
Change the World – How Hard Can that Be?
On the Computational Complexity of Fixing Planning Models

Songtuan Lin and Pascal Bercher
School of Computing, College of Engineering and Computer Science

The Australian National University, Canberra, Australia
{songtuan.lin, pascal.bercher}@anu.edu.au

Abstract
Incorporating humans into AI planning is an impor-
tant feature of flexible planning technology. Such
human integration allows to incorporate previously
unknown constraints, and is also an integral part of
automated modeling assistance. As a foundation
for integrating user requests, we study the compu-
tational complexity of determining the existence of
changes to an existing model, such that the result-
ing model allows for specific user-provided solu-
tions. We are provided with a planning problem
modeled either in the classical (non-hierarchical)
or hierarchical task network (HTN) planning for-
malism, as well as with a supposed-to-be solution
plan, which is actually not a solution for the cur-
rent model. Considering changing decomposition
methods as well as preconditions and effects of ac-
tions, we show that most change requests are NP-
complete though some turn out to be tractable.

1 Intro
Involving humans in the planning process is an important area
of interest within the field of automated planning – in partic-
ular when tackling real-world problems, since often not all
constraints are known in advance and posed by a human ex-
pert during planning [Allen and Ferguson, 2002; Myers et al.,
2003]. In particular, the planning model used by a system is
usually distinct from what a user expects [Chakraborti et al.,
2017; 2020], which may consequently lead to a system not
finding any solution at all, or a solution that is rejected by
the user. The former can be addressed, e.g., by changing the
initial state appropriately [Göbelbecker et al., 2010], whereas
the latter, e.g., can be addressed by incorporating change re-
quests on the solution produced [Behnke et al., 2016]. In
general, dealing with change requests to plans or models by
a human user is formally known as mixed-initiative planning
(MIP) [Myers et al., 2003]. The scheme of MIP has been suc-
cessfully applied, e.g., in activities like route planning [Fer-
guson et al., 1996], the Mars-rovers [Ai-Chang et al., 2004;
Bresina et al., 2005], and the evacuation of inhabitants of a
fictitious island [Ferguson and Allen, 1998]. Moreover, im-
posing changes to the model employed by a system is a way
to provide modeling assistance which aims to help humans
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identify and fix potential problems in a model. A user could,
for example, provide a plan claiming it must be a solution
based on the current model. If this is not the case, a (MIP)
system could suggest model changes to make it a solution
thus finding potential modeling mistakes. Those changes can
further be regarded as a reconciliation of the current model
and the user-desired model, and thus serve as model-based
explanations [Chakraborti et al., 2020].

We assume that we are given a sequence of actions that is
supposed to be a solution, but it is actually not: either be-
cause it is not executable, or because it does not fulfill ad-
ditional constraints posed on desired solutions. For the lat-
ter, we consider the framework of Hierarchical Task Network
(HTN) planning (see the work by Bercher et al. [2019] for



a recent survey), which is a hierarchical approach to plan-
ning where a set of initially given abstract activities need
to be refined until a primitive (executable) action sequence
was obtained. Relying on this approach allows more control
on the produced plans than classical planning as only plans
are allowed that follow the user-specified hierarchy [Höller
et al., 2014; 2016], and was thus also studied and applied
in MIP before [Myers et al., 2003; Bresina et al., 2005;
Behnke et al., 2016]. To make the action sequence in question
a solution to the problem, we consider changing the actions’
preconditions or effects (the obtained results are thus relevant
to both hierarchical and non-hierarchical planning), as well as
changing the model’s rules on how plans can be obtained (so-
called decomposition methods) by either adding or removing
actions to them.

The objective of this paper is to establish the computational
complexity of checking the feasibility of such model changes.
In HTN planning, checking for feasible changes to the current
solution range between NP and undecidability [Behnke et al.,
2016], similar to deciding HTN problems [Erol et al., 1996;
Geier and Bercher, 2011; Alford et al., 2015]. It turns out that
model changes are much easier, namely at most NP-complete.

For changing the task hierarchy, we will restrict ourselves
to totally-ordered HTN planning, which is the simplest ver-
sion of HTN planning and also plays a pivot role in practice
as seen by a vast majority of totally ordered planning bench-
marks at the International Planning Competition 2020 on
HTN planning as well as by the increasing body of research
dedicated to total-order HTN planning [Marthi et al., 2007;
Alford et al., 2009; Behnke et al., 2018; Schreiber et al.,
2019; Behnke and Speck, 2021; Olz et al., 2021]. Further-
more all complexity results obtained will directly serve as
lower bounds for the partially ordered setting. Changing pre-
conditions and effects is agnostic against the hierarchy. An
overview of our complexity results is given in Tables 1 and 2.

2 HTN Planning
We first introduce the deployed HTN planning formalism,
which is a combination of the one by Bercher et al. [2019]
and Behnke et al. [2018], the latter introducing a simplifica-
tion for the total order setting.
Definition 1 (Planning Problem). A (totally ordered) HTN
planning problem P is a tuple (D, tnI , sI , g) where 1) D =
(F,Np, Nc, δ,M) is called the domain of P , in which F is a
finite set of facts, Np is a finite set of primitive task names,
Nc is a finite set of compound task names with Nc ∩Np = ∅,
δ : Np → 2F × 2F × 2F is a function that maps primitive
task names to their actions, and M ⊆ Nc × (Np ∪Nc)

∗ is a
set of (decomposition) methods. 2) tnI ⊆ (Np ∪Nc)

∗ is the
initial task network. 3) sI ∈ 2F is the initial state. 4) g ⊆ F
is the goal description.

