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A PSPACE-complete Problem: QBFs Quantified Boolean Formulae (QBFs)

Quantified Boolean Formulae (QBFs)

Definition w9.1

If V is a set of variables, then the set of quantified boolean formulae over V is given by:

Every variable v ∈ V is a QBF, and so are ⊤ and ⊥
If ϕ, ψ are QBF, then so are ϕ ∧ ψ and ϕ ∨ ψ
If ϕ is a QBF, then so is ¬ϕ.
If ϕ is a QBF and v ∈ V is a variable, then (∃v)ϕ and (∀v)ψ are QBF.

Definition w9.2

In a QBF ϕ, a variable v is bound if it is in the scope of a quantifier ∀v or ∃v . The
variable v is free otherwise.

If x ∈ {⊤,⊥} is a truth value, then ϕ[x/v ] is the result of replacing all free occurrences
of v with x (think of / as =:, i.e., x =: v).
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A PSPACE-complete Problem: QBFs Quantified Boolean Formulae (QBFs)

Example

(∀x) (∃y) ( ((∃x) (x ∨ y)) ∧ ¬(x ∧ y))

∠ Usually, one writes these formulae without the parentheses pairs around the
quantified variables, e.g, ∀xϕ instead of (∀x)ϕ.

∠ Note how inner quantifiers have precedence over outer ones.

∠ Also, this formula does not have free variables, i.e., all are bound.

The formula above has the following policy as solution:

x y z
⊥ ⊤ ⊤
⊤ ⊥ ⊤

x = ⊥ : (⊤ ∨⊤) ∧ ¬(⊥ ∧⊤) = ⊤ ∧ ¬⊥ = ⊤
x = ⊤ : (⊤ ∨⊥) ∧ ¬(⊤ ∧⊥) = ⊤ ∧ ¬⊥ = ⊤

∠ We have two lines because we need to provide an assignment for each x

∠ Had we more universally quantified variables, we had more “branching”
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A PSPACE-complete Problem: QBFs Quantified Boolean Formulae (QBFs)

Evaluation of QBFs

Observation.

A QBF ϕ without free variables can be evaluated to a truth value:

evalQBF(∀vϕ) = ϕ[⊤/v ] ∧ ϕ[⊥/v ]
evalQBF(∃vϕ) = ϕ[⊤/v ] ∨ ϕ[⊥/v ]

and quantifier-free formulae without free variables can be evaluated.

QBFs versus boolean formulae.

A boolean formula ϕ with variables v1, . . . , vn is:

satisfiable if ∃v1∃v2 . . .∃vnϕ evaluates to true.

a tautology if ∀v1∀v2 . . .∀vnϕ evaluates to true.

Definition w9.3

The QBF problem is the problem of determining whether a given quantified boolean
formula without free variables evaluates to true:

QBF = {⟨ϕ⟩ | ϕ a true QBF without free variables}
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A PSPACE-complete Problem: QBFs Quantified Boolean Formulae (QBFs)

QBFs vs Boolean Formulae

∠ Evaluating a boolean formula (not a QBF!) without free variables
(i.e., with variables substituted by ⊤ or ⊥) is in P.

∠ So, an idea is to substitute all bound variables by its truth values:

(∀vϕ)⇝ ϕ[⊤/v ] ∧ ϕ[⊥/v ]
(∃vϕ)⇝ ϕ[⊤/v ] ∨ ϕ[⊥/v ]

∠ Which runtime does this approach have? Shows EXPTIME membership due to
doubling the formula with each substitution.

Q. Can we do better?

A. Interestingly, we don’t need to reduce the runtime below EXPTIME, so it’s fine that
even a “better result” still requires EXPTIME! But we need to reduce the space
requirements to PSPACE to get to a lower class. (So, note that the procedure above
also incurs EXPSPACE.)
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A PSPACE-complete Problem: QBFs QBF is in PSPACE

QBF is in PSPACE

Main Idea.

∠ to evaluate ∀vϕ, don’t write out ϕ[⊤/v ] ∧ ϕ[⊥/v ].

