Change the World – How Hard Can That Be? On the Complexity of Fixing Planning Models

Songtuan Lin, Pascal Bercher

The Australian National University

May 20, 2021

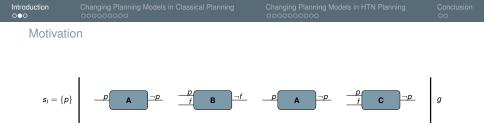
Australian National University

Introduction	
000	

Changing Planning Models in HTN Planning

Introduction

Songtuan Lin, Pascal Bercher



An infeasible plan in which the action A deletes the fact p that is required by the actions A, B and C, and the environment does not have the fact f that is required by B and C as well.

Counter-factual Explanations. (How to make the plan executable?)

	Α	В	С
	delete $\neg p$	N/A	N/A
p	N/A	delete p	delete p
	add f	N/A	N/A
r	N/A	delete f	delete f

Modeling assistance.

Scenario

Given a plan that is supposed to be a solution to a planning problem, but it is actually not, we want to change the planning model so that it can be.

- Considering the problem in the context of hierarchical (HTN) & non-hierarchical planning.
- Complexity Study.

Changing Planning Models in HTN Planning

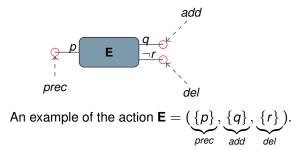
Changing Planning Models in Classical Planning

Changing Planning Models in HTN Plannin

Conclusion

Basic Terminologies

- A state s is a set of proposition variables
- An action is a tuple (prec, add, del)
 - Preconditions *prec*: $prec \subseteq s$.
 - Effects add & del: $(s \setminus del) \cup add$.



Given an action sequence, we want to change actions' preconditions and effects to make the sequence executable.

Given an action sequence, we want to change actions' preconditions and effects to make the sequence executable.

• FIX-PREC: Removing a variable from an action's precondition.

Given an action sequence, we want to change actions' preconditions and effects to make the sequence executable.

- FIX-PREC: Removing a variable from an action's precondition.
- FIX-ADD: Adding a variable to an action's add list.

Given an action sequence, we want to change actions' preconditions and effects to make the sequence executable.

- FIX-PREC: Removing a variable from an action's precondition.
- FIX-ADD: Adding a variable to an action's add list.
- FIX-DEL: Removing a variable from an action's delete list.

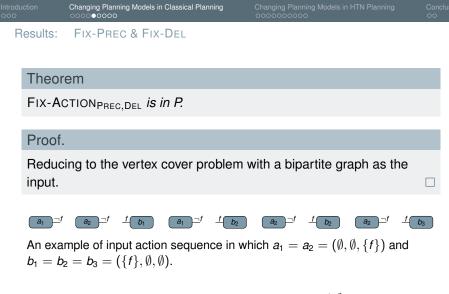
Changing Planning Models in HTN Plannin

Problem Definition: Definition

Definition (FIX-ACTION^k_X, $X \subseteq \{PREC, ADD, DEL\}$ and $|X| \ge 1$)

Given an action sequence \overline{a} , is there a way to make \overline{a} executable by using the respective changes according to the value of X at most k times.

- If $PREC \in X$, FIX-PREC is allowed.
- If $ADD \in X$, FIX-ADD is allowed.
- If $DEL \in X$, FIX-DEL is allowed.



*More complicated cases where $prec \cap add \cap del \neq \emptyset$ for some actions are considered in the proof presented in our paper.

	Changing Planning Models in Classical Planning		
Results:	Reducing to the Vertex Covering	Problem	
			f

*a*₁ •

a2 (

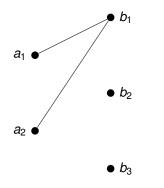
Definition (Vertex Cover)

Given a graph, finding the minimum subset of the vertices such that for every edge, at least one of its endpoints is in the set.

	Changing Planning Models in Classical Planning		
Results:	Reducing to the Vertex Covering	g Problem	
	a_2 $\neg f$ f b_1 a_1 $\neg f$ f b_2	$a_2 \xrightarrow{-f} \underline{f} b_2 a_2 \xrightarrow{-f} \underline{f} t$	93
	• <i>b</i> ₁	Definition (Vertex Cover)	
а	1 ● ● <i>b</i> ₂	Given a graph, finding the minimum subset of the vertice such that for every edge, at lea one of its endpoints is in the se	ast
а	₂ ● ● <i>b</i> ₃	The minimal vertex cover is $\{a_1, a_2\}$. \implies The optimal change is removir from the actions a_1 and a_2 .	ng f

