COMP3630 / COMP6363

week 9: PSPACE to (N)EXPTIME

This Lecture Covers Chapter 11 of HMU: Additional Classes of Problems

slides created by: By Dirk Pattinson and Pascal Bercher

convenor & lecturer: Pascal Bercher

The Australian National University

Semester 1, 2025

Content of this Chapter

- A PSPACE-complete problem: QBF
- PSPACE vs. NPSPACE (Savitch's Theorem)
- PSPACE vs. co-PSPACE
- P vs. PSPACE vs. EXPTIME
- Overview and Outlook of other classes

Additional Reading: Chapter 11 of HMU.

A **PSPACE**-complete

Problem: QBFs

Quantified Boolean Formulae (QBFs)

Definition w9.1

If V is a set of variables, then the set of <u>quantified boolean formulae</u> over V is given by:

- ullet Every variable $v \in V$ is a QBF, and so are \top and \bot
- \bullet If $\phi,\,\psi$ are QBF, then so are $\phi\wedge\psi$ and $\phi\vee\psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $(\exists v)\phi$ and $(\forall v)\psi$ are QBF.

Quantified Boolean Formulae (QBFs)

Definition w9.1

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

- Every variable $v \in V$ is a QBF, and so are \top and \bot
- \bullet If $\phi,\,\psi$ are QBF, then so are $\phi\wedge\psi$ and $\phi\vee\psi$
- If ϕ is a QBF, then so is $\neg \phi$.
- If ϕ is a QBF and $v \in V$ is a variable, then $(\exists v)\phi$ and $(\forall v)\psi$ are QBF.

Definition w9.2

In a QBF ϕ , a variable v is bound if it is in the scope of a quantifier $\forall v$ or $\exists v$. The variable v is free otherwise.

If $x \in \{\top, \bot\}$ is a truth value, then $\phi[x/v]$ is the result of replacing all <u>free</u> occurrences of v with x (think of / as =:, i.e., x =: v).

Example

$$(\forall x) (\exists y) (((\exists x) (x \lor y)) \land \neg(x \land y))$$

- > Usually, one writes these formulae without the parentheses pairs around the quantified variables, e.g., $\forall x \phi$ instead of $(\forall x) \phi$.
- > Note how inner quantifiers have precedence over outer ones.
- > Also, this formula does not have free variables, i.e., all are bound.

The formula above has the following policy as solution:

$$\begin{array}{c|cccc} x & y & z \\ \hline \bot & \top & \top \\ \hline \top & \bot & \top & \end{array} \qquad x = \bot : \quad (\top \lor \top) \land \neg (\bot \land \top) = \top \land \neg \bot = \top \\ x = \top : \quad (\top \lor \bot) \land \neg (\top \land \bot) = \top \land \neg \bot = \top \end{array}$$

- > We have two lines because we need to provide an assignment for each x
- > Had we more universally quantified variables, we had more "branching"

Example

$$(\forall x) (\exists y) (((\exists x) (x \lor y)) \land \neg (x \land y)) = (\forall x) (\exists y) (((\exists z) (z \lor y)) \land \neg (x \land y))$$

- > Usually, one writes these formulae without the parentheses pairs around the quantified variables, e.g., $\forall x \phi$ instead of $(\forall x) \phi$.
- > Note how inner quantifiers have precedence over outer ones.
- > Also, this formula does not have free variables, i.e., all are bound.

The formula above has the following policy as solution:

$$\begin{array}{c|cccc} x & y & z \\ \hline \bot & \top & \top \\ \hline \top & \bot & \top & \end{array} \qquad x = \bot : \quad (\top \lor \top) \land \neg (\bot \land \top) = \top \land \neg \bot = \top \\ x = \top : \quad (\top \lor \bot) \land \neg (\top \land \bot) = \top \land \neg \bot = \top \end{array}$$

- > We have two lines because we need to provide an assignment for each x
- > Had we more universally quantified variables, we had more "branching"

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

• evalQBF(
$$\forall v \phi$$
) = $\phi[\top/v] \land \phi[\bot/v]$

• evalQBF(
$$\exists v \phi$$
) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

- evalQBF($\forall v \phi$) = $\phi[\top/v] \land \phi[\bot/v]$
- evalQBF($\exists v \phi$) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v_1, \ldots, v_n is:

- satisfiable if $\exists v_1 \exists v_2 \dots \exists v_n \phi$ evaluates to true.
- a tautology if $\forall v_1 \forall v_2 \dots \forall v_n \phi$ evaluates to true.

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

- evalQBF($\forall v \phi$) = $\phi[\top/v] \land \phi[\bot/v]$
- evalQBF($\exists v \phi$) = $\phi[\top/v] \lor \phi[\bot/v]$

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v_1, \ldots, v_n is:

- satisfiable if $\exists v_1 \exists v_2 \dots \exists v_n \phi$ evaluates to true.
- a tautology if $\forall v_1 \forall v_2 \dots \forall v_n \phi$ evaluates to true.

Definition w9.3

The QBF problem is the problem of determining whether a given quantified boolean formula without free variables evaluates to true:

$$QBF = \{ \langle \phi \rangle \mid \phi \text{ a true QBF without free variables} \}$$

Pascal Bercher

> Evaluating a boolean formula (not a QBF!) without free variables (i.e., with variables substituted by \top or \bot) is in **P**.

- > Evaluating a boolean formula (not a QBF!) without free variables (i.e., with variables substituted by \top or \bot) is in **P**.
- > So, an idea is to substitute all bound variables by its truth values:
 - $(\forall v \phi) \leadsto \phi [\top/v] \land \phi [\bot/v]$
 - $\bullet \ (\exists v \phi) \leadsto \phi [\top/v] \lor \phi [\bot/v]$

- > Evaluating a boolean formula (not a QBF!) without free variables (i.e., with variables substituted by \top or \bot) is in **P**.
- > So, an idea is to substitute all bound variables by its truth values:
 - $(\forall v \phi) \leadsto \phi[\top/v] \land \phi[\bot/v]$ • $(\exists v \phi) \leadsto \phi[\top/v] \lor \phi[\bot/v]$
- > Which runtime does this approach have?