∠ instead, evaluate ϕ[⊤/v ] and ϕ[⊥/v ] in sequence (avoids exponential space blowup).

Recursive Algorithm evalQBF(ϕ)

∠ case ϕ = ⊤: return ⊤
∠ case ϕ = (ψ1 ∧ ψ2): if evalQBF(ψ1) then return evalQBF(ψ2) else return ⊥
∠ case ϕ = ∀vψ: if evalQBF(ψ[⊤/v ]) then return evalQBF(ϕ[⊥/v ]) else return ⊥
∠ other cases: analogous

Analysis.

Given QBF ϕ of size n:

∠ at most n recursive calls active

∠ each call stores a partially evaluated QBF of size n

∠ total space requirement O(n2)

This shows PSPACE membership of QBF.
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A PSPACE-complete Problem: QBFs QBF is PSPACE-hard

QBF is PSPACE-hard

Proof Idea/Overview.

To show hardness, we have to reduce any problem in PSPACE to QBF:

∠ Let L be in PSPACE.

∠ Then L is accepted by a polyspace-bounded TM with (cell) bound p(n).

∠ If w ∈ L, then M accepts in ≤ cp(n) moves (for some constant c). Why?
After an exponential number of moves over the available cells, we will run into a
cycle. But by assumption, the TM halts. (Alternatively: how many IDs of some
maximal length can we have?)

∠ Construct QBF ϕ: “there is a sequence of cp(n) IDs that accepts w”.

∠ Use “recursive doubling” to perform this reduction in polytime.

This has similarities to Cook’s SAT encoding, why?

∠ For SAT, we used boolean formulae to represent poly many poly-bounded IDs.

∠ Now, we use QBFs to represent all runs of poly-bounded IDs.
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A PSPACE-complete Problem: QBFs QBF is PSPACE-hard

Hardness Proof, Overview

Variables.

∠ We use two sets of variables, xj,s and yj,s . Need O(p(n)) variables to represent an ID:

∠ variables xj,s/yj,s = ⊤ iff the j-th symbol of the resp. ID, 0 ≤ j ≤ p(n), is s.

Structure of the QBF.

ϕ = (∃X )(∃Y )(S ∧ N ∧ A ∧ U)

∠ We use X as the tuple of all x-variables, and Y as the tuple of all y -variables.
They will be used to encode the current and successor configuration.

(∃X) is short for ∃x0,q0 . . .∃x0,q|Q|∃x0,γ1 . . .∃x0,γ|Γ| . . .∃xp(n),q0 . . .∃xp(n),γ|Γ| ,
i.e., we quantify all x variables.
(∃Y) is the very same as X , but works on all the y variables instead.

∠ S: says that X initially represents ID0 = q0w , just as in Cook’s theorem.
x0,q0 ∧ x1,w1 · · · ∧ x|w|,w|w| ∧ x|w|+1,B ∧ · · · ∧ xp(n),B

∠ A: says that Y represents an accepting ID IDa, just as in Cook’s theorem.∨
0≤i≤p(n)

q∈F

yi,q

∠ U: says that every ID has at most one symbol per position, just as in Cook’s theorem.

∠ N: transition from X ≈ ID0 to some Y ≈ IDa in ≤ cp(n) steps (see next slide).
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∠ variables xj,s/yj,s = ⊤ iff the j-th symbol of the resp. ID, 0 ≤ j ≤ p(n), is s.

Structure of the QBF.

ϕ = (∃X )(∃Y )(S ∧ N ∧ A ∧ U)

∠ We use X as the tuple of all x-variables, and Y as the tuple of all y -variables.
They will be used to encode the current and successor configuration.

(∃X) is short for ∃x0,q0 . . .∃x0,q|Q|∃x0,γ1 . . .∃x0,γ|Γ| . . .∃xp(n),q0 . . .∃xp(n),γ|Γ| ,
i.e., we quantify all x variables.
(∃Y) is the very same as X , but works on all the y variables instead.

