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Content of this Chapter

∠ Problems in P

∠ Class NP

∠ SAT is NP-hard // patient zero!

∠ Problems that are NP-complete

∠ Class Co-NP

Additional Reading: Chapters 10 and 11 of HMU.
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Problems in P

Context-Free Languages

Theorem w8.1

Every CFL is in P.

First, what does that mean? When is a language in P?

∠ L ∈ P iff there’s a total TM M with L(M) = L that runs in polytime.

∠ Note that a TM can represent everything from this course: DFAs, NFAs, grammars,
. . . Thus, we pick the most suitable representation for which we know a polytime
procedure and assume it’s given in terms of a TM.

Proof.

∠ Let L be context-free.

∠ We thus know that there exists a CFG G in Chomsky Normal Form (CNF).

∠ Let G be given. Now run CYK (implemented within our TM) on the input w , taking
O(|w |3) time.

Note that this proof would even be correct if converting a CFG G into CNF would take
exponential time! Thus, this theorem does not say that {(A,w) | w ∈ L(A)} is polytime
decidable for any CFL or automaton A where L(A) is context-free.
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Problems in P

More Problems in P, cont’d

Theorem w8.2

Deciding L = {(G ,w) | G is CFG and w ∈ L(G)} is in P.

Proof.

Follows from the last theorem: every CFL is in P

Clear?

It shouldn’t, as the proof is wrong ! Why? We never proved that L is context-free! L(G)
is context-free for any CFG G , but here your language isn’t L(G), but L from above!
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Problems in P

More Problems in P, cont’d

Theorem w8.2

Deciding L = {(G ,w) | G is CFG and w ∈ L(G)} is in P.

Proof.

∠ Since G is a CFG, we know that a CFG G ′ in CNF exists.

∠ Let M be the TM that implements CYK on G ′.

∠ Run it on w in polytime. Accept or reject accordingly.

Correct now?

No, wrong again ! Why?

Because you must provide a TM that receives G and w as
input and then run in polytime to make the decision. Here you provide a TM for G ′,
which only works for G/G ′, but not for arbitrary input words (G ,w).
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Problems in P

More Problems in P, cont’d

Theorem w8.2

Deciding L = {(G ,w) | G is CFG and w ∈ L(G)} is in P.

Proof.

∠ Since G is a CFG, we know that we can transform G into a CFG G ′ in CNF in
polynomial time.

∠ Let M be the TM that first does the above normalization and then implements CYK
on the resulting CFG G ′.

∠ Run it on w in polytime. Accept or reject accordingly.

Correct now?

Still wrong ! Why?

Establishing CNF takes exponential time as taught due to elimination
of nullable variables, which results in exponentially many new rules.
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Problems in P

More Problems in P, cont’d

Theorem w8.2

Deciding L = {(G ,w) | G is CFG and w ∈ L(G)} is in P.

Proof.

∠ We want to turn CFG G into CFG G ′ in CNF in polynomial time. The only step that
takes exponential time is the elimination of nullable variables.

∠ So, we first normalize G so that all production rules have fixed size, e.g., 2 (like in
step 4). Now, we can eliminate nullable variables in polynomial time.

∠ Let M be the TM that first does the above normalization and then implements CYK
on the resulting CFG G ′.

∠ Run it on w in polytime. Accept or reject accordingly.

Correct now?

Yes. :)
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Problems in P

More Problems in P, cont’d II

Theorem w8.3

Deciding PRIME = {n ∈ N | n is prime } is in P.

Proof.

∠ If n is composite, then it can be written as n = a · b with 1 < a ≤ b < n.

∠ If both a and b were greater than
√
n, then a · b > n – contradiction.

∠ So, at least one factor of any composite number n must be ≤
√
n.

∠ Thus, checking all numbers i from 2 to ⌊
√
n⌋ suffices. For each, we test whether

n mod i = 0. If all are “no”, return “yes” (prime), otherwise “no”. This takes

O(
√
n) = O(n

1
2 ). We thus get P membership.

Right? :) No! Two errors:

∠ n mod i = 0 does not take constant time, but O(|n|2). (Still poly!)

∠ O(
√
n) must be measured in terms of the input size |n|.

Since |n| = log(n), i.e., n = 2|n|, we get: O(
√
n) = O(n

1
2 ) = O(2

|n|
2 ).

→ In total, we get O(2
1
2
|n||n|2). Hence, this algorithm proves EXPTIME membership!

But PRIME is indeed in P, proved in 2002. (Proof skipped.)
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Class NP

ClassNP
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Class NP

Conversion of non-det. TM into det. TM

Theorem w8.1

Let t : N → N. For every t-time non-deterministic TM M with L(M) = L, there is a
2O(t(n))-time deterministic TM M ′ with L(M ′) = L.

Proof.

By analyzing the time complexity of the construction given to show that every
non-deterministic TM has an equivalent deterministic TM.
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Let t : N → N. For every t-time non-deterministic TM M with L(M) = L, there is a
2O(t(n))-time deterministic TM M ′ with L(M ′) = L.

Proof.