In the following we will skip the “totally ordered”, since
we will restrict to this setting throughout the paper. At the
centre of the HTN planning formalism is the concept of the
task network, which in the total order setting is simply a se-
quence of task names. Such names are either 1) A primitive
task name p ∈ Np, which is mapped to its action through
the function δ. The action of p, δ(p) = (prec, add, del) ∈

2F × 2F × 2F , consists of p’s precondition, add, and delete
list, respectively. If δ(p) = (prec, add, del), we also write
(prec(p), add(p), del(p)) for short. 2) A compound task
name c ∈ Nc, which can be refined (decomposed) into a task
network tn = t1 . . . tn by applying a method m = (c, tn) ∈
M , where tn is a task network. We write tn(m) to refer to tn
of m, and |tn| to refer to the length of tn.

Definition 2 (Decomposition). Let tn = tn1 c tn2 be a
task network where tn1 and tn2 are two sequences of task
names, and c ∈ Nc is a compound task name, and m =
(c, tnm) ∈ M be a method. We say m decomposes tn
into another task network tn′, written tn →m tn′, such that
tn′ = tn1 tnm tn2.

Similarly, given a sequence of methods m = m1 · · ·mn, a
task network tn is decomposed into another task network tn′
by applying m, written tn→∗m tn′, if and only if there exists
a sequence of task networks tn0 · · · tnn such that tn0 = tn,
tnn = tn′, and for each 1 ≤ i ≤ n, tni−1 →mi

tni.

A (primitive) task network tn = p1 · · · pn (also called an
action sequence) is said to be executable in a state s ∈ 2F

if and only if for each 1 ≤ i ≤ n, pi is a primitive task
name, and there exists a sequence of states s0 · · · sn such that
s0 = s and for each 1 ≤ j ≤ n, prec(pj) ⊆ sj−1 and
sj = (sj−1\del(pj)) ∪ add(pj). The state sn is the state
produced by tn.

Definition 3 (Solution). Let P = (D, tnI , sI , g) be an HTN
planning problem. A task network tn is a solution (or plan)
to P if and only if tn is executable in sI , it generates a state
s′ ⊇ g, and there exists a sequence of methods m that refines
tnI into tn, i.e., tnI →∗m tn.

We will now start our investigations where we have a prim-
itive task network tn given (i.e., an action sequence), which
is not a solution – but should be according to a user. Accord-
ing to the solution criteria there are just two possible reasons:
Either tn is not executable/does not satisfy all goals1, or it
does but can not be obtained from the available decomposi-
tion methods. To make tn a solution we first consider chang-
ing the available methods of the model in Section 3 and then
consider changing the action definitions in Section 4.

3 Correcting the Model: Changing Methods
Given an action sequence that cannot be obtained by a se-
quence of decomposition methods, we want to change the
model so that it can. For this, we first need to consider the
allowed changes, which will be adding and deleting actions
from the decomposition methods – they will be formally de-
fined next. We start with the ADD-TASK operation, which
specifies at which position in a method’s task sequence a
given action may be added.

Definition 4 (ADD-TASK). Let p be a primitive task name,
m = (c, tn) with tn = t1 · · · tn be a method, and 1 ≤ i ≤
n + 1 be an integer. The operation ADD-TASK is a function
that takes as inputs m, p, and i and outputs a new method

1We do not differentiate between an action sequence that is not
executable and a sequence that is executable but does not satisfy all
goals, since the latter can be regarded a special case of the former.



m′ = (c, tn′), written m′ = ADD-TASK(m, p, i), such that
tn′ = tn1 p tn2 where tn1 = t1 · · · ti−1 and tn2 = ti · · · tn.

The operation DEL-TASK, which allows the primitive task
name in a specific position to be removed from a method, is
the analogous operation to ADD-TASK for action deletion.

Definition 5 (DEL-TASK). Let m = (c, tn) be a method
where tn = tn1 p tn2 with tn1 = t1 · · · ti−1 and tn2 =
ti+1 · · · tn be two sequences of task names, and p be a prim-
itive task name. The operation DEL-TASK is a function
that takes as inputs m and i and outputs a new method
m′ = (c, tn′), written m′ = DEL-TASK(m, i), such that
tn′ = tn1 tn2.

Given two methods m and m′ and a sequence of method-
change operations X = x1(m1, ∗) · · · xn(mn, ∗) where for
each 1 ≤ i ≤ n, xi is either ADD-TASK or DEL-TASK, mi is
a method, and ∗ refers to the remaining parameters in the op-
eration xi, we writem→∗X m′ ifm1 = m,m′ = xn(mn, ∗),
and mi+1 = xi(mi, ∗) for each 1 ≤ i ≤ n − 1. Informally,
m→∗X m′ indicates that the methodm′ can be obtained from
m by applying a sequence of method-change operations X .
We use |X | to refer to the length of X .

Definition 6 (Model Change). Let P = (D, tnI , sI , g) with
D = (F,Np, Nc, δ,M) and M = {m1, · · · ,mn} be a plan-
ning problem, and X be a sequence of method-changes. A
problem P ′ = (D′, tnI , sI , g) with D′ = (F,Np, Nc, δ,M

′)
andM ′ = {m′1, · · · ,m′n} is obtained from P by applyingX ,
written P →∗X P ′, if and only if for each 1 ≤ i ≤ n, either
m′i = mi or there exists a subsequence2 Xi of X such that
mi →∗Xi

m′i.

