
COMP3630 / COMP6363

week 6: Decidability and Undecidability
This Lecture Covers Chapter 9 of HMU: Decidability and Undecidability

slides created by: Dirk Pattinson, based on material by
Peter Hoefner and Rob van Glabbeck; with improvements by Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

∠ Preliminary Ideas

∠ Example of a non-RE language

∠ Recursive languages

∠ Universal Language

∠ Reductions of Problems

∠ Rice’s Theorem

∠ Post’s Correspondence Problem

∠ Undecidable Problems about CFGs

Additional Reading: Chapter 9 of HMU.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 2 / 45

Preliminary Ideas

Preliminary Ideas

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 3 / 45

Preliminary Ideas

Enumeration of (Binary) Strings

∠ We can construct a bijective map ϕ
from the set of binary strings {0, 1}∗
to natural numbers N.

Why might that appear
surprising?
Because each number has a
unique binary encoding, but for
each we could add an arbitrary
number of zeros in the front, so
there seem to be more strings
over {0, 1} than numbers in N.

∠ Enlist all strings ordered by length,
and for each length, order using lexi-
cographic ordering.

∠ The set of finite binary strings is
countable/denumerable.

1

00

01

10

11

000

111

0000

1111

›

0

1

2

3

4

5

6

7

8

15

31

16

...

...
...

...

...
...

w �(w)

|
{z

}|
{z

}
|

{z
}|

{z
}

0

 1

 2

 7

 6

 5

 4

 3

32

 17

 16

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 4 / 45

Preliminary Ideas

A Code for Turing Machines

∠ For simplicity, let’s assume the input alphabet is binary.

∠ WLOG, we can assume that TMs halt at the final state. Consequently, we only need
one final state (perhaps after collapsing all states into one).

∠ Consider M = (Q,Σ = {0, 1},Γ = {0, 1,B,X4, . . . ,Xℓ}, δ, q1,B,F).

∠ Rename states {q1, . . . , qk} for k = |Q| with q1: start state and qk : final state.
∠ Rename input alphabet using X1 = 0, X2 = 1, and blank B as X3.
∠ Rename the rest of the tape symbols by X4, . . . ,Xℓ for ℓ = |Γ|.
∠ Rename L as D1 and R and D2. (The directions.)

∠ Every transition δ(qi ,Xj) = (qk ,Xl ,Dm) can be represented as a tuple (i , j , k, l ,m).

∠ Map each transition tuple (i , j , k, l ,m) to a unique binary string 0i10j10k10l10m.
NB: No string representing a transition tuple contains 11.

∠ Order transition tuples lexicographically and concatenate all transitions using 11 to
indicate end of a transition. Let the resultant string be wM . For example, 3 transitions
can be combined as 0i110j110k110l110m1︸ ︷︷ ︸

1st transition

11 0i210j210k210l210m2︸ ︷︷ ︸
2nd transition

11 0i310j310k310l310m3︸ ︷︷ ︸
3rd transition

∠ For each TM M, define the code ⟨M⟩ for TM M as wM .

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 5 / 45

Preliminary Ideas

The Set of Turing Machines

An Example: A TM that accepts strings with odd # of 1s

q2q1 q3

X1=X1; D2 X1=X1; D2

X2=X2; D2

X2=X2; D2

X3; X3; D1

(1; 1; 1; 1; 2) (1; 2; 2; 2; 2)
0100100100100101010101001

(2; 1; 2; 1; 2)

(2; 2; 1; 2; 2)
(2; 3; 3; 3; 1)

0010100101001

00100101001001

00100010001000101

1 2 3

4
5

⟨M⟩ = (01)4021110102102102102111021010210102111021021010210211102103103103101.

Remark 9.1.1

∠ Each TM M encoding has a unique natural number, i.e., ϕ(⟨M⟩);
Each TM M may have several codes ⟨M⟩ and thus several numbers;
but each natural number corresponds to at most one TM.

∠ The set of TMs/RE languages/CSLs/CFLs/regular languages is countable, i.e., finite
or there is a bijection to the natural numbers. Careful: Countable ̸⇒ RE membership!
Clear, since every language is countable, but some are not in RE.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 6 / 45

Example of a non-RE language

Example of a non-RE

language

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 7 / 45

Example of a non-RE language

First, a recap:

∠ L ∈ R: There is a total TM M with L(M) = L. In particular: it always terminates
(since it’s total) on every w ∈ Σ∗ and we know w ∈ L or w ̸∈ L.

∠ L /∈ R: We only know that the above isn’t possible, but we haven’t been told whether
L ∈ RE or L ̸∈ RE .