By analyzing the time complexity of the construction given to show that every
non-deterministic TM has an equivalent deterministic TM. (Cf. week 5)

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID2;1 ID2;2 ID2;k

ID3;1 ID3;2 ID3;3 ID3;4 ID3;‘

· · ·

· · ·

ID1

ID3;1 ID3;2

ID3;3 ID3;4

‡ †

ID1 ID2;1 ID2;2‡ † † · · ·† † ID2;k †

ID1 ID2;1 ID2;2‡ † · · ·† † ID2;k † † †

ID3;1 ID3;2ID1 ID2;1 ID2;2‡ · · ·† † ID2;k † † † † †

‡

‡ ‡

Tape 1

(If M does not halt at ID1)

(If M does not halt at ID1 and ID2;1)

(If M does not halt at ID1, ID2;1 and ID2;2)

(N does Breadth-First exploration of IDs of M)
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non-deterministic TM has an equivalent deterministic TM.

∠ For inputs of length n the computation tree of M has depth at most t(n).

∠ Every tree node has at most b children, where b ∈ N depends on M’s transition
function. Thus the tree has no more than bt(n)+1 nodes.

∠ M ′ may have to explore all of them, in a breadth-first fashion. Each exploration may
take O(t(n)) steps (from the root to a node).

∠ So all explorations together may take O(t(n)) · O(bt(n)+1) = 2O(t(n)) time.
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Class NP

How to show NP membership

Recall that we defined NP as
⋃

k∈N NTIME(nk).
Thus, to prove NP membership of problem P, we had to:

∠ provide a non-det TM M with L(M) = L that runs in O(nk) time, for some k ∈ N.

∠ In practice, we do however deploy a two-stage process:

Guess a certificate c with |c| ≤ p(|w |).
Verify certificate |c| in O(|c|).

∠ Formally, we can say: If L is the language, say, L = {w | P(w)}, where P is the
property that w must possess, then, the certificate may be a representation of:

“the required property P itself”, or

any proof/argument from which it follows that w has the property P.

∠ For example,

for SAT = {⟨ϕ⟩ | ϕ has a satisfying valuation}, the certificate would be the
valuation itself,

but for some problems, the “property” might be exponentially long! In that case
we need a more abstract certificate, as otherwise we could not be in polytime!

∠ We can conclude that NP is not the class of problems that possess a poly-sized
“solution” (but a poly-sized “certificate”).

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 9 / 48



Class NP

How to show NP membership

Recall that we defined NP as
⋃

k∈N NTIME(nk).
Thus, to prove NP membership of problem P, we had to:

∠ provide a non-det TM M with L(M) = L that runs in O(nk) time, for some k ∈ N.
∠ In practice, we do however deploy a two-stage process:

Guess a certificate c with |c| ≤ p(|w |).
Verify certificate |c| in O(|c|).

∠ Formally, we can say: If L is the language, say, L = {w | P(w)}, where P is the
property that w must possess, then, the certificate may be a representation of:

“the required property P itself”, or

any proof/argument from which it follows that w has the property P.

∠ For example,

for SAT = {⟨ϕ⟩ | ϕ has a satisfying valuation}, the certificate would be the
valuation itself,

but for some problems, the “property” might be exponentially long! In that case
we need a more abstract certificate, as otherwise we could not be in polytime!

∠ We can conclude that NP is not the class of problems that possess a poly-sized
“solution” (but a poly-sized “certificate”).

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 9 / 48



Class NP

How to show NP membership

Recall that we defined NP as
⋃

k∈N NTIME(nk).
Thus, to prove NP membership of problem P, we had to:

∠ provide a non-det TM M with L(M) = L that runs in O(nk) time, for some k ∈ N.
∠ In practice, we do however deploy a two-stage process:

Guess a certificate c with |c| ≤ p(|w |).
Verify certificate |c| in O(|c|).

∠ Formally, we can say: If L is the language, say, L = {w | P(w)}, where P is the
property that w must possess, then, the certificate may be a representation of:

“the required property P itself”, or

any proof/argument from which it follows that w has the property P.

∠ For example,

for SAT = {⟨ϕ⟩ | ϕ has a satisfying valuation}, the certificate would be the
valuation itself,

but for some problems, the “property” might be exponentially long! In that case
we need a more abstract certificate, as otherwise we could not be in polytime!

∠ We can conclude that NP is not the class of problems that possess a poly-sized
“solution” (but a poly-sized “certificate”).

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 9 / 48



Class NP

How to show NP membership

Recall that we defined NP as
⋃

k∈N NTIME(nk).
Thus, to prove NP membership of problem P, we had to:

∠ provide a non-det TM M with L(M) = L that runs in O(nk) time, for some k ∈ N.
∠ In practice, we do however deploy a two-stage process:

Guess a certificate c with |c| ≤ p(|w |).
Verify certificate |c| in O(|c|).

∠ Formally, we can say: If L is the language, say, L = {w | P(w)}, where P is the
property that w must possess, then, the certificate may be a representation of:

“the required property P itself”, or
any proof/argument from which it follows that w has the property P.

∠ For example,

for SAT = {⟨ϕ⟩ | ϕ has a satisfying valuation}, the certificate would be the
valuation itself,
but for some problems, the “property” might be exponentially long! In that case
we need a more abstract certificate, as otherwise we could not be in polytime!

∠ We can conclude that NP is not the class of problems that possess a poly-sized
“solution” (but a poly-sized “certificate”).