- > Evaluating a boolean formula (not a QBF!) without free variables (i.e., with variables substituted by ⊤ or ⊥) is in P.
- > So, an idea is to substitute all bound variables by its truth values:

•
$$(\forall v \phi) \leadsto \phi[\top/v] \land \phi[\bot/v]$$

• $(\exists v \phi) \leadsto \phi[\top/v] \lor \phi[\bot/v]$

- > Which runtime does this approach have? Shows **EXPTIME** membership due to doubling the formula with each substitution.
- Q. Can we do better?
- **A.** Interestingly, we don't need to reduce the <u>runtime</u> below **EXPTIME**, so it's fine that even a "better result" still requires **EXPTIME**! But we need to reduce the <u>space</u> requirements to **PSPACE** to get to a lower class. (So, note that the procedure above also incurs **EXPSPACE**.)

Main Idea.

- > to evaluate $\forall v \phi$, $\underline{\mathsf{don't}}$ write out $\phi[\top/v] \land \phi[\bot/v]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

Main Idea.

- > to evaluate $\forall \nu \phi$, don't write out $\phi[\top/\nu] \wedge \phi[\bot/\nu]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

Recursive Algorithm evalQBF(ϕ)

 \rightarrow case $\phi = \top$: return \top

Main Idea.

- > to evaluate $\forall \nu \phi$, don't write out $\phi[\top/\nu] \wedge \phi[\bot/\nu]$.
- > instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

- \Rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot

Main Idea.

- > to evaluate $\forall \nu \phi$, don't write out $\phi[\top/\nu] \wedge \phi[\bot/\nu]$.
- ightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

- \rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot

Main Idea.

- > to evaluate $\forall \nu \phi$, don't write out $\phi[\top/\nu] \wedge \phi[\bot/\nu]$.
- ightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

- > case ϕ = \top : return \top
- > case $\phi = (\psi_1 \wedge \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot
- > other cases: analogous

Main Idea.

- \rightarrow to evaluate $\forall v \phi$, don't write out $\phi[\top/v] \land \phi[\bot/v]$.
- \Rightarrow instead, evaluate $\phi[\top/v]$ and $\phi[\bot/v]$ in sequence (avoids exponential space blowup).

Recursive Algorithm evalQBF(ϕ)

- \rightarrow case $\phi = \top$: return \top
- > case $\phi = (\psi_1 \land \psi_2)$: if evalQBF(ψ_1) then return evalQBF(ψ_2) else return \bot
- > case $\phi = \forall v \psi$: if evalQBF($\psi[\top/v]$) then return evalQBF($\phi[\bot/v]$) else return \bot
- > other cases: analogous

Analysis.

Given QBF ϕ of size n:

- > at most *n* recursive calls active
- > each call stores a partially evaluated QBF of size *n*
- > total space requirement $\mathcal{O}(n^2)$

This shows **PSPACE** membership of QBF.

Proof Idea/Overview.

To show hardness, we have to reduce \underline{any} problem in PSPACE to QBF:

Pascal Bercher

Proof Idea/Overview.

To show hardness, we have to reduce any problem in PSPACE to QBF:

- > Let L be in PSPACE.
- > Then L is accepted by a polyspace-bounded TM with (cell) bound p(n).
- > If $w \in L$, then M accepts in ≤ $c^{p(n)}$ moves (for some constant c). Why?

Proof Idea/Overview.

To show hardness, we have to reduce any problem in PSPACE to QBF:

- > Let *L* be in **PSPACE**.
- \rightarrow Then L is accepted by a polyspace-bounded TM with (cell) bound p(n).
- > If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves (for some constant c). Why? After an exponential number of moves over the available cells, we will run into a cycle. But by assumption, the TM halts. (Alternatively: how many IDs of some maximal length can we have?)

Proof Idea/Overview.

To show hardness, we have to reduce any problem in **PSPACE** to QBF:

- > Let *L* be in **PSPACE**.
- \rightarrow Then L is accepted by a polyspace-bounded TM with (cell) bound p(n).
- > If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves (for some constant c). Why? After an exponential number of moves over the available cells, we will run into a cycle. But by assumption, the TM halts. (Alternatively: how many IDs of some maximal length can we have?)
- > Construct QBF ϕ : "there is a sequence of $c^{p(n)}$ IDs that accepts w".
- > Use "recursive doubling" to perform this reduction in polytime.

This has similarities to Cook's SAT encoding, why?

Proof Idea/Overview.

To show hardness, we have to reduce any problem in **PSPACE** to QBF:

- > Let *L* be in **PSPACE**.
- > Then L is accepted by a polyspace-bounded TM with (cell) bound p(n).
- > If $w \in L$, then M accepts in $\leq c^{p(n)}$ moves (for some constant c). Why? After an exponential number of moves over the available cells, we will run into a cycle. But by assumption, the TM halts. (Alternatively: how many IDs of some maximal length can we have?)
- > Construct QBF ϕ : "there is a sequence of $c^{p(n)}$ IDs that accepts w".
- > Use "recursive doubling" to perform this reduction in polytime.

This has similarities to Cook's SAT encoding, why?

- > For SAT, we used boolean formulae to represent poly many poly-bounded IDs.
- > Now, we use QBFs to represent all runs of poly-bounded IDs.

Variables.

- \succ We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \succ variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID, $0\leq j\leq p(n)$, is s.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID, $0\leq j\leq p(n)$, is s.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

> We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the current and successor configuration.

Pascal Bercher

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s} = \top$ iff the j-th symbol of the resp. ID, $0 \le j \le p(n)$, is s.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the current and successor configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \exists x_{0,\gamma_1} \dots \exists x_{0,\gamma_{|\Gamma|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),\gamma_{|\Gamma|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID, $0\leq j\leq p(n)$, is s.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the current and successor configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \exists x_{0,\gamma_1} \dots \exists x_{0,\gamma_{|\Gamma|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),\gamma_{|\Gamma|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem.

$$X_{0,q_0} \wedge X_{1,w_1} \cdots \wedge X_{|w|,w_{|w|}} \wedge X_{|w|+1,B} \wedge \cdots \wedge X_{p(n),B}$$

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s}=\top$ iff the j-th symbol of the resp. ID, $0\leq j\leq p(n)$, is s.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

- > We use X as the tuple of all x-variables, and Y as the tuple of all y-variables. They will be used to encode the current and successor configuration.
 - $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|Q|}} \exists x_{0,\gamma_1} \dots \exists x_{0,\gamma_{|\Gamma|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),\gamma_{|\Gamma|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem. $x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{|w|,w_{|w|}} \wedge x_{|w|+1,B} \wedge \cdots \wedge x_{p(n),B}$
- > A: says that Y represents an accepting ID ID_a , just as in Cook's theorem.