∠ L ∈ RE : We know that there is a TM M with L(M) = L. (Recall that we can assume
that it terminates on words in L.) However, for any w ̸∈ L, M might not terminate.
This means that we are only sure to learn about membership, but non-membership
may be “stated” only sometimes. What’s the worst about that?! We never know
whether the “yes!” still comes or whether it should be a no, but it never comes’.
Wait, really?! Only if L ∈ RE and L ̸∈ R. Otherwise, we are in the case L ∈ R.

∠ L ̸∈ RE : There does not exist a TM M with L(M) = L! So, what if we attempted to
write a TM anyways? It will be “wrong”! E.g.,

for some w ∈ L, it will reject, i.e., without accepting, terminate or loop forever.
for some w ̸∈ L, it will accept it.

Now: We see the most famous language L with L ̸∈ RE .

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 8 / 45

Example of a non-RE language

Diagonalization Language Ld

∠ Fix ϕ as on slide 4. Now, for each wi (the i th string in our enumeration) define an
Mi : If wi encodes a TM, take it! Otherwise, define it as a trivial one with empty
language. Thus, we get ϕ(⟨Mi ⟩) = i for all i ∈ N, where most Mi s are
artificial/trivial, but we list all ‘actual’ ones!

∠ Construct an infinite table. Rows: M0, M1, . . . as above and cols: All Strings
according to slide 4. Cell (i , j) = 1 iff Mi accepts wj := ϕ−1(j).

∠ Define a language Ld = {wj : Mj does not accept wj , where j ∈ N}.

=M0

0=M1

1=M2

00=M3

01=M4

10=M5
...

��1(0) ��1(1) ��1(2) ��1(3) ��1(4) ��1(5)

› 00 01 10

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0

1

1

1

1

1

1

1 1 1

1 1 1

1

1 1

1 1

11

0 1

Ld = {›; 00; 10; : : :}

�

�

�

�

�

�›

 �
�1(6)

11
...

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 9 / 45

I.e., ϕ(ϵ) = 0, ϕ(0) = 1,
ϕ(1) = 2, ϕ(00) = 3, ...
just like on page 4!

E.g., ϕ(w2) = 2 with
0, 1, 00, 11 ∈ L(M2),
but is that true? No!
ϕ−1(2) = 1,
i.e., ϕ(1) = 2,
but 1 does not
encode a TM, so
M2 is a trivial one
with L(M2) = ∅
So, this table is just
an illustration!

Because ϕ−1(0) = ϵ /∈ L(M0), ϕ
−1(3) = 00 /∈ L(M3), etc.

i.e., all TMs that do not accept their own encoding.

Example of a non-RE language

Ld is not a recursively enumerable language

∠ Ld cannot be accepted by any TM. Proof by contradiction.

∠ Assume it were. Then there is a TM Mj accepting Ld , i.e., L(Mj) = Ld .

∠ But now we get a contradiction:

If (j , j) = 1, then wj ∈ L(Mj) by definition of (j , j) = 1.
But if wj ∈ L(Mj), then wj ̸∈ Ld , so cell (j , j) should be 0!
If (j , j) = 0, then wj ̸∈ L(Mj) by definition of Ld .
But if wj ̸∈ L(Mj), then wj ∈ Ld , so cell (j , j) should be 1!

=M0

0=M1

1=M2

00=M3

01=M4

10=M5
...

��1(0) ��1(1) ��1(2) ��1(3) ��1(4) ��1(5)

› 00 01 10

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0 0

0 0 0 0

0 0

1

1

1

1

1

1

1 1 1

1 1 1

1

1 1

1 1

11

0 1

Ld = {›; 00; 10; : : :}

�

�

�

�

�

�›

 �
�1(6)

11
...

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 10 / 45

Recursive languages

Recursive languages

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 11 / 45

Recursive languages

Recursive Languages

Recall the following definitions:

∠ A language L is recursive if it is accepted by a TM M that halts on all inputs

∠ In such a case, the TM M is said to decide L.
∠ Every recursive language is recursively enumerable (by definition).

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

Ld

⌃⇤

∠ Do not confuse deciding with accepting! TMs can accept without always terminating
(namely, e.g, for languages in RE \ R, where R denotes the recursive languages).

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 12 / 45

Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.1

If L is recursive, so is Lc .

Proof of Theorem 9.3.1

TM Mw Accept
Reject

Reject
Accept

TM M 0

∠ Note that M always halts. M ′ does too.

∠ Accepting states of M with L(M) = L are
non-accepting states of M ′ with L(M ′) = Lc .