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 9 / 48



Class NP

How to show NP membership

Recall that we defined NP as
⋃

k∈N NTIME(nk).
Thus, to prove NP membership of problem P, we had to:

∠ provide a non-det TM M with L(M) = L that runs in O(nk) time, for some k ∈ N.
∠ In practice, we do however deploy a two-stage process:

Guess a certificate c with |c| ≤ p(|w |).
Verify certificate |c| in O(|c|).

∠ Formally, we can say: If L is the language, say, L = {w | P(w)}, where P is the
property that w must possess, then, the certificate may be a representation of:

“the required property P itself”, or
any proof/argument from which it follows that w has the property P.

∠ For example,

for SAT = {⟨ϕ⟩ | ϕ has a satisfying valuation}, the certificate would be the
valuation itself,
but for some problems, the “property” might be exponentially long! In that case
we need a more abstract certificate, as otherwise we could not be in polytime!

∠ We can conclude that NP is not the class of problems that possess a poly-sized
“solution” (but a poly-sized “certificate”).

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 9 / 48



Class NP

Alternative Definition of NP

Definition w8.2

A verifier for a language L is a deterministic TM V , such that:
w ∈ L iff there is a certificate c (a string), such that (w , c) ∈ L(V )

Theorem w8.3

NP equals the set of languages that have polynomial-time verifiers with poly-sized
certificates (relative to w , |c| ≤ p(|w |) for some polynomial p).

Proof.

⇒: Let L ∈ NP. Then, there exists a poly-time NTM M with L = L(M). Then there
must be a sequence of configurations, poly-length-bounded in w , which ends in an
accepting state/configuration. Use this sequence as certificate: Design a deterministic
verifier V , which tests whether a given sequence of configurations is valid with regard to
M and ends in an accepting configuration. Accept/reject accordingly.
⇐: For L, we know that a (deterministic) verifier V exists, and for each word w ∈ L a
certificate that’s poly-length in w . Design a poly-time NTM M with L = L(M) as
follows. First, M non-deterministically generates all possible certificates (i.e., each run
produces one certificate). Then, we switch into the second phase which implements V ,
which in turn verifies the certificate and accepts/rejects accordingly. Thus, L ∈ NP.
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SAT is NP-hard

SAT isNP-hard
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SAT is NP-hard Intro

Making our life easier...

So, for NP-completeness we need to show NP-hardness. For this, we had two options:

1 Use the “text book definition”, i.e., show that all problems in NP reduce to our
problem, or

2 use the respective theorem that allows to reduce from any NP-hard problem.

So, in the first case we need to show a property for all problems, in the second we only
need a single reduction... What’s easier? :)

So, we need a very first problem that’s shown to be NP-hard – from then on we can start
reducing!

For this, we will use SAT!
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SAT is NP-hard Intro

Boolean Formulae

Let V = {x , y , . . .} be a (finite) set of Boolean variables (or propositions).
A CFG to generate well-formed Boolean formulae over V is:

ϕ→ p | ϕ ∧ ϕ | ¬ϕ | (ϕ)
p → x | y | . . .

We use abbreviations such as

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2

false = (x ∧ ¬x) true = ¬false
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SAT is NP-hard Intro

Semantics of Boolean Formulae

A Boolean formula is either ⊤ (for “true”) or ⊥ (for “false”), possibly depending on the
interpretation of its propositions. Let B = {⊥,⊤}.

Definition w8.1

An interpretation (or assignment or valuation) of V is a function π : V −→ B.
For Boolean formulae ϕ we define that π satisfies ϕ, written π |= ϕ, inductively by:
Base: For each variable x ∈ V, π |= x iff π(x) = ⊤.
Induction:

π |= ¬ϕ iff π ̸|= ϕ.

π |= ϕ1 ∧ ϕ2 iff both π |= ϕ1 and π |= ϕ2.

π |= (ϕ) iff π |= ϕ.

ϕ is satisfiable if there exists an interpretation π such that π |= ϕ.
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SAT is NP-hard Patient Zero

SAT—An NP-Complete Problem

Our decision problem/language is:

SAT = { ⟨ϕ⟩ | ϕ is a satisfiable Boolean formula }

Theorem w8.2 (Cook-Levin Theorem – or: Cook’s Theorem, 1971/1973)

SAT is NP-complete.

Proof of SAT ∈ NP.

If π |= ϕ we use ⟨π⟩ as certificate. (I.e., guess it and verify.)

Proof of SAT is NP-hard.

The rest of this section.

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 15 / 48



SAT is NP-hard Patient Zero

Proof of NP-Hardness of SAT

Let L ∈ NP. Let M = (Q,Σ,Γ, δ, q0,F ) be a deciding NTM with L(M) = L and let p be
a polynomial such that M takes at most p(|w |) steps on any computation for any
w ∈ Σ∗. (We know that M and p exist due to L ∈ NP.)

Construct a P-reduction from L to SAT:

∠ Input w is turned into a Boolean formula ϕw that describes M’s possible
computations on w .

∠ M accepts w iff ϕw is satisfiable. The satisfying interpretation resolves the
nondeterminism in the computation tree to arrive at an accepting branch of the
computation tree.