The definition above highlights that after applyingX , noth-
ing changes except the methods in P , which maintain a one-
to-one mapping to that in P ′. For convenience, we use
βX : M → M ′ to denote this mapping, where for each
method mi with 1 ≤ i ≤ n, βX (mi) = m′i.

Now that we have defined all necessary changes, we
can move on to investigate the computational complexity of
checking whether such changes exist that turn the given plan
into a solution. We will consider two cases, where either we
are only given the action sequence, or we are also given a
method sequence that is supposed to generate the task net-
work in question – but didn’t. We start by investigating the
former case.

3.1 Complexity of Fixing the Methods
– Given Just an Action Sequence
We first define the decision problem of fixing the method set
by an arbitrary number of add or delete operations.

Definition 7 (FIX-METHSX ). Let P be a planning problem,
and tn be a task network. We define the decision problems
FIX-METHSX with X ⊆ {ADD,DEL} and |X| ≥ 1 as:
Is there a sequence of method-change operations X , such
that P →∗X P ′, tn is a solution to P ′, and X consists of
ADD-TASK and DEL-TASK operations, according to X?

2We define a subsequence in a conventional way where a se-
quence a′ is said to be a subsequence of another sequence a if a′

can be obtained from a by removing some elements from it.

One immediate observation is that if there exists some
change sequence that turns tn into a solution, there must be
one of length bounded by a polynomial.

Lemma 1. Let P and tn be the planning problem and the
task network given by an instance of FIX-METHSX withX ⊆
{ADD,DEL} and |X| ≥ 1. If there exists some sequence
of method-change operations that turns tn into a solution,
then there exists a sequence X such that P →∗X P ′, tn is a
solution to P ′, and |X | ≤ |tn|+

∑
m∈M |tn(m)|.

Proof. We only consider the case where X = {ADD,DEL}
because the upper bound of the sequenceX in question in this
case is strictly larger than that in the remaining ones.

To prove the argument, we only need to show that the
shortest change sequence that turns tn into a solution has
the upper bound in question. Suppose X is the shortest
change sequence that turns P into another planning problem
P ′ such that tn is a solution to P ′. X can contain at most∑

m∈M |tn(m)| deletions, which is obtained by removing all
actions from all methods. Similarly, X contains at most |tn|
additions because the number of additions cannot exceed the
size of tn. Thus, |X | ≤ |tn|+

∑
m∈M |tn(m)|.

Membership of the problem under investigation can thus
be easily determined by this lemma.

Theorem 1. FIX-METHSX with X ⊆ {ADD,DEL} and
|X| ≥ 1 is in NP.

Proof. For each variant, we can always guess a change se-
quence X whose length is bounded by a polynomial accord-
ing to Lem. 1. Transforming P into P ′ thus takes polynomial
time. Verifying whether tn is a solution to P ′ can also be
done in polynomial time by regarding P ′ as a context-free
grammar and tn as a string [Behnke et al., 2015].

We now investigate the hardness of these problems.

Theorem 2. FIX-METHSDEL is NP-hard.

Proof. We reduce from the independent set problem, which
is known to be NP-complete [Korte and Vygen, 2008]. Let
k, n, r ∈ N, and G = (V,E) with V = {v1, · · · vn} and
E = {e1, · · · , er} where ei = (v, v′) with some v, v′ ∈ V
for each 1 ≤ i ≤ r be a graph. A solution to an independent
set problem instance is a subset S of V such that |S| = k,
and no two vertices in S are adjacent, i.e., no two vertices are
connected by an edge.

To construct an equivalent FIX-METHSDEL instance, we
first construct a planning problem P = (D, tnI , sI , g) with
D = (F,Nc, Np, δ,M) as follows. We let F = ∅, sI = ∅,
g = ∅, and δ : Np → {(∅, ∅, ∅)}. For each vertex vi (with
1 ≤ i ≤ n) in V , we construct a compound task vci . For
each edge ei (1 ≤ i ≤ r) in E, we construct one primitive
task epi and one compound task hci (hci is used as a place-
holder, which will be explained shortly). Additionally, we
construct one more primitive task s (which stands for ‘se-
lected’). Taken together,Nc = {vc1, · · · , vcn, hc1, · · · , hcr} and
Np = {ep1, · · · , epr , s}. Afterwards, for each compound task
vci (with 1 ≤ i ≤ n), we construct a method ms

i = (vci , s)
which stands for selecting vertex vi into S. For each hci (with
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Figure 1: The constructions of tnI and tn. tnI is decomposed into
tnP by a sequence of methods, and changing the model by emptying
the appropriate methods will turn tnP into tn.

1 ≤ i ≤ r), we construct a method mh
i = (hci , s). Thus,

M = {ms
1, · · · ,ms

n,m
h
1 , · · · ,mh

r}. We then construct tnI
to encode the structure of G, as shown in Figure 1.