∠ S: says that X initially represents ID0 = q0w , just as in Cook’s theorem.
x0,q0 ∧ x1,w1 · · · ∧ x|w|,w|w| ∧ x|w|+1,B ∧ · · · ∧ xp(n),B

∠ A: says that Y represents an accepting ID IDa, just as in Cook’s theorem.∨
0≤i≤p(n)

q∈F

yi,q

∠ U: says that every ID has at most one symbol per position, just as in Cook’s theorem.

∠ N: transition from X ≈ ID0 to some Y ≈ IDa in ≤ cp(n) steps (see next slide).
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A PSPACE-complete Problem: QBFs QBF is PSPACE-hard

Recursive Doubling

∠ N = N(ID0, IDa): have sequence of length ≤ cp(n) from (formula satisfying) ID0 to
(formula satisfying) IDa. (I.e., from the start ID to some accepting ID)

∠ Detour: N0(X ,Y ) = X ⊢∗ Y in ≤ 1 steps: as for Cook’s theorem

∠ Detour: Ni (X ,Y ) = X ⊢∗ Y in ≤ 2i steps:

Ni (X ,Y ) = (∃K)(∀P)(∀Q)[

((P,Q) = (X ,K) ∨ (P,Q) = (K ,Y ))

→ Ni−1(P,Q)]

∠ Could also say (∃K)(Ni−1(X ,K) ∧ Ni−1(K ,Y ))
∠ this would write out Ni−1 twice, doubling formula size at each step
∠ above trick is key step in proof to keep formula size small (prevent doubling)

∠ Let N(X ,Y ) = Nk(X ,Y ) where 2k ≥ cp(n) (note k ∈ O(p(n)))

∠ each Ni can be written in O(p(n)) many steps, plus the time to write Ni−1

∠ so O(p(n)2) overall

By construction, ϕ = ⊤ iff M accepts w .
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PSPACE vs. NPSPACE (Savitch’s Theorem)

PSPACE vs.NPSPACE

(Savitch’s Theorem)
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PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: PSPACE = NPSPACE

Note

The following is (maybe?) remarkable because we do not know whether P = NP.

Theorem w9.1

PSPACE = NPSPACE Savitch’s Theorem, 1970

Proof.

∠ Let L ∈ NPSPACE and M be non-det. TM, polyspace-bounded by p(n) deciding L.

∠ We are allowed to assume that M has the following properties:

M has just a single accepting state, which is a halting state.
When it accepts, the tape is empty.
Taken together, there is just a single halting configuration. (We call it J.)

∠ Recall that M has cp(n) different IDs, were n = |w |.
∠ Design a deterministic TM M ′, which decides whether I ⊢∗ J is possible within at

most cp(n) steps. M ′ is space-bounded by p(n).

∠ We formalize this via predicate P(ID1, ID2,m), initialized to P(I , J, cp(n)).
Wait, isn’t the exponential problematic? No, since we encode it logarithmically.
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PSPACE vs. NPSPACE (Savitch’s Theorem)

Savitch’s Theorem: Recursive Doubling

Goal. Implement P(I , J,m) = I ⊢∗ J in deterministic polyspace

P(I, J, m): for all IDs K with length <= p(n) + 1 do {

if P(I, K, m/2) and P(K, J, m/2) then return true

}

return false

Q. How much space does this implementation need? (Time does not matter!)

P(I ,K0 = J,m)

P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

. . . . . .

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!
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P(I ,K1, m/2) P(K1,K0 = J, m/2)

P(I ,K2, m/4) P(K2,K1
m/4)

. . . . . .

P(I ,Ki , m/2i) P(Ki ,Ki−1, m/2i)

∠ Required space: O(log(cp(n)) · p(n)) = O(p2(n)).

Q. Earlier we were assuming that there’s a unique J. Did we have to?
A. No, we could have just generated all possible (accepting) IDs and try all of them!
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PSPACE vs. co-PSPACE
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PSPACE vs. co-PSPACE Reminder: Definitions

Recap

Recall: A problem is in co-X if and only if its complement is in X.