∠ Add a new and only final state qf in M ′ such
that:

δM(q,X) undefined and q /∈ F

(I.e.,M rejects in q for X)

⇓
δM′(q,X) = (qf ,X ,R).

(I.e., M ′accepts in that case)

∠ Recursive languages are closed under complementation.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 13 / 45

Recursive languages

(Some Obvious) Properties of Recursive Languages

Theorem 9.3.2

If L and Lc are both recursively enumerable, then L (and hence Lc) is (are) recursive.

Proof of Theorem 9.3.2

∠ Let L = L(M1) and Lc = L(M2). (By definition, M1 and M2 must exist!)

∠ Simulate running M1 and M2 in parallel by using a 2-tape TM M. M’s states (q, q′)
use q from M1 and q′ from M2.

∠ Declare final state of M is q is final in M1. If M2 rejects, then M accepts.

∠ Continue running M until a final state is reached.

∠ Since for any word either sub machine will halt, M will terminate and accept L.

Alternate Definition of Recursive Languages

L is recursive if both L and Lc are recursively enumerable.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 14 / 45

The Universal Language and Turing Machine

The Universal Language and

TuringMachine

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 15 / 45

The Universal Language and Turing Machine

Intermission

To what does a TM (somehow) correspond to?

∠ To a (general purpose) computer?

∠ Or to a (specific) program?

Any TM is like a program! Because it does one job and one job only! Your computer, on
the other hand, can take any job (by loading different programs)!

So, how could we generalize that?

In a nutshell,
A TM is called universal TM iff it can simulate any TM.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 16 / 45

The Universal Language and Turing Machine

The Universal Language and Turing Machine

Universal Language Lu

∠ Lu := {⟨M⟩111w : ⟨M⟩ encodes TM M and w ∈ L(M)}. [See Slide 4]

Universal TM U (modelled as 5-tape TM)

1 U copies ⟨M⟩ to tape 2 and verifies it for
valid structure. 2 Copies w onto tape 3
(maps 0 7→ 01, 1 7→ 001)

3 Initiates 4th tape with 01 (M starts in q1)

4 To simulate a move of M, U reads tapes 3
and 4 to identify M’s state and input as 0i

and 0j ; if state is accepting, M (and hence
U) accepts its inputs and halts. Else, U
scans tape 2 for 110i10j1 or BB0i10j1.

∠ If found, using the transition, tapes 4
and 3 are updated, and tape 3’s head
moves to right or left.

∠ If not, M halts, and so does U.

· · ·· · ·

· · ·· · ·

· · ·· · ·

· · ·

· · ·

· · ·

U’s Finite Control

1 11 0 1 B00001

00001 B B B

0 1 B B BB B BB

0 1 BB

BBBB B B B B B

U ’s input tape

M ’s Code

M ’s input

M ’s state

Scratch tape

0 1 0

1

2

3

5

4

Why is scratch tape needed?

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 17 / 45

The Universal Language and Turing Machine

Where does Lu lie in the Hierarchy of Languages?

Theorem 9.4.1

Lu is recursively enumerable, but is not recursive.

Proof of Theorem ??

∠ Lu := {⟨M⟩111w : w ∈ L(M)} is in RE because TM U accepts it.

∠ Suppose it were recursive. Then, Lc
u is also recursive.

∠ Let total TM M accept all w ∈ Lc
u, and also reject all w ∈ Lu.

∠ Construct total TM M ′ such that it first takes its input w and appends it with 111w .
It then moves to the beginning of the first w and simulates M.

∠ M ′ accepts w ⇐⇒ w111w ∈ Lc
u ⇐⇒ w111w /∈ Lu ⇐⇒ w ∈ Ld .

∠ Then, L(M ′) is the Ld , for which there is no TM! But M ′ decides Ld !

Append 111 Copy Remove last 111w

w111 w111w111 w111w

M
Accept
Reject

M 0

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 18 / 45

Recap

Recap

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 19 / 45

Recap

Recap

∠ There exists a bijection ϕ : Σ∗ → N.

∠ There exists an injective function ⟨·⟩ : Set of TMs → Σ∗.

∠ RE languages are countable.

Rec
ur

siv
eRegular

Con
tex

t-f
re

e

Rec
ur

siv
ely

Enu
mer

ab
le

(R
E)

Ld

⌃⇤

Lu

∠ The diagonalization Language Ld is not recursively enumerable.

∠ Recursive languages are closed under complementation. (See tutorials for more!)

∠ The universal language Lu = {⟨M⟩111w : M accepts w} is RE, but not recursive.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 20 / 45

Reductions of Problems

Reductions of Problems

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 21 / 45

Reductions of Problems

What is a Reduction?