 $\bigvee_{\substack{0 \leq i \leq p(n) \\ a \in F}} y_{i,q}$

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s} = \top$ iff the *j*-th symbol of the resp. ID, $0 \le j \le p(n)$, is *s*.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

- \rightarrow We use X as the tuple of all x-variables, and Y as the tuple of all y-variables.
 - They will be used to encode the current and successor configuration.
 - (\exists **X**) is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|\mathcal{Q}|}} \exists x_{0,\gamma_1} \dots \exists x_{0,\gamma_{|\Gamma|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),\gamma_{|\Gamma|}}$, i.e., we quantify all x variables.
 - \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that X initially represents $ID_0 = q_0 w$, just as in Cook's theorem.

$$X_{0,q_0} \wedge X_{1,w_1} \cdots \wedge X_{|w|,w_{|w|}} \wedge X_{|w|+1,B} \wedge \cdots \wedge X_{p(n),B}$$

- > **A**: says that Y represents an accepting ID ID_a , just as in Cook's theorem. $\bigvee_{0 \le i \le p(n)} y_{i,q}$
- $\boldsymbol{\succ}$ U: says that every ID has at most one symbol per position, just as in Cook's theorem.

Variables.

- \rightarrow We use two sets of variables, $x_{j,s}$ and $y_{j,s}$. Need $\mathcal{O}(p(n))$ variables to represent an ID:
- \rightarrow variables $x_{j,s}/y_{j,s} = \top$ iff the *j*-th symbol of the resp. ID, $0 \le j \le p(n)$, is *s*.

Structure of the QBF.

$$\phi = (\exists X)(\exists Y)(S \land N \land A \land U)$$

- \rightarrow We use X as the tuple of all x-variables, and Y as the tuple of all y-variables.
 - They will be used to encode the current and successor configuration. • $(\exists \mathbf{X})$ is short for $\exists x_{0,q_0} \dots \exists x_{0,q_{|D|}} \exists x_{0,\gamma_1} \dots \exists x_{0,\gamma_{|D|}} \dots \exists x_{p(n),q_0} \dots \exists x_{p(n),\gamma_{|D|}}$.
 - i.e., we quantify all x variables.
- \circ ($\exists \mathbf{Y}$) is the very same as X, but works on all the y variables instead.
- > **S**: says that *X* initially represents $ID_0 = q_0 w$, just as in Cook's theorem.
 - $x_{0,q_0} \wedge x_{1,w_1} \cdots \wedge x_{|w|,w_{|w|}} \wedge x_{|w|+1,B} \wedge \cdots \wedge x_{p(n),B}$
- > **A**: says that Y represents an accepting ID ID_a , just as in Cook's theorem. $\bigvee_{0 \le i \le p(n)} y_{i,q}$
- ightarrow U: says that every ID has at most one symbol per position, just as in Cook's theorem.
- > N: transition from $X \approx ID_0$ to some $Y \approx ID_a$ in $\leq c^{p(n)}$ steps (see next slide).

Pascal Bercher

Recursive Doubling

 $\rightarrow N = N(ID_0, ID_a)$: have sequence of length $\leq c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)

- > $N = N(ID_0, ID_a)$: have sequence of length $\leq c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)
- > Detour: $\mathit{N}_0(X,Y) = X \vdash^* Y \text{ in } \leq 1 \text{ steps: as for Cook's theorem}$

Recursive Doubling

- $> N = N(ID_0, ID_a)$: have sequence of length $\le c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)
- > Detour: $N_0(X,Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X ⊢^* Y$ in $\leq 2^i$ steps:

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)

- > $N = N(ID_0, ID_a)$: have sequence of length $\leq c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X \vdash^* Y$ in ≤ 2^i steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)

- > $N = N(ID_0, ID_a)$: have sequence of length $\leq c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X \vdash^* Y$ in ≤ 2^i steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)
- \rightarrow Let $N(X,Y) = N_k(X,Y)$ where $2^k \ge c^{p(n)}$ (note $k \in \mathcal{O}(p(n))$)
- \rightarrow each N_i can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
- \rightarrow so $\mathcal{O}(p(n)^2)$ overall

- $> N = N(ID_0, ID_a)$: have sequence of length $\le c^{p(n)}$ from (formula satisfying) ID_0 to (formula satisfying) ID_a . (I.e., from the start ID to some accepting ID)
- > Detour: $N_0(X, Y) = X ⊢^* Y$ in ≤ 1 steps: as for Cook's theorem
- > Detour: $N_i(X, Y) = X \vdash^* Y$ in ≤ 2^i steps:

$$N_i(X, Y) = (\exists K)(\forall P)(\forall Q)[$$

$$((P, Q) = (X, K) \lor (P, Q) = (K, Y))$$

$$\rightarrow N_{i-1}(P, Q)]$$

- \rightarrow Could also say $(\exists K)(N_{i-1}(X,K) \land N_{i-1}(K,Y))$
- \rightarrow this would write out N_{i-1} twice, doubling formula size at each step
- > above trick is key step in proof to keep formula size small (prevent doubling)
- > Let $N(X, Y) = N_k(X, Y)$ where $2^k \ge c^{p(n)}$ (note $k \in \mathcal{O}(p(n))$)
- \rightarrow each N_i can be written in $\mathcal{O}(p(n))$ many steps, plus the time to write N_{i-1}
- \rightarrow so $\mathcal{O}(p(n)^2)$ overall

By construction, $\phi = \top$ iff M accepts w.

Pascal Bercher

PSPACE vs. NPSPACE

(Savitch's Theorem)

Note

The following is (maybe?) remarkable because we do not know whether $\mathbf{P} = \mathbf{NP}$.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

Note

The following is (maybe?) remarkable because we do not know whether $\mathbf{P} = \mathbf{NP}$.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

Proof.

> Let $L \in \mathbf{NPSPACE}$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.

Note

The following is (maybe?) remarkable because we do not know whether $\mathbf{P} = \mathbf{NP}$.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- \rightarrow Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - M has just a single accepting state, which is a halting state.

Note

The following is (maybe?) remarkable because we do not know whether $\mathbf{P} = \mathbf{NP}$.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- \rightarrow Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - M has just a single accepting state, which is a halting state.
 - When it accepts, the tape is empty.
 - \circ Taken together, there is just a single halting configuration. (We call it J.)