The prefix sequence vc1 · · · vcn encodes all the vertices in
G, and each subsequence epi h

c
i v

c
ji
vcki

with 1 ≤ i ≤ r and
1 ≤ ji, ki ≤ n indicates that the two endpoints of the edge ei
are vji and vki . Any method sequence which decomposes tnI
into a solution tnP should be a permutation of the one shown
in Figure 1, and it encodes how the vertices are selected into
S. At the beginning, all vertices are selected. Thus, apply-
ing a DEL-TASK operation to a method ms

i (1 ≤ i ≤ n) is
analogous to deselecting vertex vi from the set S.

Lastly, the solution to the independent set problem instance
is encoded using the plan tn which is shown in Figure 1. The
prefix sequence which repeats s k times indicates that there
should be k selected vertices. The suffix sequence indicates
that for each edge ei (with 1 ≤ i ≤ r), at most one of its
endpoints can be selected. Moreover, a solution to the in-
dependent set instance may result in a situation where both
endpoints of some edge are not selected. The placeholders
hc1, · · · , hcr in tnI are used to encounter this situation. For
some edge ei (1 ≤ i ≤ r) 1) if a solution to the independent
set instance asserts that only one endpoint of ei should be de-
selected, the respective DEL-TASK operation will be applied
tomh

i , which results in the subsequence epi s to match tn, oth-
erwise 2) mh

i will not be modified, which also results in the
subsequence epi s.

It then follows that the given independent set instance has
a yes answer if and only if the FIX-METHSDEL instance we
constructed has one. Further, observe that the size of Np, Nc,
and M are bounded by r + 1, n+ r, and n+ r, respectively,
and |tnI | is bounded by n + 4r, the planning problem can
be constructed in time O(n + r). Additionally, since |tn| =
k + 2r ≤ n + 2r (because k cannot exceed the number of
vertices in the graph), we can conclude that the reduction can
be done in polynomial time.

We now consider the hardness when only additions are al-
lowed. Since this is somehow analogous to the deletion case,
we non-surprisingly obtain NP-hardness as well:

Theorem 3. FIX-METHSADD is NP-hard.

Proof. We again reduce from the independent set problem.
We construct a plan tn and a planning problem P which are
identical to those we constructed in the proof of Thm. 2 ex-
cept that for each 1 ≤ i ≤ n, ms

i = (vci , ε), and for each

1 ≤ j ≤ r, mh
j = (hcj , ε), where ε denotes an empty task

network. One can easily verify that there exists solely one
primitive task network (solution) into which tnI can be re-
fined, i.e., ep1 · · · epr . Applying ADD-TASK to a method ms

i is
now analogous to selecting the vertex vi into the set S, and
we can always apply ADD-TASK to somemh

j with 1 ≤ j ≤ r
in the case where none of the endpoints of ej are selected. It
follows that the independent set problem has a yes answer if
and only if the problem we constructed has one.

We now show the computational hardness of the general
case, where all change operations can be used.

Theorem 4. FIX-METHSADD,DEL is NP-hard.

Proof. In the proof of Thm. 3 we let each ms
i with 1 ≤ i ≤ n

and each mh
j with 1 ≤ j ≤ r in the constructed planning

problem contain an empty task network, thus making the
DEL-TASK operation redundant (or pointless). Thus, by ap-
plying the same reduction, we directly obtain hardness.

So far, we only asked whether any number of changes ex-
ists that makes the given task network a solution. We now
check whether the problem becomes harder when we are in-
terested in the minimal number of required changes. We for-
malize this in terms of limiting the size k of the method-
change operation sequence.

Definition 8 (FIX-METHSkX ). Let k ∈ N. For X ⊆
{ADD,DEL} and |X| ≥ 1, the problems FIX-METHSkX
are identical to FIX-METHSX , except that we demand that
any sequence of model changes is limited in size by k, i.e.,
|X | ≤ k.

These problems, apparently, do not become harder than the
original, unbounded ones.

Corollary 1. FIX-METHSkX with X ⊆ {ADD,DEL} and
|X| ≥ 1 is NP-complete.

Proof. Membership: Let L =
∑

m∈M |tn(m)|. For each
FIX-METHSkX with X ⊆ {ADD,DEL} and |X| ≥ 1, we
have already shown in Lem. 1 that each shortest change se-
quence that turns tn into a solution must be limited by a
polynomial. Thereby, although the given k can be exponen-
tially large via encoding it logarithmically, a change sequence
does never have to be of length of that worst-case exponential
value. More precisely, it should be of length smaller or equal
to the minimum of the requested number of k changes and
the polynomial bound L + |tn|. Guessing such a sequence
X , it takes polynomial time to change P to P ′ [Behnke et
al., 2015]. Further, since deciding whether tn is a solution
to P ′ takes polynomial time, the total time required to verify
whether X is a correct sequence is also a polynomial.

Hardness: For each FIX-METHSkX with X ⊆
{ADD,DEL} and |X| ≥ 1, we reduce from FIX-METHSX .
Given an instance of FIX-METHSX , since a shortest change
sequence for it cannot have length greater than L+ |tn| (with
L =

∑
m∈M |tn(m)|), we can construct a FIX-METHSkX

instance which is identical to the FIX-METHSX instance and
has k = L+ |tn|. Hardness then follows directly.