∠ A decision problem P is said to reduce to decision problem Q if every instance of P
can be transformed to some instance of Q and a yes (or no) answer to that instance
of Q yields a yes (or no) answer to original instance of P, respectively.

We did already make use of reductions in this lecture multiple times!
E.g., reduce the problem of deciding Lc to the problem of deciding L: Here the
new problem was only a minimal modification, by flipping results (see slide 13).

∠ Here, transform implies the existence of a Turing machine that takes an instance of
P written on a tape and always halts with an instance of Q written on it.

∠ Alternative formulation: There is a function f : Σ∗ → Σ∗, s.t., σ ∈ P ↔ f (σ) ∈ Q,
and f can be computed by a terminating TM.

Theorem 9.6.1

If a problem P reduces to a problem Q then:

(a) P is undecidable ⇒ Q is undecidable.

(b) P is non-RE ⇒ Q is non-RE.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 22 / 45

Reductions of Problems

Problem Reduction

Proof of Theorem 9.6.1

(a) P is undecidable ⇒ Q is undecidable.
Suppose P is undecidable and Q is decidable. Let TM MQ decide Q.

∠ Consider the TM MP that first operates as TM MP2Q that transforms P to Q, and
then operates as MQ .

Accept
Reject

MP

MP2Q MQwP
wQ

∠ This is a TM that decides P, a contradiction.

(b) P is non-RE ⇒ Q is non-RE.
Suppose P is non-RE and Q is RE. Then there must be a TM MQ that accepts
inputs when they correspond to instances of Q whose answer is yes.

∠ Consider the TM MP that first operates as TM MP2Q , and then operates as MQ .

∠ Note that MP might not halt, since MQ might not.

MP

MP2Q MQwP
wQ

Accept

∠ This is a TM that accepts all instances of P, a contradiction.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 23 / 45

Rice’s Theorem

Rice’s Theorem

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 24 / 45

Rice’s Theorem

Some More Abstract Languages

Language of TMs Accepting Empty and Non-empty Languages

∠ Le = {⟨M⟩ : L(M) = ∅}.
∠ Lne = {⟨M⟩ : L(M) ̸= ∅}. (Note: Lne = Lc

e and Lc
ne = Le)

Theorem 9.7.1

Lne is recursively enumerable.

Note that this theorem doesn’t say whether it’s recursive or not!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 25 / 45

Rice’s Theorem

Lne is recursively enumerable.

Theorem 9.7.2

Lne is recursively enumerable.

Proof

∠ We proved earlier that the set of languages accepted by a non-deterministic TM is the
same as the ones accepted by deterministic ones. We hence provide a non-det. TM.

∠ First, temporarily ignore the input ⟨M⟩ and guess an input word w for M.

∠ Then, execute M on w .

∠ Accept iff M accepts w .

Why could we not just iterate over all possible words?

Cause we might get stuck in one word! The alternative: “dovetailing”, exactly how the
proof for compiling away non-determinism worked!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 26 / 45

Rice’s Theorem

Lne is not recursive

Theorem 9.7.3

Lne is not recursive.

Proof of Theorem 9.7.3

∠ For every TM M and string w , there is a TM MM,w that ignores its input and runs M
on w : MM,w erases its input tape, pastes w , and runs it on M.

x w AcceptM
MM;w

∠ Mind-bending step: There is a TM M1 that takes ⟨M⟩111w and outputs ⟨MM,w ⟩.
Note: M1 always halts (even if M does not halt when input is w !)

hMi111w M1 hMM;w i

∠ M accepts w ⇐⇒ MM,w accepts all inputs ⇐⇒ ⟨MM,w ⟩ ∈ Lne

∠ Suppose Lne is recursive. Then there is a total TM M2 with L(M2) = Lne .

∠ Let TM M3 read ⟨M⟩111w and operate as M1, then as M2, initiated with the output
of M1. Then, M3 is total and accepts/rejects ⟨M⟩111w iff M accepts/rejects w .

∠ We thus decide Lu, which is impossible (it’s only recursively enumerable).

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 27 / 45

Rice’s Theorem

Rice’s Theorem

Given: alphabet Σ and let RE = {L ⊆ Σ∗ | L is recursively enumerable}.
∠ A property of RE languages is subset P ⊆ RE of the set of RE languages over Σ.
Why do we call sets of languages a property? Think of examples:

P1 = {L ⊆ Σ∗ : |L| < ∞} (the property is being finite)
P2 = {L ⊆ Σ∗ : there is a DFA D, s.t. L = L(D)} (the property is being regular)

∠ A property P is trivial if P = ∅ or P = RE (and non-trivial otherwise).
Why? P = ∅ means that no language satisfied the property. Likewise P = RE means
that all languages (that can be recognized by TMs) satisfy the property.