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- \rightarrow Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - M has just a single accepting state, which is a halting state.
 - When it accepts, the tape is empty.
 - \circ Taken together, there is just a single halting configuration. (We call it J.)
- > Recall that M has $c^{p(n)}$ different IDs, were n = |w|.

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- \rightarrow Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - *M* has just a single accepting state, which is a halting state.
 - When it accepts, the tape is empty.
 - \circ Taken together, there is just a single halting configuration. (We call it J.)
- > Recall that M has $c^{p(n)}$ different IDs, were n = |w|.
- > Design a deterministic TM M', which decides whether $I \vdash^* J$ is possible within at most $c^{p(n)}$ steps. M' is space-bounded by p(n).

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- → Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - M has just a single accepting state, which is a halting state.
 - When it accepts, the tape is empty.
 - \circ Taken together, there is just a single halting configuration. (We call it J.)
- > Recall that *M* has $c^{p(n)}$ different IDs, were n = |w|.
- > Design a deterministic TM M', which decides whether $I \vdash^* J$ is possible within at most $c^{\rho(n)}$ steps. M' is space-bounded by p(n).
- > We formalize this via predicate $P(ID_1, ID_2, m)$, initialized to $P(I, J, c^{p(n)})$. Wait, isn't the exponential problematic?

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem w9.1

PSPACE = NPSPACE

Savitch's Theorem, 1970

- → Let $L \in NPSPACE$ and M be non-det. TM, polyspace-bounded by p(n) deciding L.
- \rightarrow We are allowed to assume that M has the following properties:
 - M has just a single accepting state, which is a halting state.
 - When it accepts, the tape is empty.
 - \circ Taken together, there is just a single halting configuration. (We call it J.)
- > Recall that *M* has $c^{p(n)}$ different IDs, were n = |w|.
- > Design a deterministic TM M', which decides whether $I \vdash^* J$ is possible within at most $c^{p(n)}$ steps. M' is space-bounded by p(n).
- > We formalize this via predicate $P(ID_1, ID_2, m)$, initialized to $P(I, J, c^{p(n)})$. Wait, isn't the exponential problematic? No, since we encode it logarithmically.

```
Goal. Implement P(I,J,m)=I\vdash^*J in deterministic polyspace P(I, J, m): for all IDs K with length <= p(n) + 1 do { if P(I, K, m/2) and P(K, J, m/2) then return true } return false
```

Q. How much space does this implementation need? (Time does not matter!)

Goal. Implement $P(I,J,m) = I \vdash^* J$ in deterministic polyspace P(I, J, m): for all IDs K with length <= p(n) + 1 do { if P(I, K, m/2) and P(K, J, m/2) then return true } return false

Q. How much space does this implementation need? (Time does not matter!)

Goal. Implement P(I, J, m) = I → J in deterministic polyspace
P(I, J, m): for all IDs K with length <= p(n) + 1 do {
 if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false</pre>

Q. How much space does this implementation need? (Time does not matter!)

$$P(I, K_{0} = J, m)$$

$$P(I, K_{1}, m/2)$$

$$P(K_{1}, K_{0} = J, m/2)$$

$$P(I, K_{2}, m/4) \quad P(K_{2}, K_{1}m/4)$$

$$P(I, K_{i}, m/2^{i}) \quad P(K_{i}, K_{i-1}, m/2^{i})$$

> Required space: $\mathcal{O}(\log(c^{p(n)}) \cdot p(n)) = \mathcal{O}(p^2(n)).$

Goal. Implement $P(I, J, m) = I \vdash^* J$ in deterministic polyspace

```
P(I, J, m): for all IDs K with length <= p(n) + 1 do {
  if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false</pre>
```

Q. How much space does this implementation need? (Time does not matter!)

$$P(I, K_{0} = J, m)$$

$$P(I, K_{1}, m/2)$$

$$P(I, K_{2}, m/4)$$

$$P(K_{1}, K_{0} = J, m/2)$$

$$P(I, K_{1}, m/2)$$

$$P(K_{1}, K_{0} = J, m/2)$$

$$P(K_{1}, K_{0} = J, m/2)$$

- > Required space: $\mathcal{O}(\log(c^{p(n)}) \cdot p(n)) = \mathcal{O}(p^2(n)).$
- **Q.** Earlier we were assuming that there's a unique J. Did we have to?

Goal. Implement $P(I, J, m) = I \vdash^* J$ in deterministic polyspace

```
P(I, J, m): for all IDs K with length <= p(n) + 1 do {
  if P(I, K, m/2) and P(K, J, m/2) then return true
}
return false</pre>
```

Q. How much space does this implementation need? (Time does not matter!)

$$P(I, K_{0} = J, m)$$

$$P(I, K_{1}, m/2)$$

$$P(K_{1}, K_{0} = J, m/2)$$

- > Required space: $\mathcal{O}(\log(c^{p(n)}) \cdot p(n)) = \mathcal{O}(p^2(n)).$
- **Q.** Earlier we were assuming that there's a unique J. Did we have to? **A.** No, we could have just generated all possible (accepting) IDs and try all of them!

Recap

Recall: A problem is in **co-X** if and only if its complement is in **X**.

Applied to
$$X = PSPACE$$
:

Let
$$\bar{L} = \Sigma^* \setminus L$$

$$\mathsf{PSPACE} = \bigcup_{k \in \mathbb{N}} \mathsf{DSPACE}(n^k)$$

$$\operatorname{co-PSPACE} = \bigcup_{k \in \mathbb{N}} \operatorname{co-DSPACE}(n^k)$$

Also, hardness and completeness is again defined as always, also for co-PSPACE.

$$\mathsf{ALL}_\mathsf{NFA} = \{ \langle \mathit{A} \rangle : \mathit{A} \text{ is an NFA and } \mathit{L}(\mathit{A}) = \Sigma^* \}$$

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

Q. Why don't we know \in **NP**?

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in \mathbf{NP}$ nor whether $ALL_{NFA} \in \mathbf{co}\text{-}\mathbf{NP}$.

Q. Why don't we know \in **NP**? **A.** Unclear what the certificate should be.

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP**?

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP? A.** Words can be arbitrarily (non-poly) long!

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in \mathbf{NP}$ nor whether $ALL_{NFA} \in \mathbf{co-NP}$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP? A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL^o_{NFA} – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

Technically, the complement also contains all strings that are not even NFAs. But testing for this is trivial, so no need mentioning this!