Remains to be done: define ϕw .
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SAT is NP-hard Patient Zero

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an n ≤ p(|w |) exists and a sequence of configurations
(Ci )0≤i≤n (IDs), where

1 C0 = q0w ,

2 each Ci can yield Ci+1, and

3 Cn is an accepting ID.

4 Note that we have at most n + 1 IDs if the TM can make at most n ≤ p(|w |) steps.
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SAT is NP-hard Patient Zero

ϕw

The Boolean formula ϕw shall represent all such sequences (Ci )0<i≤n beginning with q0w .

ϕw = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

The different sub formulae serve the following purposes:

∠ ϕcell: Defines all existing “cells”, which encode all possible IDs.

∠ ϕstart: Sets the initial row of these cells: TM’s initial ID.

∠ ϕmove: Enforces legal TM transitions.

∠ ϕaccept: Enforces ending up in an accepting state.
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SAT is NP-hard Patient Zero

ϕcell

. . . describes an n2 grid using propositions V = { xi,k,s | i , k ∈ {0, . . . , n} ∧ s ∈ Σϕ },
where Σϕ = Q ∪ Γ (recall that B ∈ Γ) is the “alphabet of the SAT formula” used to
encode the IDs. Also recall that TM IDs contain the non-trivial tape and the state.

First, why is i , k ∈ {0, . . . , n}? Why s ∈ Σϕ?

i : encodes the rows. We need one for every possible ID (n + 1 many!)

k: encodes the columns. Each column is a possible value of an ID symbol.
n symbols are the TM cells that can be reached, and one is the state.

s: The content of ID i at position k, i.e., a tape symbol or the state.

ϕcell =
∧

0≤i,k≤n

 ∨
s∈Σϕ

xi,k,s

 ∧

 ∧
s ̸=t∈Σϕ

(¬xi,k,s ∨ ¬xi,k,t)


Meaning: “There is exactly one symbol at each cell”.
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SAT is NP-hard Patient Zero

ϕstart

. . . specifies that the first row of the grid contains q0w where w = w1 . . .w|w|:

ϕstart = x0,0,q0 ∧
∧

1≤i≤|w|

x0,i,wi ∧
∧

|w|<i≤n

x0,i,B

So, the first line of our grid contains:

∠ the q0 symbol in the first cell,

∠ followed by the symbols of our initial tape word,

∠ followed by the blank symbol until the end.

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 20 / 48



SAT is NP-hard Patient Zero

ϕmove

. . . ensures that Ci yields Ci+1 by describing legal 2× 3 windows of cells. We need 3 cells
to cover the cell on the left of the state, the state, and on its right (to enable left and
right movements of the head).

ϕmove =
∧

0<i,k<n

∨
a1 a2 a3
a4 a5 a6

is legal

(
xi,k−1,a1 ∧ xi,k,a2 ∧ xi,k+1,a3 ∧
xi+1,k−1,a4 ∧ xi+1,k,a5 ∧ xi+1,k+1,a6

)

(Some border cases are not be covered here for simplicity, e.g., i can never be zero.)
What is legal depends on the transition function δ.

Example: Let the current ID be w1w2qw3w4 (so, we have blanks before and after it).
Whether we go to the left or to the right, we only need to change 3 cells!

∠ w1w2qw3w4 – current ID

∠ w1w2xq1w4 – if δ(q,w3) = (q1, x ,R)

∠ w1q2w2yw4 – if δ(q,w3) = (q2, y , L)

Are we still complete?
We can’t seem to be able to move to the left of the initial head position!

∠ Not a problem: We showed equivalence for semi-infinite tapes under polytime.

∠ We could alternatively have created a grid of size (2n)2, which also goes n to the left.
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SAT is NP-hard Patient Zero

ϕaccept – and concluding the Proof

. . . states that the accept state is reached:

ϕaccept =
∨

0≤i,k≤n,qF∈F

xi,k,qF

Concluding the Proof:

Recall:
ϕw = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕaccept

Finally we check that the size of ϕw is polynomial in |w | and that ϕw is constructable in
polynomial time. (Both is true!)

So, finding a valuation to this formula means deciding w ∈ L(M) for the arbitrary
non-deterministic TM M! So, SAT is NP-hard! (It can express every problem in NP!)

We have our patient zero now – so, now we can prove NP-hardness of other problems by
reducing from SAT. (And we build our portfolio...)
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NP-complete Problems

NP-complete Problems
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NP-complete Problems Variants of SAT

CNF-SAT

CNF-SAT is a special case of SAT.

CNF-SAT = { ⟨ϕ⟩ | ϕ is a satisfiable cnf formula }

where a formula is in cnf (for conjunctive normal form) if it can be generated by a CFG

ϕ→ (c) | (c) ∧ ϕ c → ℓ | ℓ ∨ c

ℓ→ p | ¬p p → x | y | . . .

We call cs clauses, ℓs literals, and ps propositions.

Intuitively, a cnf phi is simply a conjunction of disjunctions (also called clauses), i.e.,
ϕ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn, where each ϕi is a disjunction

Example w8.1

(x ∨ z) ∧ (¬y ∨ z) is a cnf for the Boolean formula (x ∧ ¬y) ∨ z .
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NP-complete Problems Variants of SAT

CNF-SAT is NP-Complete

Clearly CNF-SAT is in NP because we can again guess an assignment and verify it.

Giving a P reduction from SAT to CNF-SAT is tricky.