∠ A property P ⊆ RE is decidable if LP = {⟨M⟩ | L(M) ∈ P} is decidable.

Theorem 9.7.4

Every non-trivial property P of RE languages is undecidable, i.e., LP is not recursive.

∠ So, Rice’s theorem says something about some (many!) subsets
S ⊆ {⟨M⟩ : M is a TM} (So we want to know something about TMs!)

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 28 / 45

Rice’s Theorem

Rice’s Theorem (Example 1)

How about the “property” that a TM has 10 states? (Should be decidable!)

∠ Let L10 = {⟨M⟩ : M has 10 states}. But we have to be able to write it as:
L10 = {⟨M⟩ : L(M) ∈ P} where P ⊆ RE and not trivial.

∠ So how about
P10 = {L ⊆ Σ∗ : there is a TM M, s.t. L = L(M) and M has 10 states}?

∠ This doesn’t work since we can take some M9 with 9 states (and thus ⟨M9⟩ /∈ L10)
and add a dummy state, so we have 10 in the resulting TM M10. Now we have:

⟨M9⟩ /∈ L10, and ⟨M10⟩ ∈ L10, but
L(M9) = L(M10), so L(M9) ∈ P10 and L(M10) ∈ P10.
Recall LP = {⟨M⟩ | L(M) ∈ P}, so ⟨M9⟩ ∈ LP10 .

→ So it doesn’t work! It’s not a property of languages!
(So Rice’s theorem doesn’t apply.)

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 29 / 45

Rice’s Theorem

Rice’s Theorem (Example 2)

How about the property that the language contains String “01”?

∠ Let P01 = {L ⊆ Σ : 01 ∈ L}, which is non-trivial:

P01 ̸= ∅ (e.g., L1 = {01} ∈ P01)
P01 ̸= RE (e.g., Lne /∈ P01 because 01 /∈ Lne because 01 is not the code of a TM,
so we defined L(01) = ∅. But Lne is in RE; recall: Lne = {⟨M⟩ : L(M) ̸= ∅})

∠ Thus, LP01 = {⟨M⟩ : L(M) ∈ P01} is undecidable. In other words: We can’t decide
whether a given TM accepts a language that contains a 01.

Recap on what that means practically:
For some TMs M, we might be able to correctly answer yes or no – and even terminate!
But we cannot design a single TM D (for decider) that receives as input an arbitrary TM
M and we always terminate with the correct yes/no answer!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 30 / 45

Rice’s Theorem

Rice’s Theorem (Proof)

Proof of Theorem 9.7.4

∠ WLOG, we can assume that ∅ /∈ P. Else consider Pc .

∠ Since P is non-trivial, there is a language L ∈ P and a TM ML that accepts L

∠ Let MM,w be a TM that runs M on w and if M accepts w , then reads its input and
operates as ML.

x

w AcceptMMM;w

AcceptML

∠ Let M1 be a TM that takes ⟨M⟩111w and outputs ⟨MM,w ⟩. Note: M1 always halts
(even if M does not halt when input is w !)

hMi111w M1 hMM;w i

∠ M accepts w ⇐⇒ L(MM,w) = L ∈ P
∠ If P were decidable, then there is a TM M2 such that M2 accepts ⟨M⟩ iff L(M) ∈ P.

∠ Then, we can devise a TM M3 such that it reads ⟨M⟩111w operates first as M1 and
then when M1 has halted, it operates as M2.

∠ M3 accepts/rejects ⟨M⟩111w ⇐⇒ L(MM,w) ∈ / /∈ P ⇐⇒ M accepts/rejects w .

∠ Then, Lu is recursive, a contradiction

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 31 / 45

Post’s Correspondence Problem

Post’s Correspondence

Problem

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 32 / 45

Post’s Correspondence Problem

PCP: Definition

∠ Suppose we are given two ordered lists of strings over Σ, say A = (u1, . . . , uk) and
B = (v1, . . . , vk). We say (ui , vi) to be a corresponding pair.

∠ PCP Problem: Is there a sequence of integers i1, . . . , im such that:
ui1 · · · uim

= vi1 · · · vim?
∠ m can be greater than the list length k.
∠ We can reuse pairs as many times as we like.

A PCP example

A

B

110 0011 0110

110110 00 110

∠ A solution cannot start with i1 = 3.