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP? A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL^o_{NFA} – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

Let M implement the following non-deterministic procedure when called with input $\langle A \rangle$ and $A = (Q, \Sigma, \delta, q_0, F)$ is an NFA.

Mark q_0 (as being visited). If $q_0 \notin F$, accept.

Pascal Bercher

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in co-NP? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

Let M implement the following non-deterministic procedure when called with input $\langle A \rangle$ and $A = (Q, \Sigma, \delta, q_0, F)$ is an NFA.

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in co-NP? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

- ① Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - 3 If $m \cap F = \emptyset$, accept.

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP**? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

- ① Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - ③ If $m \cap F = \emptyset$, accept. // Then, we found a state that's not accepted. // I.e., not all reachable states are accepting states, then some word $wa \notin L(A)$.

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in co-NP? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

- ① Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - ③ If $m \cap F = \emptyset$, accept. // Then, we found a state that's not accepted. // I.e., not all reachable states are accepting states, then some word $wa \notin L(A)$.
- 3 reject

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP**? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

- ① Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - ③ If $m \cap F = \emptyset$, accept. // Then, we found a state that's not accepted. // I.e., not all reachable states are accepting states, then some word $wa \notin L(A)$.
- ③ reject // Since we can't find a word that's rejected, so $L(A) = \Sigma^*$

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in co-NP? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

- ① Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - ③ If $m \cap F = \emptyset$, accept. // Then, we found a state that's not accepted. // I.e., not all reachable states are accepting states, then some word $wa \notin L(A)$.
- 3 reject // Since we can't find a word that's rejected, so $L(A) = \Sigma^*$
- > Hence $ALL_{NFA}^c \in NPSPACE$ and thus, by definition, $ALL_{NFA} \in co-NPSPACE$

$$\mathsf{ALL}_{\mathsf{NFA}} = \{ \langle A \rangle : A \text{ is an NFA and } L(A) = \Sigma^* \}$$

Currently, it's known neither whether $ALL_{NFA} \in NP$ nor whether $ALL_{NFA} \in co-NP$.

- **Q.** Why don't we know \in **NP**? **A.** Unclear what the certificate should be.
- **Q.** Why don't we know \in **co-NP**? **A.** Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALL $_{NFA}^c$ – the complement, which accepts $\langle A \rangle$ if $L(A) \neq \Sigma^*$

Let M implement the following non-deterministic procedure when called with input $\langle A \rangle$ and $A = (Q, \Sigma, \delta, q_0, F)$ is an NFA.

- **4** Mark q_0 (as being visited). If $q_0 \notin F$, accept. // Then, $\epsilon \notin L(A)$, thus $L(A) \neq \Sigma^*$
- 2 Repeat $2^{|Q|}$ times:
 - ① Let $m \subseteq Q$ be the currently marked states.
 - ② Non-deterministically pick some $a \in \Sigma$ and change m to $\bigcup_{q \in m} \delta(q, a)$.
 - ③ If $m \cap F = \emptyset$, accept. // Then, we found a state that's not accepted. // I.e., not all reachable states are accepting states, then some word $wa \notin L(A)$.
- 3 reject // Since we can't find a word that's rejected, so $L(A) = \Sigma^*$
- \rightarrow Hence $ALL_{NFA}^c \in NPSPACE$ and thus, by definition, $ALL_{NFA} \in co-NPSPACE$
- \rightarrow Since NPSPACE = PSPACE, we also get ALL_{NFA} \in co-PSPACE

Pascal Bercher

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Proof.

First, show **co-PSPACE** \supseteq **PSPACE**, i.e., $L \in$ **PSPACE** implies $L \in$ **co-PSPACE**.

П

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Proof.

First, show **co-PSPACE** \supseteq **PSPACE**, i.e., $L \in$ **PSPACE** implies $L \in$ **co-PSPACE**.

- > Let L ∈ PSPACE. Note that L ∈ co-PSPACE iff L^c ∈ PSPACE.
- > Prove I c in **PSPACE** via:

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Proof.

First, show co-PSPACE \supseteq PSPACE, i.e., $L \in$ PSPACE implies $L \in$ co-PSPACE.

- > Let $L \in PSPACE$. Note that $L \in co-PSPACE$ iff $L^c \in PSPACE$.
- > Prove I c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

Then, show **PSPACE** ⊇ **co-PSPACE** in the analogous way.

PSPACE vs. co-PSPACE

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Proof.

First, show **co-PSPACE** \supseteq **PSPACE**, i.e., $L \in$ **PSPACE** implies $L \in$ **co-PSPACE**.

- > Let L ∈ **PSPACE**. Note that L ∈ **co-PSPACE** iff L^c ∈ **PSPACE**.
- > Prove I c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

Then, show **PSPACE** \supseteq **co-PSPACE** in the analogous way.

A lot to unpack here ... Some essential key points to understand:

- > Why flipping the result is not allowed in NP / co-NP proofs,
- > but it is allowed in all deterministic classes.
- > Thus, DSPACE (hence NSPACE) and DTIME are closed under complementation.

On "Flipping Results", Part 1: Why **NP/co-NP** fails.

Disclaimer:

- > The following proof is the same as before, but for NP/co-NP.
- > Unless $L \in \mathbf{P}$, or $\mathbf{NP} = \mathbf{co} \cdot \mathbf{NP}$, the following will fail!

Let $L \in NP$ and you want to prove $L \in co-NP$:

On "Flipping Results", Part 1: Why **NP/co-NP** fails.

Disclaimer:

- > The following proof is the same as before, but for NP/co-NP.
- > Unless $L \in \mathbf{P}$, or $\mathbf{NP} = \mathbf{co} \cdot \mathbf{NP}$, the following will fail!

Let $L \in \mathbf{NP}$ and you want to prove $L \in \mathbf{co}\text{-}\mathbf{NP}$:

- > Let L ∈ **NP**. Note that L ∈ **co-NP** iff L^c ∈ **NP**.
- \rightarrow Prove L^c in **NP** via:
 - First, decide $w \in L$ using **NP** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-time.

Now, what's wrong about that proof?

On "Flipping Results", Part 1: Why **NP/co-NP** fails.

Disclaimer:

- > The following proof is the same as before, but for NP/co-NP.
- > Unless $L \in \mathbf{P}$, or $\mathbf{NP} = \mathbf{co} \cdot \mathbf{NP}$, the following will fail!