3.2 Complexity of Fixing the Methods
– Given an Action and Method Sequence
We move on to consider the computational hardness of prob-
lems where we are given both an action sequence and a de-
composition method sequence that is supposed to generate it.
This eliminates one possible source of computational hard-
ness, because there won’t be a choice which method to choose
per compound task. Though one practical motivation is again
failed plan verification. Suppose a flawed HTN planning sys-
tem that claims that a plan can be produced based on a se-
quence of used methods, whereas an independent plan verifi-
cation system [Behnke et al., 2017; Barták et al., 2018; 2020]
tells that this is not the case. Checking which methods are
flawed can then serve as counter-factual explanation [Gins-
berg, 1986; Chakraborti et al., 2017; 2020] to point towards
implementation errors (showing the user which methods were
not correctly processed by the planning system).

We start with the decision problems which allow an arbi-
trary number of changes.
Definition 9 (FIX-SEQSX ). Let P be a planning problem,
m = m1 · · ·mn be a sequence of methods, and tn be a task
network. We define the decision problems FIX-SEQSX with
X ⊆ {ADD,DEL} and |X| ≥ 1 as: Is there a sequence of
method-change operations X such that P →∗X P ′, tnI →∗m′

tn with m′ = βX (m1) · · ·βX (mn), and X consists of only
DEL-TASK and ADD-TASK operations according to X?

As before all variants turn out to be equally hard:
Theorem 5. FIX-SEQSX withX ⊆ {ADD,DEL} and |X| ≥
1 is NP-complete.

Proof. Membership: Let L =
∑n

i=1 |tn(mi)|. For each
FIX-SEQSX with X ⊆ {ADD,DEL} and |X| ≥ 1, one im-
mediate observation is that if there exists some change se-
quence that turns tn into a solution, there must be one (as-
suming all operations refer to methods in m) whose length
is bounded by L + |tn|, which contains at most L deletions
and |tn| additions. Guessing such a sequence, transforming
P into P ′ thus takes time O(L + |tn|), and it follows that
L′ =

∑n
i=1 |tn(βX (mi))| ≤ L + |tn|. Thereby, check-

ing whether m′ decomposes tnI to tn can be done in time
O(L′) = O(L + |tn|). Taken together, verifying whether X
is a correct operation sequence takes P-time.

Hardness: For each FIX-SEQSX with X ⊆ {ADD,DEL}
and |X| ≥ 1, we again reduce from the independent set prob-
lem. We construct a plan tn and a planning problem P which
are identical to those in the hardness proof of the correspond-
ing FIX-METHSX problem. There, we have justified that any
method sequence that refines tnI into a solution is a permu-
tation of the one shown in Figure 1. Thus, by explicitly con-
structing such a method sequence, we complete the reduction.
Hardness then follows directly.

We now formalize the problems which we use to formalize
finding an optimal (i.e., shortest) sequence of changes.
Definition 10 (FIX-SEQSkX ). Let k ∈ N. For each X ⊆
{ADD,DEL} and |X| ≥ 1, the problem FIX-SEQSkX is iden-
tical to FIX-SEQSX except that we demand that any sequence
of change operations is limited in size by k, i.e., |X | ≤ k.

Following the idea used in the proof of Cor. 1, we immedi-
ately obtain the following result.

Corollary 2. The problems FIX-SEQSkX with X ⊆
{ADD,DEL} and |X| ≥ 1 are NP-complete.

Under certain conditions the problem becomes tractable.

Theorem 6. FIX-SEQSkX and FIX-SEQSX with X ⊆
{ADD,DEL} and |X| ≥ 1 can be decided in polynomial
time if tnI contains no primitive tasks, and each method in
the method sequence refines a unique task, i.e., for each 1 ≤
i, j ≤ n with i 6= j, if mi = (ci, tni) and mj = (cj , tnj),
then ci 6= cj .

Proof. We only show the proof for the case where both ad-
ditions and deletions are allowed, but the same idea can be
applied to the other cases. The idea is to compare k with the
minimal number of changes required. To find that number,
we first apply the method sequence m to tnI , which results
in a solution tnP . We can regard tnP and tn as strings where
each task is a symbol. Since each method refines a unique
task, changes that are imposed to one method will not have
an impact on another. In other words, we can directly ap-
ply additions and deletions to tnP without considering the
method sequence. Thus, the problem of finding the mini-
mal number of changes required to transform P into P ′ such
that tnI →∗m′ tn can then be reduced to finding the min-
imal number of editions required to transform tnP into tn.
That is equivalent to the string edit distance problem [Masek
and Paterson, 1980], which takes as inputs two strings S and
S′, and outputs an edit sequence E that consists of two types
of editions: adding a character and deleting a character, and
changes S to S′ in the minimal number of steps. In our case,
the two strings are tnP and tn, and the length of E is the
minimal number of changes required. Since the string edit
distance problem is solvable in polytime, and comparing the
minimal number of changes with k takes polynomial time as
well, the k-bounded problem can be solved in P. Clearly, the
unbounded case can thus also be decided in P.

4 Correcting the Model: Changing Tasks
We now investigate the case where we are given an action
sequence that is not executable, and we aim to make it ex-
ecutable by changing its actions’ preconditions and effects.
So here we ignore the hierarchy completely, either because a
non-hierarchical problem was solved in the first place, or be-
cause the plan is already proved to be obtainable by the avail-
able methods. Note that actions may occur multiple times, so
changing one action results in changing all the other identical
actions in the same sequence as well. We begin our inves-
tigation by introducing the allowed changes. One can eas-
ily verify that a reasonable change made to an action p can
be categorized as being: 1) Removing a fact from prec(p).
2) Removing a fact from del(p). 3) Adding a fact to add(p).