A straight-forward translation of Boolean formulae into equivalent cnf may result in an
exponential blow-up, meaning that this approach is useless. (Note that such an approach
could iterate over all lines in a truth table.)

Instead, we recall a reduction f won’t have to preserve satisfaction:

∀π (π |= ϕ ⇔ π |= f (ϕ))

but merely satisfiability

∃π (π |= ϕ) ⇔ ∃π (π |= f (ϕ))

meaning that we’re free to choose different πs for the two sides.
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NP-complete Problems Variants of SAT

CNF-SAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in P.

1 Translate to nnf (negation normal form). (A formula where each negation symbol
appears only in front of propositions.)
This is achieved by pushing all negation symbols down to propositions and
eliminating all two consecutive negations. (This is still satisfaction-preserving.)

2 Translate from nnf to cnf. (This merely preserves satisfiability.)
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NP-complete Problems Variants of SAT

Pushing Down ¬

We use de Morgan’s laws and the law of double negation to rewrite left-hand-sides to
right-hand-sides:

de Morgan on conjunctions: ¬(ϕ ∧ ψ) ⇔ ¬(ϕ) ∨ ¬(ψ)
de Morgan on disjunctions: ¬(ϕ ∨ ψ) ⇔ ¬(ϕ) ∧ ¬(ψ)
double-negation elimination: ¬(¬(ϕ)) ⇔ ϕ

Example w8.2

¬((¬(x ∨ y)) ∧ (¬x ∨ y)) =

⇔ ¬(¬(x ∨ y)) ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x ∨ y)

⇔ x ∨ y ∨ ¬(¬x) ∧ ¬y
⇔ x ∨ y ∨ x ∧ ¬y
⇔ x ∨ y ∨ (x ∧ ¬y) This is a disjunction!
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NP-complete Problems Variants of SAT

Pushing Down ¬ cont.

Theorem w8.3

Every Boolean formula ϕ is equivalent to a Boolean formula ψ in nnf. Moreover, |ψ| is
linear in |ϕ| and ψ can be constructed from ϕ in P.

Proof.

By induction on the number n of Boolean operators (∧, ∨, ¬) in ϕ we may show that
there is an equivalent ψ in nnf with at most 2n− 1 operators. We also have to show that
the number of steps is bounded linearly and that each step has polynomial effort.
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NP-complete Problems Variants of SAT

nnf −→ cnf

Theorem w8.4

There is a constant c such that every nnf ϕ has a cnf ψ such that:

1 ψ consists of at most |ϕ| clauses.
2 ψ is constructable from ϕ in time at most c|ϕ|2.
3 π |= ϕ iff there exists an extension π′ of π satisfying π′ |= ψ, for all interpretations π

of the propositions in ϕ

Thus, we can turn any nnf ψ into cnf in polynomial time.

Proof.

By induction on |ϕ|.
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NP-complete Problems Variants of SAT

nnf −→ cnf cont.

The transformation is done by the Tseytin transformation (from 1968).
Example taken from Wikipedia.

Example w8.5

Let ϕ = ((p ∨ q) ∧ r) → (¬s). We introduce new auxiliary variables for all subformulae:

x1 ↔ ¬s x2 ↔ p ∨ q x3 ↔ x2 ∧ r x4 ↔ x3 → x1

Now we can express ϕ as the following:

ψ = x4 ∧ (x4 ↔ x3 → x1) ∧ (x3 ↔ x2 ∧ r) ∧ (x2 ↔ p ∨ q) ∧ (x1 ↔ ¬s)

Each conjunct can be turned (in polytime) into a cnf, e.g.,

x2 ↔ (p ∨ q) ≡ x2 → (p ∨ q) ∧ ((p ∨ q) → x2)

≡ (¬x2 ∨ p ∨ q) ∧ (¬(p ∨ q) ∨ x2)

≡ (¬x2 ∨ p ∨ q) ∧ ((¬p ∧ ¬q) ∨ x2)

≡ (¬x2 ∨ p ∨ q) ∧ (¬p ∨ x2) ∧ (¬q ∨ x2)
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NP-complete Problems Variants of SAT

Conclusion

We proved that CNF-SAT is NP-hard!

We reduced: SAT ≤P nnf ≤P CNF-SAT

Since CNF-SAT is clearly in NP as well, it’s NP-complete.
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NP-complete Problems Variants of SAT

3-SAT

3-SAT is a special case of CNF-SAT.

3-SAT = { ⟨ϕ⟩ | ϕ is a satisfiable 3cnf formula }

where a formula is in 3cnf (for 3 literal cnf) if it can be generated by a CFG

ϕ→ (c) | (c) ∧ ϕ c → ℓ ∨ ℓ ∨ ℓ
ℓ→ p | ¬p p → x | y | . . .

Intuitively, a 3cnf is simply a conjunction of disjunctions of size exactly 3.

Example w8.6

(x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (x ∨ ¬y ∨ ¬z) is a 3cnf
for the Boolean formula x . (You can verify this by applying simplification rules or
constructing a truth table.)
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NP-complete Problems Variants of SAT

3-SAT is NP-Complete

Theorem w8.7

3-SAT is NP-Complete

Proof.

As before: Guess a valuation and verify.