Let $L \in \mathbf{NP}$ and you want to prove $L \in \mathbf{co}\text{-}\mathbf{NP}$:

- > Let L ∈ **NP**. Note that L ∈ **co-NP** iff L^c ∈ **NP**.
- \rightarrow Prove L^c in **NP** via:
 - First, decide $w \in L$ using **NP** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-time.

Now, what's wrong about that proof?

- > To show L^c ∈ **NP**, we need o provide an NTM M with $L(M) = L^c$.
- > However, our NTM M used in the above proof has L(M) = L!
- > So, why was that allowed for **PSPACE**?! See next slide!

In our proof:

- > Let L ∈ PSPACE. Note that L ∈ co-PSPACE iff L^c ∈ PSPACE.
- > Prove L^c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

In our proof:

- > Let $L \in PSPACE$. Note that $L \in co-PSPACE$ iff $L^c \in PSPACE$.
- > Prove L^c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

- > To show L^c ∈ **PSPACE**, we need o provide a DTM M with $L(M) = L^c$.
- \rightarrow So, this proof implicitly claims that the procedure above is such an M. Is it?

In our proof:

- > Let $L \in PSPACE$. Note that $L \in co-PSPACE$ iff $L^c \in PSPACE$.
- > Prove L^c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

- > To show L^c ∈ **PSPACE**, we need o provide a DTM M with $L(M) = L^c$.
- \rightarrow So, this proof implicitly claims that the procedure above is such an M. Is it?
- \rightarrow This requires some extra reasoning. M exists, but uses an "inner" TM M'.
 - M' is a DTM that decides L in **PSPACE** (exists by assumption).
 - M simulates M' on w, which terminates (deterministically!) after poly space.
 M' then flips this result, so this does not change the class.

In our proof:

- > Let $L \in \mathsf{PSPACE}$. Note that $L \in \mathsf{co-PSPACE}$ iff $L^c \in \mathsf{PSPACE}$.
- > Prove L^c in **PSPACE** via:
 - First, decide $w \in L$ using **PSPACE** (possible by assumption).
 - Then, flip result for w. This decides L^c , taking poly-space.

- > To show L^c ∈ **PSPACE**, we need o provide a DTM M with $L(M) = L^c$.
- > So, this proof implicitly claims that the procedure above is such an M. Is it?
- \rightarrow This requires some extra reasoning. M exists, but uses an "inner" TM M'.
 - M' is a DTM that decides L in **PSPACE** (exists by assumption).
 - M simulates M' on w, which terminates (deterministically!) after poly space. M' then flips this result, so this does not change the class.
- > The exact same argument works for all deterministic time classes.

Corollaries

Corollary w9.2

- > All space classes are closed under complementation.
- > All deterministic time classes are closed under complementation.

Corollaries

Corollary w9.2

- > All space classes are closed under complementation.
- > All deterministic time classes are closed under complementation.

Corollary w9.3

- \rightarrow ALL_{NFA} \in **PSPACE**
- \rightarrow ALL $_{NFA}^{c} \in$ **PSPACE**

Corollary w9.2

- > All space classes are closed under complementation.
- > All deterministic time classes are closed under complementation.

Corollary w9.3

- \rightarrow ALL_{NFA} \in **PSPACE**
- \rightarrow ALL $_{NFA}^{c} \in \mathbf{PSPACE}$

Thus, to prove membership in space or deterministic time classes, you can choose to decide the complement of the language instead. Pick whatever is easier!

P vs. PSPACE vs. EXPTIME

Theorem w9.1

 $PSPACE \subseteq EXPTIME$

Proof.

> Let $L \in PSPACE$. We will show that any PSPACE decider runs in exponential time.

23 / 30

Theorem w9.1

PSPACE ⊆ **EXPTIME**

- \rightarrow Let $L \in \textbf{PSPACE}$. We will show that any **PSPACE** decider runs in exponential time.
- > Then, L is decided by some TM M with L(M) = L, such that for all $w \in \Sigma^*$ it decides $w \in L$ with |w| = n within $\mathcal{O}(n^k)$ space for some constant k.
- > How many different TM configurations can we see before running into a loop? (Note that we can't run into a loop! Since *M* is a decider.)

Theorem w9.1

PSPACE ⊆ **EXPTIME**

- → Let $L \in \textbf{PSPACE}$. We will show that any **PSPACE** decider runs in exponential time.
- > Then, L is decided by some TM M with L(M) = L, such that for all $w \in \Sigma^*$ it decides $w \in L$ with |w| = n within $\mathcal{O}(n^k)$ space for some constant k.
- > How many different TM configurations can we see before running into a loop? (Note that we can't run into a loop! Since *M* is a decider.)
 - ullet Each cell can have at most $|\Gamma|$ different symbols.
 - So we have at most $\mathcal{O}(|\Gamma|^{(n^k)})$ different tape configurations.

Theorem w9.1

PSPACE ⊂ **EXPTIME**

- → Let $L \in PSPACE$. We will show that any PSPACE decider runs in exponential time.
- > Then, L is decided by some TM M with L(M) = L, such that for all $w \in \Sigma^*$ it decides $w \in L$ with |w| = n within $\mathcal{O}(n^k)$ space for some constant k.
- > How many different TM configurations can we see before running into a loop? (Note that we can't run into a loop! Since M is a decider.)
 - Each cell can have at most $|\Gamma|$ different symbols.
 - So we have at most $\mathcal{O}(|\Gamma|^{(n^k)})$ different tape configurations.
 - We have |Q| states and at most $\mathcal{O}(n^k)$ head positions.
 - In total we have at most $c^{p(n)} = \mathcal{O}(|Q| \cdot (n^k) \cdot |\Gamma|^{(n^k)})$ TM configurations.

Theorem w9.1

PSPACE ⊂ **EXPTIME**

- \rightarrow Let $L \in \mathbf{PSPACE}$. We will show that any \mathbf{PSPACE} decider runs in exponential time.
- > Then, L is decided by some TM M with L(M) = L, such that for all $w \in \Sigma^*$ it decides $w \in L$ with |w| = n within $\mathcal{O}(n^k)$ space for some constant k.
- > How many different TM configurations can we see before running into a loop? (Note that we can't run into a loop! Since *M* is a decider.)
 - Each cell can have at most $|\Gamma|$ different symbols.
 - So we have at most $\mathcal{O}(|\Gamma|^{(n^k)})$ different tape configurations.
 - We have |Q| states and at most $\mathcal{O}(n^k)$ head positions.
 - In total we have at most $c^{p(n)} = \mathcal{O}(|Q| \cdot (n^k) \cdot |\Gamma|^{(n^k)})$ TM configurations.
- > So, we can just run M and know that it will not run longer than $c^{{\it P}(n)}$, hence in **EXPTIME**

P vs. EXPTIME

Intuitively, $P \subsetneq \text{EXPTIME}$ should hold, since under poly-transformations, we stay withing the respective class, and so have strictly more time available in **EXPTIME**. But, are there really problems that need **EXPTIME**?