We formalize these changes as follows.

Definition 11 (FIX-PREC). Let p be an action and f ∈
prec(p) be a fact. The operation FIX-PREC is a function that
takes as inputs p and f , and outputs new preconditions of p
such that δ(p) = (prec(p)\{f}, add(p), del(p)).



Definition 12 (FIX-ADD). Let p be an action and f ∈ F
be a fact. The operation FIX-ADD is a function that takes as
inputs p and f , and outputs new effects of p such that δ(p) =
(prec(p), add(p) ∪ {f}, del(p)).
Definition 13 (FIX-DEL). Let p be an action and f ∈ del(p)
be a fact. The operation FIX-DEL is a function that takes as
inputs p and f , and outputs new effects of a such that δ(p) =
(prec(p), add(p), del(p)\{f}).

Having defined the allowed operations, we now proceed
to examine the complexity of making an action sequence ex-
ecutable. Notice that in most cases, deciding whether any
such modifications exist is rather trivial and can be done in
polynomial time or even constant time. We will thus focus on
checking whether k changes are sufficient.

Definition 14 (FIX-ACTIONSkX ). Let k be an integer, tn be
an action sequence. We define the problems FIX-ACTIONSkX
with X ⊆ {PREC,ADD,DEL} and |X| ≥ 1 as follows: Is it
possible to make tn executable by applying the allowed FIX
operation(s) (Defs. 11 to 13) according to X at most k times?

We start with the simplest questions where we are only al-
lowed to use one of the three operations.

Theorem 7. FIX-ACTIONSkPREC is in P.

Proof. Given an action sequence tn = p1 · · · pn, we compare
k with the minimal number of changes required to make tn
executable, which can be found as follows. For any action pi
with 1 ≤ i ≤ n, if there exists some fact f ∈ prec(pi) that
cannot be satisfied, we apply FIX-PREC to remove it. One
can easily verify that the total number of FIX-PREC applied is
minimal. Thus, the answer can be obtained by comparing that
number with k, and the total time required is O(|tn|).

Theorem 8. FIX-ACTIONSkDEL is in P.

Proof. Let tn = p1 · · · pn be the given action sequence. We
again compare k with the minimal number of changes re-
quired to make tn executable. For each pi with 1 ≤ i ≤ n that
contains some fact f ∈ prec(pi) which is not satisfied in the
current state, we find all actions pj with j < i, f ∈ del(pj),
and f /∈ add(pr) for each j < r < i, and apply FIX-DEL
to remove f from del(pj). If no such action can be found, or
f is not satisfied after all pjs have been processed, it is not
possible to make tn executable. For every such pair of pj and
pi, if f remains in del(pj), the precondition of pi cannot be
satisfied. Thus, we can conclude that the number of FIX-DEL
operations applied is minimal, and comparing it with k takes
polynomial time. Thus, FIX-ACTIONSkDEL is in P.

Unlike the previous ones, the problem becomes harder
when we are only allowed to use FIX-ADD.

Theorem 9. FIX-ACTIONSkADD is NP-complete.

Proof. Membership: Let tn = p1 · · · pn be the given action
sequence, and L =

∑n
i=1 |prec(pi)|. We can bound the num-

ber of changes that make tn executable by L|tn|, which we
get by adding all facts to all actions in tn. Thus, even though
the given k can be exponentially large via encoding it log-
arithmically, there always exists a way to change actions in

polynomial many steps if one exists at all. Guessing at most
min{k, L|tn|} changes, it takes time O(min{k, L|tn|}) to
change the action sequence andO(|tn|) to verify whether the
changed sequence is executable.

Hardness: We reduce from the set covering problem,
which is known to be NP-complete [Karp, 1972]. Let τ and
S = {S1, · · · , Sm} be the integer and the set of sets given
by an instance of the set covering problem, respectively. The
solution to this problem instance is a subset T ⊆ S such
that |T | ≤ τ and

⋃
T∈T T =

⋃m
i=1 Si. We use the nota-

tion U =
⋃m

i=1 Si to refer to the universal set. Without loss
of generality, suppose U = {e1, · · · , en}. We construct an
equivalent instance of FIX-ACTIONSkADD as follows. Let f be
a dummy fact, for each ei ∈ U with 1 ≤ i ≤ n, we construct
an action pi such that prec(pi) = {f}, add(pi) = ∅, and
del(pi) = {f}, and we place these actions sequentially: tn =
p1 · · · pn. Afterwards, for each Sj ∈ S with 1 ≤ j ≤ m, we
construct an action aj with prec(aj) = ∅, add(aj) = ∅, and
del(aj) = ∅. For each ei ∈ U with 1 ≤ i ≤ n, if ei ∈ Sj ,
we insert aj into a position between ti−1 and ti in tn. Partic-
ularly, if i − 1 = 0, aj is inserted before p1. For example, if
a set Sj = {e1, e3, e4}, the action aj will be inserted to the
positions shown: ajp1p2ajp3ajp4 · · · pn

Lastly, let k = τ . By construction, if we apply FIX-ADD
to some action ar (1 ≤ r ≤ m), it will resolve the flaws
between ar and the actions that occur after it and have fact
f as a precondition. That is equivalent to select Sr into T ,
and vice versa. Additionally, although applying FIX-ADD to
some pi (1 ≤ i ≤ n) is possible, it is useless because each
pi is preceded by at least one aj (1 ≤ j ≤ m). Thus, the
instance of the set covering problem has a yes answer if and
only if the instance we constructed has one.