Applied to X = PSPACE: Let L̄ = Σ∗ \ L

DSPACE(t(n)) = {L | ∃ DTM M with L(M)=L that decides L with O(t(n)) cells }
co-DSPACE(t(n)) = {L | L̄ ∈ DSPACE(t(n))}

PSPACE =
⋃

k∈N DSPACE(nk) co-PSPACE =
⋃

k∈N co-DSPACE(nk)

Also, hardness and completeness is again defined as always, also for co-PSPACE.
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PSPACE vs. co-PSPACE Example Language

Example ALLNFA

ALLNFA = {⟨A⟩ : A is an NFA and L(A) = Σ∗}

Currently, it’s known neither whether ALLNFA ∈ NP nor whether ALLNFA ∈ co-NP.

Q. Why don’t we know ∈ NP? A. Unclear what the certificate should be.
Q. Why don’t we know ∈ co-NP? A. Words can be arbitrarily (non-poly) long!

NPSPACE Algorithm for ALLc
NFA – the complement, which accepts ⟨A⟩ if L(A) ̸= Σ∗

Let M implement the following non-deterministic procedure when called with input ⟨A⟩
and A = (Q,Σ, δ, q0,F ) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Non-deterministically pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

∠ Since NPSPACE = PSPACE, we also get ALLNFA ∈ co-PSPACE
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and A = (Q,Σ, δ, q0,F ) is an NFA.

1 Mark q0 (as being visited). If q0 /∈ F , accept. // Then, ϵ /∈ L(A), thus L(A) ̸= Σ∗

2 Repeat 2|Q| times:
1 Let m ⊆ Q be the currently marked states.
2 Non-deterministically pick some a ∈ Σ and change m to

⋃
q∈m δ(q, a).

3 If m ∩ F = ∅, accept. // Then, we found a state that’s not accepted.
// I.e., not all reachable states are accepting states, then some word wa /∈ L(A).

3 reject // Since we can’t find a word that’s rejected, so L(A) = Σ∗

∠ Hence ALLc
NFA ∈ NPSPACE – and thus, by definition, ALLNFA ∈ co-NPSPACE

∠ Since NPSPACE = PSPACE, we also get ALLNFA ∈ co-PSPACE
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PSPACE vs. co-PSPACE Relationship of Space Classes

PSPACE vs. co-PSPACE

Theorem w9.1

co-PSPACE = PSPACE (and hence co-NPSPACE = NPSPACE = PSPACE)

Proof.

First, show co-PSPACE ⊇ PSPACE, i.e., L ∈ PSPACE implies L ∈ co-PSPACE.

∠ Let L ∈ PSPACE. Note that L ∈ co-PSPACE iff Lc ∈ PSPACE.

∠ Prove Lc in PSPACE via:

First, decide w ∈ L using PSPACE (possible by assumption).
Then, flip result for w . This decides Lc , taking poly-space.

Then, show PSPACE ⊇ co-PSPACE in the analogous way.

A lot to unpack here ... Some essential key points to understand:

∠ Why flipping the result is not allowed in NP / co-NP proofs,

∠ but it is allowed in all deterministic classes.

∠ Thus, DSPACE (hence NSPACE) and DTIME are closed under complementation.
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PSPACE vs. co-PSPACE Relationship of Space Classes

On “Flipping Results”, Part 1: Why NP/co-NP fails.

Disclaimer:

∠ The following proof is the same as before, but for NP/co-NP.

∠ Unless L ∈ P, or NP = co-NP, the following will fail!

Let L ∈ NP and you want to prove L ∈ co-NP:

∠ Let L ∈ NP. Note that L ∈ co-NP iff Lc ∈ NP.

∠ Prove Lc in NP via:

First, decide w ∈ L using NP (possible by assumption).
Then, flip result for w . This decides Lc , taking poly-time.

Now, what’s wrong about that proof?

∠ To show Lc ∈ NP, we need o provide an NTM M with L(M) = Lc .

∠ However, our NTM M used in the above proof has L(M) = L!

