇒ S is generating.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 29 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .

∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .

∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Language Membership – The CYK Algorithm

Membership of w in a CFL L

∠ Given CNF G = (V ,T ,P, S) and w = a1 · · · aℓ we identify∑ℓ
i=1 i = ℓ(ℓ+ 1)/2 ∈ O(ℓ2) sets Ei,j , with 1 ≤ i ≤ j ≤ ℓ.

∠ Ei,j corresponds to all variables that can derive ai · · · aj .
∠ Ei,j ’s are identified from bottom to top, left to right by the following induction.

∠ Basis: For each i = 1, . . . , ℓ, Ei,i contains all variables X such that X → ai .
∠ Induction: For each i = 1, . . . , ℓ and j > i , Ei,j contains X if:
(1) X −→ YZ (2) Y ∈ Ei,i′ and Z ∈ Ei′+1,j for some i ≤ i ′ ≤ j .

∠ S ∈ E1,ℓ ⇐⇒ w ∈ L(G).

a1 a2 a3 a‘· · ·

E1;1 E2;2 E3;3 E‘;‘

E1;2 E2;3 E3;4 E‘�1;‘

· · ·
· · ·
E‘�2;‘E1;3 E2;4 · · ·

E1;‘�1 E2;‘

E1;‘

...
. . .

...

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 30 / 36

Decision Properties

Some Undecidable Questions about CFGs and CFLs

You might not know yet what “Undecidable” means. Thus:

∠ You might want to get back to this in a few weeks!

∠ In a nutshell (and quite informally), it implies that there’s no algorithm that answers
these questions correctly (with yes/no) and always terminates.

Undecidable questions:

∠ Is a given grammar unambiguous/ambiguous?

∠ Is a given CFL inherently ambiguous?

∠ Is the intersection of two CFLs empty?

(Fun fact: this is used to prove that HTN planning is undecidable.
We might look into this in week 12!)

∠ Are two CFLs identical?

∠ Is a given CFL equal to Σ∗?

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 31 / 36

Decision Properties

Some Undecidable Questions about CFGs and CFLs

You might not know yet what “Undecidable” means. Thus:

∠ You might want to get back to this in a few weeks!

∠ In a nutshell (and quite informally), it implies that there’s no algorithm that answers
these questions correctly (with yes/no) and always terminates.

Undecidable questions:

∠ Is a given grammar unambiguous/ambiguous?

∠ Is a given CFL inherently ambiguous?

∠ Is the intersection of two CFLs empty?

(Fun fact: this is used to prove that HTN planning is undecidable.
We might look into this in week 12!)

∠ Are two CFLs identical?

∠ Is a given CFL equal to Σ∗?

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 31 / 36

Additional Proofs

Additional Proofs

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 32 / 36

Additional Proofs

Additional Proofs

Proof of Theorem 7.1.2

⇐ Construct a parse tree with yield w ∈ L(G) \ {ϵ}. Identify a maximal subtree, rooted at say
X , whose yield is ϵ. Delete X and its subtree. Repeat until no such subtrees remain. In this
illustrative example below, suppose that there is only one subtree with ϵ yield; let B be its
label and let A −→ BCD be the production that introduced B. Now, delete B and its
subtree. This new subtree is a parse tree for Gno-ϵ with yield w since A −→ CD is a valid
production rule in Pno-ϵ [Why? B is nullable].

⇒ Construct a parse tree with yield w ∈ L(Gno-ϵ). Identify production rules (used in the tree)
that are not in P. For each such rule, find an appropriate rule by appending nullable
variables. To the parse tree, add the corresponding nullable variable(s) and a zero-yield
subtrees to transform it to a parse tree for G .

In the example, the portion of the parse tree in yellow corresponds to the rule A −→ CD;
then there must be some rule in P (namely A −→ BCD) such that the added variable(s) (B
in this case) is nullable. So we add a child node with label B to the node with label A and
append a sub-tree of yield ϵ rooted at B. This is now a parse tree for G with yield w .

A

...
...

sub-yield = ›

A �! BCD
A

...
...

G

A �! CD

yield: w yield: w

()

Gno-›

B C D

SS

C D

z }| {

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 33 / 36

Additional Proofs

Additional Proofs

Outline of Proof of Theorem 7.1.4

L(Gno-unit) ⊆ L(G): By definition, A → γ in Pno-unit iff there exists a B ∈ V such that

A
∗⇒
G

B and B −→ γ in P.

∠ Thus, every production rule A → γ of Pno-unit is effectively a derivation A
∗⇒
G

α in G .

∠ Hence, every derivation of Gno-unit is a derivation of G .

L(G) ⊆ L(Gno-unit): Consider a derivation of w ∈ L(G) from S .

∠ Argue that every run of unit productions in P that are used in this derivation must be
followed by a non-unit production rule in P.

∠ Each such run of unit productions in P followed by a non-unit production can be
condensed to a single production in Pno-unit. [See definition of Pno-unit]

∠ The condensed derivation is then a derivation of w using rules in Pno-unit.

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 34 / 36

Additional Proofs

Additional Proofs

Proof of Theorem 7.1.7

(1) L(GGR) ⊆ L(G)) since the alphabets and the rule of GGR are subsets of those of G .

∠ Suppose w ∈ L(G). Then, there must be such a derivation of w from S :

S ⇒
G

Rule:R1

γ1 ⇒
G

R2

γ2 ⇒
G

R3

γ3 · · ·⇒
G

Rk

γk = w .

∠ Since every variable symbol that appears in this derivation is generating, they and the
production rules R1, . . . ,Rk used in this derivation will be present in GG.

∠ Every variable in this derivation is reachable; consequently, the variables that appear
and the rules R1, . . . ,Rk will be present in GGR. Then, w ∈ L(GGR).

(2) A straightforward exercise in verifying the definition on Slide 7. Note that the
remaining symbols have to be shown to be useful in GGR, and not in G !

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 35 / 36

Additional Proofs

Additional Proofs

Outline of Proof of Theorem 7.1.8

∠ L(G) ⊆ L(Ĝ) because every production rule of Ĝ has a corresponding equivalent
derivation of α from A in Ĝ .

∠ Consider the parse tree of w ∈ L(Ĝ). If there are no introduced variables, then this is
also the parse tree of w in G and hence w ∈ L(G).

∠ If there are introduced variables, replace them by the complex production in G that
introduced them in the first place (such replacements are always possible). The
resultant tree is a parse tree for w in G , and hence w ∈ G .

yield: w yield: w

. . .

A

B1

B2

B3

B
k
�1

Bk

D1

D2

Dk�2

...

...

S S

)

...

B1
B3

Bk
· · ·

B2

...

GĜ

Pascal Bercher week 4: Properties and Normal Forms of CFLs Semester 1, 2025 36 / 36

	Chomsky Normal Form (CNF) for CFG
	Pumping Lemma for CFLs
	Closure Properties
	Decision Properties
	Additional Proofs