We P-reduce from CNF-SAT to 3-SAT, by translating arbitrary clauses into clauses with
exactly three literals. (We do this on the next slides.)
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NP-complete Problems Variants of SAT

Proof: 3-SAT is NP-hard

How to transform a cnf ϕ =
∧n

i=1 ci into an equisatisfiable 3cnf?

We transform each clause ci =
∨ki

j=1 ℓi,j depending on the number ki of literals in it.
E.g., c2 = l2,1 ∨ l2,2 ∨ l2,3 ∨ l2,4 with k2 = 4. We omit subscript i ! c = l1 ∨ l2 ∨ l3 ∨ l4.

Case k = 1 (ℓ1) is replaced by

(ℓ1 ∨ u ∨ v) ∧ (ℓ1 ∨ u ∨ ¬v) ∧ (ℓ1 ∨ ¬u ∨ v) ∧ (ℓ1 ∨ ¬u ∨ ¬v)

for some fresh propositions u, v .

Case k = 2 (ℓ1 ∨ ℓ2) is replaced by

(ℓ1 ∨ ℓ2 ∨ u) ∧ (ℓ1 ∨ ℓ2 ∨ ¬u)

for some fresh proposition u.

Case k = 3 is 3cnf already.

Case k > 3 (
∨k

j=1 ℓj). On the next slide!
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NP-complete Problems Variants of SAT

Proof: 3-SAT is NP-hard

Case k > 3, (
∨k

j=1 ℓj) is replaced by

(ℓ1 ∨ ℓ2 ∨ u1) ∧
k−4∧
j=1

(ℓj+2 ∨ ¬uj ∨ uj+1) ∧ (¬uk−3 ∨ ℓk−1 ∨ ℓk)

for some k − 3 fresh propositions u1, . . . , uk−3.

Take l1 ∨ l2 ∨ l3 ∨ l4 ∨ l5 ∨ l6 ∨ l7. So k = 7 and k − 3 = 4. We can write this as:

(l1 ∨ l2 ∨ u1) ∧
(l3 ∨ ¬u1 ∨ u2) ∧
(l4 ∨ ¬u2 ∨ u3) ∧
(l5 ∨ ¬u3 ∨ u4) ∧

(¬u4 ∨ l6 ∨ l7)

You can see that you can always pick the new propositions in a way to make all disjuncts
true, no matter which literal is supposed to get true. E.g., if l4 is true, we set u1, u2, u4
true. Likewise, they don’t help us making the formula true unless at least one of the li
are true. (Check what happens if all li are false.)
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NP-complete Problems Vertex Cover and Independent Set

Vertex Cover vs. Independent Set

Recap from week 7 (more formally)

Theorem w8.8

A graph G with |V | = n vertices has a vertex cover C of size |C | = k iff it has an
independent set of size n − k. (Both problems are polytime-reducible to each other.)

Proof.

Let G be a graph with n nodes. Let 0 ≤ k ≤ n.

Claim: C is a vertex cover of G iff V \ C is an independent set.

“⇒” C is a vertex cover of G . Let v1, v2 ∈ V \C . Show that there is no edge between v1
and v2. Assume there is! Then, because C is a vertex cover, we have v1 ∈ C or v2 ∈ C .
Contradiction, as v1, v2 ∈ V \ C . Thus, there is no edge between v1 and v2 and therefore
V \ C is an independent set.

“⇒” C is not a vertex cover of G . Thus there is an edge (v1, v2), such that neither of
these nodes are in C , v1, v2 /∈ C . But then v1, v2 ∈ V \ C . Therefore V \ C is not an
independent set.
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NP-complete Problems Vertex Cover and Independent Set

On the NP-completeness of these Problems

So far we’ve shown that both problems are equivalent, so how hard are they?

in NP Both problems are in NP: We can guess the respective set of nodes and
check the required property. The number of guessed nodes is polytime-
bounded in the input, and the verification can also be done in polytime.

NP hard Since we saw that both problems can be turned into each other (even
trivially), we can choose for which we show hardness! Completeness then
follows for both.

We show hardness for Vertex Cover.

Theorem w8.9

Vertex Cover is NP-hard.
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NP-complete Problems Vertex Cover and Independent Set

NP-hardness of Vertex Cover

Proof.

We reduce 3-SAT to Vertex Cover.

Let ϕ = (x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z).

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

∠ We have one column per clause.

∠ Vertically, we connect all nodes
within one column.

∠ Horizontally, we connect all contra-
dictory nodes.

∠ We claim: ϕ is satisfiable iff G has
a vertex cover of size k = 2n, where
n = 4 is the number of clauses (select
two from each column). The non-
selected ones encode the literal that
makes the respective clause true.

For example, π(x) = ⊤, π(y) = ⊤, π(z) = ⊥ makes the formula true.

Now we still need to show this claim!
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NP-complete Problems Vertex Cover and Independent Set

NP-hardness of Vertex Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a vertex cover of size k = 2n

Let π make ϕ true, π |= ϕ. Then for all clauses i = 1, ..., n, there is (at least) one literal
li of ϕi , s.t. ϕ |= li . E.g., let l1, . . . , l4 be the green nodes (non-selected by cover).

Now define the complement of these nodes as the vertex cover C (the yellow nodes) and
show desired properties, i.e., that for each edge (v1, v2), at least v1 or v2 is in C .

vertical

Selecting (yellow) two nodes will always cover all edges.

horizontal

These edges are always between a variable and its negation. So the
only way to not have each edge covered is to have both literals not
selected (green), which is impossible since we can’t make li and ¬li true.