To answer this, we require the definition of "small-o" (o), in analogy to "big-O" (\mathcal{O}).

Intuitively:

- > $f(n) \in \mathcal{O}(g(n))$: f grows at most as fast as g.
- $f(n) \in o(g(n))$: f grows strictly less than g.

Small-o Notation

Definition w9.2

Let $f,g:\mathbb{N}\longrightarrow\mathbb{R}_{\geq 0}.$ We say that f(n)=o(g(n)) (or $f(n)\in o(g(n))$) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

that is, for any c > 0 there exist $n_0 > 0$ such that $f(n) < c \cdot g(n)$, for all $n \ge n_0$.

In comparison:

 $f(n)=\mathcal{O}(g(n))$ if there exist $c,n_0>0$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$

Small-o Notation

Definition w9.2

Let $f,g:\mathbb{N}\longrightarrow\mathbb{R}_{\geq 0}$. We say that f(n)=o(g(n)) (or $f(n)\in o(g(n))$) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

that is, for any c > 0 there exist $n_0 > 0$ such that $f(n) < c \cdot g(n)$, for all $n \ge n_0$.

In comparison:

$$f(n) = \mathcal{O}(g(n))$$
 if there exist $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Observe that

①
$$f = \mathcal{O}(f)$$
 but $f \neq o(f)$.

2
$$f = o(g) \Rightarrow f = \mathcal{O}(g)$$
 but in general $f = o(g) \not= f = \mathcal{O}(g)$

Small-o Notation

Definition w9.2

Let $f,g:\mathbb{N}\longrightarrow\mathbb{R}_{\geq 0}$. We say that f(n)=o(g(n)) (or $f(n)\in o(g(n))$) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

that is, for any c > 0 there exist $n_0 > 0$ such that $f(n) < c \cdot g(n)$, for all $n \ge n_0$.

In comparison:

$$f(n) = \mathcal{O}(g(n))$$
 if there exist $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

Observe that

①
$$f = \mathcal{O}(f)$$
 but $f \neq o(f)$.

2
$$f = o(g) \Rightarrow f = \mathcal{O}(g)$$
 but in general $f = o(g) \not = f = \mathcal{O}(g)$

Examples:

- $> n \neq o(2n)$ (although 2n grows faster than n, but only a constant factor)
- $\Rightarrow n = o(\frac{1}{2}n\log n) \text{ and } n\log n = o(n^2)$

Theorem w9.3

If $f: \mathbb{N} \longrightarrow \mathbb{R}_{\geq 0}$, then there exists a decision problem which cannot be solved in worst-case deterministic time o(f(n)) but can be solved in worst-case deterministic time $\mathcal{O}(f(n)\log(f(n)))$. Thus, $\mathsf{DTIME}(o(f(n))) \subsetneq \mathsf{DTIME}(f(n)\log(f(n))).$

Proof skipped (we only show this for the sake of completeness).

Theorem w9.3

If $f: \mathbb{N} \longrightarrow \mathbb{R}_{\geq 0}$, then there exists a decision problem which cannot be solved in worst-case deterministic time o(f(n)) but can be solved in worst-case deterministic time $\mathcal{O}(f(n)log(f(n)))$. Thus, $\mathbf{DTIME}(o(f(n))) \subsetneq \mathbf{DTIME}(f(n)log(f(n))).$

Proof skipped (we only show this for the sake of completeness).

Examples:

• Let f(n) = n. Then, $\exists L \in \mathsf{DTIME}(n \log n)$, but $L \notin \mathsf{DTIME}(o(n))$.

Theorem w9.3

If $f: \mathbb{N} \longrightarrow \mathbb{R}_{\geq 0}$, then there exists a decision problem which cannot be solved in worst-case deterministic time o(f(n)) but can be solved in worst-case deterministic time $\mathcal{O}(f(n)log(f(n)))$. Thus, $\mathbf{DTIME}(o(f(n))) \subsetneq \mathbf{DTIME}(f(n)log(f(n))).$

Proof skipped (we only show this for the sake of completeness).

Examples:

- Let f(n) = n. Then, $\exists L \in \mathsf{DTIME}(n \log n)$, but $L \notin \mathsf{DTIME}(o(n))$.
- Let $k \ge 1$. Then, $\exists L_k \in \mathsf{DTIME}(n^{k+1})$, but $L_k \notin \mathsf{DTIME}(n^k)$:

Let $f(n) = n^k$. Then,

• $\exists L_k \in \mathsf{DTIME} (n^k \log(n^k)) = \mathsf{DTIME} (n^k k \log(n)) \subseteq \mathsf{DTIME} (n^{k+1})$

Theorem w9.3

If $f: \mathbb{N} \longrightarrow \mathbb{R}_{\geq 0}$, then there exists a decision problem which cannot be solved in worst-case deterministic time o(f(n)) but can be solved in worst-case deterministic time $\mathcal{O}(f(n)log(f(n)))$. Thus, $\mathsf{DTIME}(o(f(n))) \subsetneq \mathsf{DTIME}(f(n)log(f(n))).$

Proof skipped (we only show this for the sake of completeness).

Examples:

- Let f(n) = n. Then, $\exists L \in \mathsf{DTIME}(n \log n)$, but $L \notin \mathsf{DTIME}(o(n))$.
- Let $k \ge 1$. Then, $\exists L_k \in \mathsf{DTIME}(n^{k+1})$, but $L_k \notin \mathsf{DTIME}(n^k)$:

Let
$$f(n) = n^k$$
. Then,

- $\exists L_k \in \mathsf{DTIME}(n^k \log(n^k)) = \mathsf{DTIME}(n^k k \log(n)) \subseteq \mathsf{DTIME}(n^{k+1})$
- $L_k \notin \mathsf{DTIME}(o(f(n))) = \mathsf{DTIME}(o(n^k)).$

Back to P vs. EXPTIME

Corollary w9.4

 $P \subseteq EXPTIME$

Proof.