We now start to examine whether the problems become
harder when multiple operations are involved.
Theorem 10. FIX-ACTIONSkPREC,DEL is in P.

Proof. The idea is again to compare k with the minimal num-
ber of changes required to make tn executable. Observe that
all facts that occur in the action sequence and may result in
flaws are independent of each other. We can consequently
deal with them one after another. Let tn = p1 · · · pn be
the action sequence, F =

⋃n
i=1 Fi with Fi = prec(pi) ∪

add(pi) ∪ del(pi) be the set of all facts involved in tn. For
each f ∈ F , we do the following:
(1) For each action pi with 1 ≤ i ≤ n in tn, if f /∈ Fi, we

remove pi from tn. Without loss of generality, we denote
the new action sequence after this step as tn′ = p′1 · · · p′r
(r ≤ n). If tn′ is executable, we move on to process the
next fact in F , otherwise, we continue to the next step.

(2) For each action p′i with 1 ≤ i ≤ r in tn′, if f ∈
prec(p′i) ∩ del(p′i), we split p′i into two consecutive ac-
tions p′i,> and p′i,⊥ such that prec(p′i,>) = prec(p′i),
add(p′i,>) = ∅, del(p′i,>) = ∅, prec(p′i,⊥) = ∅,
add(p′i,⊥) = add(p′i), and del(p′i,⊥) = del(p′i). We de-
note the new action sequence after this step as tn∗ =
p∗1 · · · p∗k (r ≤ k).

(3) We construct an undirected graph G = (V,E) where
V = {p∗1, · · · , p∗k}, and for any two nodes v, v′ ∈ V ,



(v, v′) ∈ E if and only if there exist i, j with i < j such
that v = p∗i , v′ = p∗j , f ∈ del(p∗i ), f ∈ prec(p∗j ), for
each l with i ≤ l < j, f /∈ add(p∗l ), and there exist an
integer q with 1 ≤ q < i and f ∈ add(p∗q).

An edge (v, v′) ∈ E asserts that there exist actions v and
v′ in tn∗ such that v deletes the fact f that is required by
v′, which consequently make tn∗ nonexecutable. Thus, for
each such edge (v, v′) ∈ E, we should remove f from ei-
ther 1) prec(v′), 2) del(v), 3) or both. For finding the min-
imal number of changes Nf required to fix the flaws asso-
ciated with f , one can immediately note that this is equiva-
lent to finding the minimum vertex cover of G, which can be
solved in polynomial time when G is a bipartite graph [Korte
and Vygen, 2008]. Thus, the minimal number of changes re-
quired to make tn executable can be obtained by summing up
Nf for each f ∈ F . Since |F| is bounded by a polynomial,
and calculatingNf for each f also takes polynomial time, the
minimal number of changes required can be obtained in poly-
nomial time. Further, comparing this number with k takes
polynomial time. The problem is thus in P.

Theorem 11. FIX-ACTIONSkPREC,ADD is NP-complete.

Proof. Membership: Let tn = p1 · · · pn be the given action
sequence, and F =

⋃n
i=1 prec(pi) ∪ add(pi) ∪ del(pi). At

most 2|F||tn| changes are required if tn can be made ex-
ecutable, which is the number obtained by adding all facts
to all actions and removing all facts from the preconditions
of all actions in tn. After guessing a sequence of changes
which is of length smaller or equal to the minimum of k and
2|F||tn| it takes O(min{k, 2|F||tn|}) time to change the ac-
tion sequence and O(|tn|) to verify executability.

Hardness: We reduce from the FIX-ACTIONSkADD prob-
lem. Let k and tn = p1 · · · pn be the integer and the ac-
tion sequence given by an instance of FIX-ACTIONSkADD, re-
spectively. For simplicity, we only consider the case where
tn contains only one fact f , and we have shown in the
hardness proof of FIX-ACTIONSkADD that it is NP-complete
even in such a case. To construct an equivalent instance
of FIX-ACTIONSkPREC,ADD, we keep the k unchanged, and
construct the action sequence as follows: For each pi with
1 ≤ i ≤ n and f ∈ prec(pi), we construct a sequence of
dummy actions di,1 · · · di,r where r = min{k, 2|F||tn|}, and
for each 1 ≤ j ≤ r, prec(di,j) = {f}, del(di,j) = ∅, and
add(di,j) = ∅, and place this sequence right before pi in tn.
After consulting the argument in the membership proof, one
can immediately observe that r is a sufficient upper bound
for the maximal number of changes required for both the
FIX-ACTIONSkADD instance and the FIX-ACTIONSkPREC,ADD
instance. By construction, we make FIX-PREC pointless, be-
cause if we apply FIX-PREC to some action pi with f ∈
prec(pi), it should also be applied to the sequence di,1 · · · di,r
accordingly, thus the number of changes applied will exceed
r. Thereby, the given FIX-ACTIONSkADD instance has a yes
answer if and only if the instance we constructed has one.

Theorem 12. FIX-ACTIONSkADD,DEL is NP-complete.

Proof. Membership: Let tn = p1 · · · pn be the given ac-
tion sequence, and F =

⋃n
i=1 prec(pi) ∪ add(pi) ∪ del(pi).