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z
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NP-hardness of Vertex Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a vertex cover of size k = 2n
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y

z

¬x
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¬y
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¬x

y

¬z

Q. Why did we need the vertical edges?
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NP-hardness of Vertex Cover (cont’d)
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Q. Why did we need the vertical edges?

A. They forced us to select ≥ 2 literals per clause.
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NP-hardness of Vertex Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a vertex cover of size k = 2n
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¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

Q. Why did we need the vertical edges?

A. They forced us to select ≥ 2 literals per clause.

Q. What if we select 3 literals?

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 39 / 48
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NP-hardness of Vertex Cover (cont’d)

Proof. (Reduction, “⇒”).

Recall: ϕ is satisfiable iff G has a vertex cover of size k = 2n

Let π make ϕ true, π |= ϕ. Then for all clauses i = 1, ..., n, there is (at least) one literal
li of ϕi , s.t. ϕ |= li . E.g., let l1, . . . , l4 be the green nodes (non-selected by cover).

Now define the complement of these nodes as the vertex cover C (the yellow nodes) and
show desired properties, i.e., that for each edge (v1, v2), at least v1 or v2 is in C .

vertical Selecting (yellow) two nodes will always cover all edges.

horizontal These edges are always between a variable and its negation. So the
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x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

Q. Why did we need the vertical edges?

A. They forced us to select ≥ 2 literals per clause.

Q. What if we select 3 literals?

A. Then another “column” doesn’t work.
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NP-complete Problems Vertex Cover and Independent Set

NP-hardness of Vertex Cover (cont’d)

Proof. (Reduction, “⇐”).

Recall: ϕ is satisfiable iff G has a vertex cover of size k = 2n

Define assignment π, such that π makes a literal true if it’s not in the vertex cover.

Main argument: Any vertex cover of size k = 2n needs to select precisely 2 elements
from each column!

So, why does any vertex cover (with two yellow nodes in each column) encode an
assignment π that makes the formula true?

∠ Again, all nodes not in that cover give the
witness for making the respective clause true.

∠ Thus, each clause already has a witness mak-
ing it true!

x

y

z

¬x

¬y

¬z

x

¬y

z

¬x

y

¬z

So what could still go wrong?

We need consistent assignments!

∠ I.e., don’t make some literal li true and false, π(li ) = π(¬li ) = ⊤.

∠ Can’t happen! They all share a (horizontal) edge, so using both in the assignment
(green) would exclude them for the vertex cover – leaving a non-covered edge.
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NP-complete Problems Vertex Cover and Independent Set

Summary of NP-complete Problems

We proved the NP-completeness of:

SAT, CNF-SAT, 3-SAT

Set Cover, Independent Set (from Karp’s 21)

In the tutorials, you will see:

k-SAT

Partition-Clique

Graph Colouring, 3-Colouring (from Karp’s 21)

Integer Linear Programs (ILPs)

Other important NP-complete problems you should know:

Karp’s 21 NP-complete problems (from his 1972 paper)

Clique (from Karp’s 21)

Hamiltonian Path (a variant from one of Kar’s 21)

Travelling Salesman Problem (from 1930 or earlier)
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co-NP and co-P

co-NP and co-P
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co-NP and co-P Definitions and Properties

The class co-NP

Definition w8.1

A problem is in co-X if and only if its complement is in X.

Phrased more formally, applied to X = NP: Let L̄ = Σ∗ \ L

co-NTIME(t(n)) = {L | L̄ ∈ NTIME(t(n))} co-NP =
⋃
k∈N

co-NTIME(nk)

Key Messages (applied to X = NP)

∠ No matter whether w ∈ L or w /∈ L, the decision can be made in (non-deterministic)
polytime, both for L ∈ NP and/or L ∈ co-NP.

∠ For NP versus co-NP problems, we get different properties:
For L ∈ NP, we can provide a certificate for yes-instances (i.e., w ∈ L)

w ∈ L: The non-det. TM (for L) accepts w on at least one path.
w /∈ L: The non-det. TM (for L) rejects w on all paths.

For L ∈ co-NP, we can provide a certificate for no-instances (i.e., w /∈ L)
w ∈ L: The non-det. TM (for L̄) reject w on all paths.
w /∈ L: The non-det. TM (for L̄) accepts w on at least one path.
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co-NP and co-P Definitions and Properties

Properties of co-NP and co-P

Note that it’s still not known whether NP
?
= co-NP.

Theorem w8.2

1 P ⊆ co-NP (thus: P ⊆ NP ∩ co-NP)

2 If P = NP, then P = NP = co-NP.

Proof.

Because P is closed under complementation.

Once more on NP vs. co-NP

∠ For L ∈ NP we have a (poly-size) certificate for YES-instances (i.e., w ∈ L)

∠ For L ∈ co-NP we have a (poly-size) certificate for NO-instances (i.e., w /∈ L)

∠ What if NP = co-NP? We have (poly-size) certificate for any instance.

∠ What if NP ̸= co-NP? Then, there are problems that guarantee poly-size certificates
for only one answer.
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co-NP and co-P Definitions and Properties

co-NP-Hardness and -Completeness vs. NP ...