∠ A solution can start with i1 = 1, but then i2 = 1, and i3 = 1. . . . Consequently, i1
cannot equal 1.

∠ A solution does exist: (i1, i2, i3) = (2, 3, 1).

∠ (i1, i2, i3, i4, i5, i6) = (2, 3, 1, 2, 3, 1) is also a solution.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 33 / 45

Post’s Correspondence Problem

Modified PCP (MPCP): Definition

∠ Suppose we are again given two ordered lists of strings over Σ,
say A = (u1, . . . , uk) and B = (v1, . . . , vk).

∠ MPCP Problem: Is there a sequence of integers i1, . . . , im such that
u1ui1 · · · uim

= v1vi1 · · · vim
∠ The previous example does not have a solution when viewed as an MPCP problem.

∠ So MPCP is indeed a different problem to PCP, but...

Theorem 9.8.1

MPCP reduces to PCP

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 34 / 45

Post’s Correspondence Problem

MPCP: Thoughts/Ideas before constructing a Proof

∠ So we want to prove that MPCP reduces to PCP.
(So, PCP is at least as hard as MPCP.)

∠ More specifically we need to:

Turn every MPCP problem into a PCP problem (with preserving solutions).
I.e., how can we enforce PCP to always select the first element first?

Thus, the problem we need to solve is:

To make sure that the first string gets selected first, but

without making additional solutions available or cutting some out!

Initial thoughts:

We add a new start symbol to u1 and v1 so that they match.

But that still doesn’t enforce that the “normal PCP” starts with them! ...

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 35 / 45

Post’s Correspondence Problem

Outline of Proof of Theorem 9.8.1

∠ Given MPCP’s lists A = (u1, . . . , uk) and B = (v1, . . . , vk). We now transform this
into a PCP problem! Suppose that symbols ⋄,△ are not in the strings of A and B.

∠ Construct lists C = (w0, . . . ,wk+1) and D = (x0, . . . , xk+1) for PCP as follows.

∠ For i = 1, . . . , k,

if ui = s1 . . . sℓ, then wi = s1 ⋄ s2 ⋄ · · · ⋄ sℓ⋄ [⋄ succeeds symbols]
if vi = s1 . . . sℓ, then xi = ⋄s1 ⋄ s2 ⋄ · · · ⋄ sℓ [⋄ precedes symbols]

∠ w0 = ⋄w1 and x0 = x1. [Ensures any solution to PCP also starts with i1 = 1]
∠ wk+1 = △ and xk+1 = ⋄△. [Balances the extra ⋄]

A B

110

0011

0110

110110

00

110

⇧1 ⇧ 1 ⇧ 0⇧
1 ⇧ 1 ⇧ 0⇧
0 ⇧ 0 ⇧ 1 ⇧ 1⇧
0 ⇧ 1 ⇧ 1 ⇧ 0⇧
4

C

⇧1 ⇧ 1 ⇧ 0 ⇧ 1 ⇧ 1 ⇧ 0

⇧0 ⇧ 0

⇧4

D

⇧1 ⇧ 1 ⇧ 0 ⇧ 1 ⇧ 1 ⇧ 0

⇧1 ⇧ 1 ⇧ 0

u1ui1 . . . uin = v1vi1 . . . vin ⇐⇒
⋄w1wi1 · · · ⋄ win = x1xi1 . . . xin⋄ ⇐⇒
w0wi1 . . .win△ = x0xi1 . . . xin ⋄ △

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 36 / 45

Post’s Correspondence Problem

PCP is undecidable

Theorem 9.8.2

PCP is undecidable.

Outline of Proof of Theorem 9.8.2 (Overview)

We reduce Lu to MPCP (and did already MPCP to PCP). We will show:

∠ M accepts w ⇐⇒ a solution to the MPCP exists.

∠ If MPCP were decidable, then Lu would be too (i.e., recursive), which it isn’t.

∠ Hence, MPCP is undecidable. [following Theorem 9.6.1]

∠ Since MPCP is undecidable, PCP is also undecidable. [following Theorem 9.6.1]

So, the hard work is to solve/model ⟨M⟩111w ∈ Lu via MPCP!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 37 / 45

Post’s Correspondence Problem

PCP is undecidable (More detailed proof at the end)

Outline of Proof of Theorem 9.8.2 (Overview)

Abstract overview of existing pairs in the constructed MPCP:

⇧
⇧q0w⇧ ‘ID0

1⇧
q0w⇧ ‘ID0

1⇧
‘ID0

2⇧
· · ·
· · · ‘ID0

k⇧

IDk = s1s2qf s3s4s5

qf ⇧qf s5⇧s1qf s4s5⇧ ⇧
qf s5⇧ qf ⇧ ⇧s1qf s4s5⇧‘ID0

k⇧

| {z } | {z } | {z } | {z }
Rule A Rule B Rule C Rule D

z }| {
String from List B one ID ahead

z }| { | {z }

Final state
catch-upList A catch-up

The rules A . . . ,D are
in the appendix.