∠ So, why was that allowed for PSPACE?! See next slide!
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PSPACE vs. co-PSPACE Relationship of Space Classes

On “Flipping Results”, Part 2: Why PSPACE/co-PSPACE works.

In our proof:

∠ Let L ∈ PSPACE. Note that L ∈ co-PSPACE iff Lc ∈ PSPACE.

∠ Prove Lc in PSPACE via:

First, decide w ∈ L using PSPACE (possible by assumption).
Then, flip result for w . This decides Lc , taking poly-space.

Why now were we allowed to flip the result?!

∠ To show Lc ∈ PSPACE, we need o provide a DTM M with L(M) = Lc .

∠ So, this proof implicitly claims that the procedure above is such an M. Is it?

∠ This requires some extra reasoning. M exists, but uses an “inner” TM M ′.

M ′ is a DTM that decides L in PSPACE (exists by assumption).
M simulates M ′ on w , which terminates (deterministically!) after poly space.
M ′ then flips this result, so this does not change the class.

∠ The exact same argument works for all deterministic time classes.
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PSPACE vs. co-PSPACE Relationship of Space Classes

Corollaries

Corollary w9.2

∠ All space classes are closed under complementation.

∠ All deterministic time classes are closed under complementation.

Corollary w9.3

∠ ALLNFA ∈ PSPACE

∠ ALLc
NFA ∈ PSPACE

Thus, to prove membership in space or deterministic time classes, you can choose to
decide the complement of the language instead. Pick whatever is easier!
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P vs. PSPACE vs. EXPTIME

P vs.PSPACE vs.

EXPTIME
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P vs. PSPACE vs. EXPTIME PSPACE vs. EXPTIME

PSPACE vs. EXPTIME

Theorem w9.1

PSPACE ⊆ EXPTIME

Proof.

∠ Let L ∈ PSPACE. We will show that any PSPACE decider runs in exponential time.

∠ Then, L is decided by some TM M with L(M) = L, such that for all w ∈ Σ∗ it
decides w ∈ L with |w | = n within O(nk) space for some constant k.

∠ How many different TM configurations can we see before running into a loop?
(Note that we can’t run into a loop! Since M is a decider.)

Each cell can have at most |Γ| different symbols.

So we have at most O(|Γ|(n
k )) different tape configurations.

We have |Q| states and at most O(nk) head positions.

In total we have at most cp(n) = O(|Q| · (nk) · |Γ|(n
k )) TM configurations.

∠ So, we can just run M and know that it will not run longer than cp(n), hence in
EXPTIME
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

P vs. EXPTIME

Intuitively, P ⊊ EXPTIME should hold, since under poly-transformations, we stay
withing the respective class, and so have strictly more time available in EXPTIME. But,
are there really problems that need EXPTIME?

To answer this, we require the definition of “small-o” (o), in analogy to “big-O” (O).

Intuitively:

∠ f (n) ∈ O(g(n)): f grows at most as fast as g .

∠ f (n) ∈ o(g(n)): f grows strictly less than g .
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

Small-o Notation

Definition w9.2

Let f , g : N −→ R≥0. We say that f (n) = o(g(n)) (or f (n) ∈ o(g(n))) if

lim
n→∞

f (n)

g(n)
= 0 .

that is, for any c > 0 there exist n0 > 0 such that f (n) < c · g(n), for all n ≥ n0.

In comparison:
f (n) = O(g(n)) if there exist c, n0 > 0 such that f (n) ≤ c · g(n) for all n ≥ n0

Observe that

1 f = O(f ) but f ̸= o(f ).

2 f = o(g) ⇒ f = O(g) but in general f = o(g) ̸⇐ f = O(g)

Examples:

∠ n ̸= o(2n) (although 2n grows faster than n, but only a constant factor)

∠ n = o( 1
2
n log n) and n log n = o(n2)
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

The Time Hierarchy Theorem

Theorem w9.3

If f : N −→ R≥0, then there exists a decision problem which cannot be solved in
worst-case deterministic time o(f (n)) but can be solved in worst-case deterministic time
O(f (n)log(f (n))). Thus, DTIME(o(f (n))) ⊊ DTIME(f (n)log(f (n))).