Remark: Hardness and Completeness for Co-NP are defined as for any other class:

Definition w8.3

A problem B is co-NP-hard if every A ∈ co-NP is P-reducible to B.
A problem B is co-NP-complete if it’s in co-NP and co-NP-hard.

So, what problems are “harder” NP or co-NP? I.e., which problem would you rather
attempt to solve? One that’s NP-complete or one that’s co-NP-complete?

That depends on our technology and assumptions!

∠ Solvers are usually optimized to find solutions, not to disprove their existence.

∠ Thus, if you expect your problem to have the respective property, NP works better,
otherwise co-NP. Thus,

Proving w ∈ L for L NP-complete is usually easy, proving w /∈ L is hard.
Proving w /∈ L for L co-NP-complete is usually easy, proving w ∈ L is hard.

Because solvers find certificates!
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co-NP and co-P NP and co-NP vs. Variants of SAT

Variants of SAT

Let’s go through SAT:

∠ SAT =

{⟨ϕ⟩ | ϕ has a satisfying valuation}
∠ UNSAT = {⟨ϕ⟩ | ϕ has no satisfying valuation} (Note ⟨ϕ⟩ ∈ SAT iff ⟨ϕ⟩ /∈ UNSAT )

∠ TAUT = {⟨ϕ⟩ | ϕ has no unsatisfying valuations = has only satisfying valuations}

How do they relate?

∠ UNSAT:

ϕ ∈ UNSAT : all valuations make ϕ wrong
ϕ /∈ UNSAT : there is a valuation that makes ϕ true

∠ TAUT:

ϕ ∈ TAUT : all valuations make ϕ true
ϕ /∈ TAUT : there is a valuation that makes ϕ false

Does a negation help (or not)?

∠ ϕ ∈ SAT iff ¬ϕ /∈ TAUT (So you see “it’s flipped”)

∠ ϕ ∈ TAUT iff ¬ϕ ∈ UNSAT (No “flipping” here)
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co-NP and co-P NP and co-NP vs. Variants of SAT

TAUT is co-NP-complete.

Theorem w8.4

TAUT is co-NP-complete.

Proof.

∠ Hardness: Covered in the tutorial.

∠ Membership:

Guess a valuation π.
Return true iff π makes the formula false.

Correct?

Keep in mind: For co-NP membership we need to show that the complement is in NP.
The complement of a tautology is that that there exists an assignment that makes it
true. That’s what checked in NP.
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Theorem w8.4

TAUT is co-NP-complete.

Proof.

∠ Hardness: Covered in the tutorial.

∠ Membership:

Guess a valuation π.
Return true iff π makes the formula true.

Now? No, that’s still an NP proof (we guess to say YES!), and a wrong one again:
It’s not sufficient to have one true assignment, all must be true!

Keep in mind: For co-NP membership we need to show that the complement is in NP.
The complement of a tautology is that that there exists an assignment that makes it
true. That’s what checked in NP.

Pascal Bercher week 8: Classes P, NP, and co-NP Semester 1, 2025 47 / 48



co-NP and co-P NP and co-NP vs. Variants of SAT

TAUT is co-NP-complete.

Theorem w8.4

TAUT is co-NP-complete.

Proof.

∠ Hardness: Covered in the tutorial.

∠ Membership:
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Now?!
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Theorem w8.4

TAUT is co-NP-complete.

Proof.

∠ Hardness: Covered in the tutorial.

∠ Membership:

Guess a valuation π.
Return false iff π makes the formula true.

Now?! Finally, we return false after the guessing, but ... this really doesn’t make
sense: there’s nothing wrong with finding a true assignment...

Keep in mind: For co-NP membership we need to show that the complement is in NP.
The complement of a tautology is that that there exists an assignment that makes it
true. That’s what checked in NP.
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TAUT is co-NP-complete.

Theorem w8.4

TAUT is co-NP-complete.

Proof.

∠ Hardness: Covered in the tutorial.

∠ Membership:

Guess a valuation π.
Return false iff π makes the formula false.

Now! :) We return false if we can guess an assignment that makes it false. (And true
otherwise.)

Keep in mind: For co-NP membership we need to show that the complement is in NP.
The complement of a tautology is that that there exists an assignment that makes it
true. That’s what checked in NP.
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co-NP and co-P NP and co-NP vs. Variants of SAT

On the Hardness of TAUT

Theorem w8.5

If TAUT is in P, then every problem in NP is in P.

Proof.

We show that we could solve any SAT problem in P if TAUT is in P. (SAT is NP-hard!)

∠ A formula ϕ is satisfiable if ¬ϕ is not a tautology. (You can easily prove this.)
E.g., ϕ = (x ∨ ¬y) ∧ y , ¬ϕ = (¬x ∧ y) ∨ ¬y .
For π(x) = ⊤ and π(y) = ⊤ we get π |= ϕ and π ̸|= ¬ϕ.

∠ Solve SAT in polytime:

If ϕ is the input, run TAUT on ¬ϕ.
flip the result.

Question

∠ Have we shown that TAUT is NP-hard?

∠ No! This was not a polytime reduction from SAT to TAUT. Why?

∠ Because we flipped the result! We don’t implement w ∈ SAT iff f (w) ∈ TAUT.
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