2|F||tn| is a sufficient upper bound for the number of changes
making tn executable, which shows membership.

Hardness: The argument is almost identical to that in the
hardness proof of Thm. 11 except that each dummy action
sequence di,1 · · · di,r is now placed right after an action pi in
tn with f ∈ del(pi), and for each 1 ≤ j ≤ r, prec(di,j) = ∅,
del(di,j) = {f}, and add(di,j) = ∅. By construction, we
make FIX-DEL pointless. Thus, the given FIX-ACTIONSkADD
instance has an yes answer if and only if the instance we con-
structed has one.

Theorem 13. FIX-ACTIONSkPREC,ADD,DEL is NP-complete.

Proof. Membership: Let tn = p1 · · · pn be the given action
sequence, and F =

⋃n
i=1 prec(pi) ∪ add(pi) ∪ del(pi). The

number of changes can be bounded by 3|F||tn|. Membership
follows immediately.

Hardness: The argument is similar to that in the proofs of
Thm. 11 and 12. We reduce from a FIX-ACTIONSkADD in-
stance where only one fact f is involved. Let k and tn =
p1 · · · pn be the integer and the action sequence given by
the FIX-ACTIONSkADD instance, respectively. To construct an
equivalent instance of FIX-ACTIONSkPREC,ADD,DEL, we keep k
unchanged, and construct the action sequence as follows. For
each pi with 1 ≤ i ≤ n and f ∈ prec(pi), we place a dummy
action sequence di,1 · · · di,r with r = min{k, 3|F||tn|}, and
prec(di,j) = {f}, del(di,j) = ∅, and add(di,j) = ∅ for each
1 ≤ j ≤ r right before pi. In the mean time, for each pi
with 1 ≤ i ≤ n and f ∈ del(pi), we place a dummy action
sequence d′i,1 · · · d′i,r with prec(d′i,j) = ∅, del(d′i,j) = {f},
and add(d′i,j) = ∅ for each 1 ≤ j ≤ r right after pi. By
construction, we make both FIX-PREC and FIX-DEL redun-
dant. Thus, the given FIX-ACTIONSkADD instance has a yes
answer if and only if the FIX-ACTIONSkPREC,ADD,DEL instance
we constructed has one.

We can summarize our findings as follows:
Corollary 3. Let X ⊆ {PREC,ADD,DEL} and |X| ≥ 1.
FIX-ACTIONSkX is NP-complete if ADD ∈ X , otherwise it is
in P.

5 Conclusion
Motivated by MIP, modeling assistance, and providing
counter-factual explanations for failed plan verification,
we investigated the computational complexity of checking
whether there exists a sequence of model changes (possibly
of bounded length) to turn a given action sequence into a so-
lution. These changes are either performed 1) on decompo-
sition methods, or 2) on the actions’ preconditions and ef-
fects. For the former, we show that deciding whether such a
sequence exists is NP-complete no matter what or how many
changes are allowed (unless we are given a sequence of meth-
ods where each method refines a unique task, which is in P).
For the latter, the problem becomes NP-hard whenever it is
allowed to change actions’ add lists, otherwise the problem
will be in P. A natural exploitation of our results is to imple-
ment the decision problems in suitable frameworks, e.g., by
relying on SAT or ILPs, which are both efficient reasoning
frameworks for NP-complete problems.
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survey on hierarchical planning – one abstract idea, many
concrete realizations. In IJCAI, pages 6267–6275. IJCAI,
2019.

[Bresina et al., 2005] J. L. Bresina, A. K. Jónsson, P. H. Mor-
ris, and K. Rajan. Activity planning for the mars explo-
ration rovers. In ICAPS, pages 40–49. AAAI, 2005.

[Chakraborti et al., 2017] T. Chakraborti, S. Sreedharan,
Y. Zhang, and S. Kambhampati. Plan explanations as
model reconciliation: Moving beyond explanation as so-
liloquy. In IJCAI, pages 156–163. IJCAI, 2017.

[Chakraborti et al., 2020] T. Chakraborti, S. Sreedharan, and
S. Kambhampati. The emerging landscape of explainable
automated planning & decision making. In IJCAI, pages
4803–4811. IJCAI, 2020.

[Erol et al., 1996] K. Erol, J. Hendler, and D. S. Nau. Com-
plexity results for HTN planning. Annals of Mathematics
and Artificial Intelligence, 18(1):69–93, 1996.

[Ferguson and Allen, 1998] G. Ferguson and J. F. Allen.
TRIPS: an integrated intelligent problem-solving assistant.
In AAAI, pages 567–572. AAAI, 1998.

[Ferguson et al., 1996] G. Ferguson, J. F. Allen, and B. W.
Miller. TRAINS-95: towards a mixed-initiative planning
assistant. In AIPS, pages 70–77. AAAI, 1996.

[Geier and Bercher, 2011] T. Geier and P. Bercher. On the
decidability of HTN planning with task insertion. In IJ-
CAI, pages 1955–1961. AAAI, 2011.

[Ginsberg, 1986] M. L. Ginsberg. Counterfactuals. Artificial
Intelligence, 30(1):35–79, 1986.

[Göbelbecker et al., 2010] M. Göbelbecker, T. Keller, P. Ey-
erich, M. Brenner, and B. Nebel. Coming up with good ex-
cuses: What to do when no plan can be found. In ICAPS,
pages 81–88. AAAI, 2010.
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