Proof skipped (we only show this for the sake of completeness).

Examples:

Let f (n) = n. Then, ∃ L ∈ DTIME(n log n), but L /∈ DTIME(o(n)).

Let k ≥ 1. Then, ∃ Lk ∈ DTIME(nk+1), but Lk /∈ DTIME(nk):

Let f (n) = nk . Then,

∃Lk ∈ DTIME
(
nk log(nk )

)
= DTIME

(
nkk log(n)

)
⊆ DTIME

(
nk+1

)
Lk /∈ DTIME

(
o(f (n))

)
= DTIME

(
o(nk )

)
.
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Back to P vs. EXPTIME

Corollary w9.4

P ⊊ EXPTIME

Proof.

Let f (n) = 2n. By the Time Hierarchy Theorem there is a language L such that

L ∈ DTIME
(
f (n)log(f (n))

)
=DTIME

(
2nn

)
and L /∈ DTIME

(
o(f (n))

)
=DTIME

(
o(2n)

)
.

Since every polynomial nk satisfies nk = o(2n), no poly-time TM decides L. Thus, L /∈ P.
Also, n 2n = O

(
2cn

)
for some constant c > 1, so L ∈ DTIME(2cn) ⊆ EXPTIME.

Therefore, P ⊊ EXPTIME.
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

Relationship Among Complexity Classes: Recap/Summary (Part 1)

P NP PSPACE EXPTIME NEXPTIME EXPSPACE
(1)

⊆
(2)

⊆
(3)

⊆
(4)

⊆
(5)

⊆
(6)

̸=

(7)

̸=

Where/how proven?

∠ (1),(4): Follows trivially: DTMs are a special case of NTSMs.

∠ (2): Trivial with NP ⊆ NPSPACE: time is clearly a subset of space.

∠ (3): Proved today: Search over all reachable configurations.

∠ (5): Didn’t cover that explicitly, but also follows, since Savitch’s theorem
also applies to higher space classes. Hence, this theorem is trivial with
NEXPTIME ⊆ NEXPSPACE. (And we exploit NEXPSPACE =EXPSPACE.)

∠ (6): Follows from the time hierarchy theorem.

∠ (7): Follows from the space hierarchy theorem (not covered).
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

Relationship Among Complexity Classes: Recap/Summary (Part 2)

Relationships to N- and co-classes:

P NP PSPACE EXPTIME NEXPTIME EXPSPACE

co-P

=

co-NP

?

co-PSPACE

=

NPSPACE

=

co-NPSPACE

=

co-EXPTIME

=

co-NEXPTIME

?

co-EXPSPACE

=

NEXPSPACE

=

co-NEXPSPACE

=

⊆ ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ ⊆ ⊆

Voluntary homework:
Check all additional subset relations for their origin. (I.e., why they hold.)
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P vs. PSPACE vs. EXPTIME P vs. EXPTIME

Outlook

What we did not cover; some highlights:

Between P and NP sit the GI-complete problems (GI = Graph Isomorphy), the
question whether two graphs can be renamed to make them isomorphic. Practically
extremely relevant!

Between NP and PSPACE sits the polynomial hierarchy – an infinite hierarchy of
complexity classes. They can be defined via special cases of QBFs. At least Σp

2 (the
next harder class after Σp

1 = NP) is very important for many optimization problems.

There are probabilistic complexity classes, where TMs have different acceptance
criteria (and potentially probabilities).

The chain of complexity classes is infinite. E.g., for any k ≥ 1, there is a class
k−EXPTIME and k−EXPSPACE.

Beyond that are even others, such as the Ackermann class, sitting above all
k−EXPTIME and k−EXPSPACE classes.

There are TM models with different kinds of states (existential and universal), which
are convenient for some proofs/problems. They are covered in week 10!

And certainly many more ... Check out complexityzoo.net – 550 classes so far!)
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