The overall idea is as follows:

∠ We have two lines of strings (which should match in the end).

∠ The first pair we construct is “empty” in the first line/entry
and contains the TM’s start configuration in the second. (Rule A)

∠ We construct a pair for every valid TM transition! (Rule B)
In such a pair, the first line/entry is the old configuration and the second the new.

∠ We have/need a few more rules to make all strings equal and deal with final states.
Note how we have to move the first line to get matchings strings. (Rules C, D)

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 38 / 45

Post’s Correspondence Problem

PCP is undecidable (More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

∠ A TM ID looks as: X1 . . . ,Xi−1qXi . . .Xℓ where Xi is below the head.

Now, with TM’s start state q0 and initial tape w = s1s2s3 let:

∠ Word in line 1: ⋄
∠ Word in line 2: ⋄q0s1s2s3⋄

We get this by our first pair, created by Rule A:

∠ First entry in 1st list: ⋄
∠ First entry in 2nd list: ⋄q0s1s2s3⋄

What’s next? Create the transitions! (Via Rules in B)

∠ Assume δ(q0, s1) = (p, t1,R), then q0s1s2s3 ⊢
M
t1ps2s3

∠ So we put this into a new pair!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 39 / 45

Post’s Correspondence Problem

PCP is undecidable (More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

∠ A TM ID looks as: X1 . . . ,Xi−1qXi . . .Xℓ where Xi is below the head.

Now, with TM’s start state q0 and initial tape w = s1s2s3 let:

∠ Word in line 1: ⋄q0s1
∠ Word in line 2: ⋄q0s1s2s3⋄t1p

We get this by another pair, created by Rule B:

∠ Entry in 1st list: q0s1 since δ(q0, s1) = (p, t1,R)

∠ Entry in 2nd list: t1p and thus q0s1s2s3 ⊢
M

t1ps2s3

What’s next? The remaining symbols from last configuration are missing...

∠ We add a pair (s, s) for all s ∈ Γ (Rule I)

∠ and one pair (⋄, ⋄) (Rule I)

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 39 / 45

Post’s Correspondence Problem

PCP is undecidable (More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

∠ A TM ID looks as: X1 . . . ,Xi−1qXi . . .Xℓ where Xi is below the head.

Now, with TM’s start state q0 and initial tape w = s1s2s3 let:

∠ Word in line 1: ⋄q0s1s2s3⋄
∠ Word in line 2: ⋄q0s1s2s3⋄t1ps2s3⋄

We get this by several new pairs, created by Rule I:

∠ (s0, s0), (s1, s1), (s2, s2), . . . (for all s ∈ Γ)

∠ and the pair (⋄, ⋄)

What’s next? We continue! Next transition!

∠ Assume δ(p, s2) = (r , t2, L), then t1ps2s3 ⊢
M
rt1t2s3

∠ So we put this into a new pair!

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 39 / 45

Post’s Correspondence Problem

PCP is undecidable (More detailed proof at the end)

Proof of Theorem 9.8.2 (Short Example)

Before we look at an example, recap:

∠ A TM ID looks as: X1 . . . ,Xi−1qXi . . .Xℓ where Xi is below the head.

Now, with TM’s start state q0 and initial tape w = s1s2s3 let:

∠ Word in line 1: ⋄q0s1s2s3⋄t1ps2
∠ Word in line 2: ⋄q0s1s2s3⋄t1ps2s3⋄rt1t2

We get this by another pair, created by Rule B:

∠ Entry in 1st list: t1ps2 since δ(p, s2) = (r , t2, L)

∠ Entry in 2nd list: rt1t2 and thus t1ps2s3 ⊢
M

rt1t2s3

What’s next?

∠ First, we again add the missing symbols, until

∠ eventually we find a final state. We have more rules for that (see appendix).

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 39 / 45

Ambiguity in CFGs/CFLs

Ambiguity in CFGs/CFLs

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 40 / 45

Ambiguity in CFGs/CFLs

∠ We’ll now revisit CFGs and prove that ambiguity in CFGs is undecidable.

Theorem 9.9.1

The problem if a CFG is ambiguous is undecidable.