Let $f(n) = 2^n$. By the Time Hierarchy Theorem there is a language L such that

 $L \in \mathsf{DTIME} \big(f(n) log(f(n)) \big) = \mathsf{DTIME} \big(2^n n \big) \text{ and } L \notin \mathsf{DTIME} \big(o(f(n)) \big) = \mathsf{DTIME} \big(o(2^n) \big).$

Back to P vs. EXPTIME

Corollary w9.4

 $P \subseteq EXPTIME$

Proof.

Let $f(n) = 2^n$. By the Time Hierarchy Theorem there is a language L such that

$$L \in \mathbf{DTIME}\big(f(n)log(f(n))\big) = \mathbf{DTIME}\big(2^n n\big) \text{ and } L \notin \mathbf{DTIME}\big(o(f(n))\big) = \mathbf{DTIME}\big(o(2^n)\big).$$

Since every polynomial n^k satisfies $n^k = o(2^n)$, no poly-time TM decides L. Thus, $L \notin \mathbf{P}$. Also, $n \, 2^n = \mathcal{O}(2^{cn})$ for some constant c > 1, so $L \in \mathbf{DTIME}(2^{cn}) \subseteq \mathbf{EXPTIME}$.

Back to P vs. EXPTIME

Corollary w9.4

 $P \subseteq EXPTIME$

Proof.

Let $f(n) = 2^n$. By the Time Hierarchy Theorem there is a language \overline{L} such that

$$L \in \mathsf{DTIME} \big(f(n) log(f(n)) \big) = \mathsf{DTIME} \big(2^n n \big) \text{ and } L \notin \mathsf{DTIME} \big(o(f(n)) \big) = \mathsf{DTIME} \big(o(2^n) \big).$$

Since every polynomial n^k satisfies $n^k = o(2^n)$, no poly-time TM decides L. Thus, $L \notin \mathbf{P}$. Also, $n \, 2^n = \mathcal{O}(2^{cn})$ for some constant c > 1, so $L \in \mathbf{DTIME}(2^{cn}) \subseteq \mathbf{EXPTIME}$.

Therefore, $P \subseteq EXPTIME$.

Where/how proven?

> (1),(4): Follows trivially: DTMs are a special case of NTSMs.

- > (1),(4): Follows trivially: DTMs are a special case of NTSMs.
- > (2): Trivial with NP ⊆ NPSPACE: time is clearly a subset of space.

- > (1),(4): Follows trivially: DTMs are a special case of NTSMs.
- > (2): Trivial with NP

 NPSPACE: time is clearly a subset of space.
- > (3): Proved today: Search over all reachable configurations.

- > (1),(4): Follows trivially: DTMs are a special case of NTSMs.
- \rightarrow (2): Trivial with **NP** \subseteq **NPSPACE**: time is clearly a subset of space.
- > (3): Proved today: Search over all reachable configurations.
- > (5): Didn't cover that explicitly, but also follows, since Savitch's theorem also applies to higher space classes. Hence, this theorem is trivial with **NEXPTIME** \subseteq **NEXPSPACE**. (And we exploit **NEXPSPACE** =**EXPSPACE**.)

- > (1),(4): Follows trivially: DTMs are a special case of NTSMs.
- > (2): Trivial with NP

 NPSPACE: time is clearly a subset of space.
- > (3): Proved today: Search over all reachable configurations.
- > (5): Didn't cover that explicitly, but also follows, since Savitch's theorem also applies to higher space classes. Hence, this theorem is trivial with **NEXPTIME** \subseteq **NEXPSPACE**. (And we exploit **NEXPSPACE** = **EXPSPACE**.)
- > (6): Follows from the time hierarchy theorem.

- > (1),(4): Follows trivially: DTMs are a special case of NTSMs.
- > (2): Trivial with NP

 NPSPACE: time is clearly a subset of space.
- > (3): Proved today: Search over all reachable configurations.
- > (5): Didn't cover that explicitly, but also follows, since Savitch's theorem also applies to higher space classes. Hence, this theorem is trivial with NEXPTIME ⊆ NEXPSPACE. (And we exploit NEXPSPACE = EXPSPACE.)
- > (6): Follows from the time hierarchy theorem.
- > (7): Follows from the space hierarchy theorem (not covered).

Relationships to N- and co-classes:

Voluntary homework:

Check all additional subset relations for their origin. (I.e., why they hold.)

What we did not cover; some highlights:

• Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.
- There are probabilistic complexity classes, where TMs have different acceptance criteria (and potentially probabilities).

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.
- There are probabilistic complexity classes, where TMs have different acceptance criteria (and potentially probabilities).
- The chain of complexity classes is infinite. E.g., for any $k \ge 1$, there is a class k-**EXPTIME** and k-**EXPSPACE**.

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.
- There are probabilistic complexity classes, where TMs have different acceptance criteria (and potentially probabilities).
- The chain of complexity classes is infinite. E.g., for any $k \ge 1$, there is a class k-**EXPTIME** and k-**EXPSPACE**.
- Beyond that are even others, such as the Ackermann class, sitting above all k-EXPTIME and k-EXPSPACE classes.

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.
- There are probabilistic complexity classes, where TMs have different acceptance criteria (and potentially probabilities).
- The chain of complexity classes is infinite. E.g., for any $k \ge 1$, there is a class k-**EXPTIME** and k-**EXPSPACE**.
- Beyond that are even others, such as the Ackermann class, sitting above all k-EXPTIME and k-EXPSPACE classes.
- There are TM models with different kinds of states (existential and universal), which are convenient for some proofs/problems. They are covered in week 10!

- Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the question whether two graphs can be renamed to make them isomorphic. Practically extremely relevant!
- Between **NP** and **PSPACE** sits the polynomial hierarchy an infinite hierarchy of complexity classes. They can be defined via special cases of QBFs. At least Σ_2^p (the next harder class after $\Sigma_1^p = \mathbf{NP}$) is very important for many optimization problems.
- There are probabilistic complexity classes, where TMs have different acceptance criteria (and potentially probabilities).
- The chain of complexity classes is infinite. E.g., for any $k \ge 1$, there is a class k-**EXPTIME** and k-**EXPSPACE**.
- Beyond that are even others, such as the Ackermann class, sitting above all k-EXPTIME and k-EXPSPACE classes.
- There are TM models with different kinds of states (existential and universal), which are convenient for some proofs/problems. They are covered in week 10!
- And certainly many more ... Check out complexityzoo.net 550 classes so far!)