Outline of Proof of Theorem 9.8.2

∠ We’ll reduce every instance of a PCP problem to a CFG.

∠ Given a PCP problem with A = (w1, . . . ,wk) and B = (x1, . . . , xk),
pick symbols a1, . . . , ak that don’t appear in any string in list A or B.

∠ Now define a grammar G with production rules

S −→ A | B
A −→ w1Aa1 | · · · | wkAak | w1a1 | · · · | wkak

B −→ x1Ba1 | · · · | xkBak | x1a1 | · · · | xkak

∠ If there are two leftmost derivations of a string in L(G), one must use S −→ A and
S −→ B, respectively.

∠ Every solution to the PCP leads to 2 leftmost derivations of some string in L(G) and
vice versa. (Note how the solution indices are encoded in the end of each word.)

∠ Since PCP is undecidable, the ambiguity of CFGs must be undecidable [Thm 9.6.1]

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 41 / 45

Ambiguity in CFGs/CFLs

Overview of (Some) Undecidable Problems Concerning CFGs

∠ Given a CFG G , is it ambiguous? (We just had that.)

∠ Given CFL L, is it inherently ambiguous?

∠ Given CFGs G1 and G2, is L(G1) ∩ L(G2) = ∅?
(As mentioned before, this is used to show that HTN planning is undecidable)

∠ Given CFGs G1 and G2, is L(G1) ⊆ L(G2)?

∠ Given CFGs G1 and G2, is L(G1) = L(G2)?

∠ Given CFG G and regular language L, is L(G) = L?

∠ Given CFG G and regular language L, is L ⊆ L(G)?

∠ Given CFG G , is L(G) = Σ∗?

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 42 / 45

Appendix: PCP Proof Details

Appendix: PCP Proof Details

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 43 / 45

Appendix: PCP Proof Details

PCP is undecidable

Proof Details of Theorem 9.8.2 (Rule Definitions)

∠ For the proof we construct an MPCP for each TM M and input w .

Rule A: Construct two lists A and B whose first entries are ⋄ and ⋄q0w⋄, respectively.
Rule I: Add corresponding pairs (X ,X) (for all X ∈ Γ) and (⋄, ⋄)
Rule B: Suppose q is not a final state. Then, append to the list the following entries:

List A List B
qX Yp if δ(q,X) = (p,Y ,R)
ZqX pZY if δ(q,X) = (p,Y , L)
q⋄ Yp⋄ if δ(q,B) = (p,Y ,R)
Zq⋄ pZY ⋄ if δ(q,B) = (p,Y , L)

Rule C: For q ∈ F , let (XqY , q), (Xq, q), and (qY ,Y) be corresponding pairs for
X ,Y ∈ Γ

Rule D: For q ∈ F (q ⋄ ⋄, ⋄) is a corresponding pair.

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 44 / 45

Appendix: PCP Proof Details

PCP is undecidable

Proof Details of Theorem 9.8.2 (Construction/Explanation)

∠ Suppose there is a solution to the MPCP problem. The solution starts with the first
corresponding pair, and the string constructed from List B is already an ID of TM M
ahead of the string from List A.

∠ As we select strings from List A (corresponding to Rule B) to match the last ID, the
string from List B adds to its string another valid ID.

∠ The sequence of IDs constructed are valid sequences of IDs for M starting from q0w .

∠ Suppose the last ID constructed in the string constructed from List B corresponds to
a final state, then we can gobble up one neighboring symbol at a time using Rule C.

∠ Once we are done gobbling up all tape symbols, the string from List B is still one
final state symbol ahead of List A’s string.

∠ We then use Rule D to match and complete.

⇧
⇧q0w⇧ ‘ID0

1⇧
q0w⇧ ‘ID0

1⇧
‘ID0

2⇧
· · ·
· · · ‘ID0

k⇧

IDk = s1s2qf s3s4s5

qf ⇧qf s5⇧s1qf s4s5⇧ ⇧
qf s5⇧ qf ⇧ ⇧s1qf s4s5⇧‘ID0

k⇧

| {z } | {z } | {z } | {z }
Rule A Rule B Rule C Rule D

z }| {
String from List B one ID ahead

z }| { | {z }

Final state
catch-upList A catch-up

Pascal Bercher week 6: Decidability and Undecidability Semester 1, 2025 45 / 45

	Preliminary Ideas
	Example of a non-RE language
	Recursive languages
	The Universal Language and Turing Machine
	Recap
	Reductions of Problems
	Rice's Theorem
	Post's Correspondence Problem
	Ambiguity in CFGs/CFLs
	Appendix: PCP Proof Details