Introduction	Changing Planning Models in Classical Planning		
Results:	Reducing to the Vertex Coverin	g Problem	
	$a_2 \xrightarrow{-f} f b_1$ $a_1 \xrightarrow{-f} f b_2$	$a_2 \underline{\neg}^f \underline{f} b_2 a_2 \underline{\neg}^f \underline{f}$	<i>b</i> ₃
	_● <i>b</i> 1	Definition (Vertex Cover)	
e	a ₁ •	Given a graph, finding the minimum subset of the vertice such that for every edge, at le	ast
	• <i>b</i> ₂	one of its endpoints is in the s	et.
e	∂2 ● ● <i>b</i> ₃	The minimal vertex cover is $\{a_1, a_2\}$. \implies The optimal change is removi from the actions a_1 and a_2 .	ng f

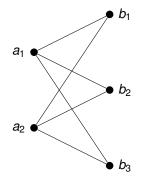
	Changing Planning Models in Classical Planning	Changing Planning Models in HTN Planning	
Results:	Reducing to the Vertex Covering	g Problem	



Definition (Vertex Cover)

Given a graph, finding the minimum subset of the vertices such that for every edge, at least one of its endpoints is in the set.

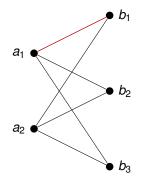
	Changing Planning Models in Classical Planning	Changing Planning Models in HTN Planning	
Results:	Reducing to the Vertex Covering	Problem	



Definition (Vertex Cover)

Given a graph, finding the minimum subset of the vertices such that for every edge, at least one of its endpoints is in the set.

	Changing Planning Models in Classical Planning	Changing Planning Models in HTN Planning	
Results:	Reducing to the Vertex Covering	Problem	



Definition (Vertex Cover)

Given a graph, finding the minimum subset of the vertices such that for every edge, at least one of its endpoints is in the set.

	Changing Planning Models in Classical Planning	
Results:	Only FIX-ADD	

Theorem

FIX-ACTION^k is NP-complete.

Proof.

Suppose the given action sequence is $\overline{a} = a_1 \cdots a_n$.

- Membership: Guessing at most min{k, ∑_{i=1}ⁿ |prec(a_i)|} changes.
- Hardness: Reducing from the set covering problem.

	Changing Planning Models in Classical Planning	
Results:	Set Covering	

Definition

Given a set of sets $S = \{S_1, \dots, S_n\}$ and an integer k, is there a subset S' of S such that $|S| \le k$ and $\bigcup_{S \in S} S = \bigcup_{i=1}^n S_i$.

E.g.,
$$S = \{\underbrace{\{e_1\}}_{S_1}, \underbrace{\{e_1, e_2\}}_{S_2}, \underbrace{\{e_3\}}_{S_3}\}$$
 and $k = 2$.

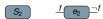
• A solution to this instance is $S' = \{S_2, S_3\}$.

	Changing Planning Models in Classical Planning		
Results:	Reduction from the Set Covering	Problem	

$$S_1 = \{e_1\}, S_2 = \{e_1, e_2\}, S_3 = \{e_3\}$$

• $e_i = (\{f\}, \emptyset, \{f\}) \ (1 \le i \le 3)$

	Changing Planning Models in Classical Planning		
Results:	Reduction from the Set Covering	Problem	



$$S_1 = \{e_1\}, S_2 = \{e_1, e_2\}, S_3 = \{e_3\}$$

• $e_i = (\{f\}, \emptyset, \{f\}) \ (1 \le i \le 3)$

•
$$S_i = (\emptyset, \emptyset, \emptyset)$$
 ($1 \le i \le 3$)

	Changing Planning Models in Classical Planning		
Results:	Reduction from the Set Covering	Problem	

 $\underline{\neg}^{f}$

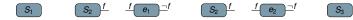
 $\underline{}_{f}$

$$S_1 = \{e_1\}, S_2 = \{e_1, e_2\}, S_3 = \{e_3\}$$

• $e_i = (\{f\}, \emptyset, \{f\}) \ (1 \le i \le 3)$

•
$$S_i = (\emptyset, \emptyset, \emptyset)$$
 ($1 \le i \le 3$)

	Changing Planning Models in Classical Planning		
Results:	Reduction from the Set Coverin	g Problem	



$$S_1 = \{e_1\}, S_2 = \{e_1, e_2\}, S_3 = \{e_3\}$$

• $e_i = (\{f\}, \emptyset, \{f\}) \ (1 \le i \le 3)$

•
$$S_i = (\emptyset, \emptyset, \emptyset)$$
 ($1 \le i \le 3$)

	Changing Planning Models in Classical Planning ○○○○○○○●		
Results:	Reduction from the Set Covering	J Problem	

$$S_1 = \{e_1\}, S_2 = \{e_1, e_2\}, S_3 = \{e_3\}$$

• $e_i = (\{f\}, \emptyset, \{f\}) \ (1 \le i \le 3)$

•
$$S_i = (\emptyset, \emptyset, \emptyset)$$
 ($1 \le i \le 3$)

Corollary

FIX-ACTION^{*k*} is NP-complete if ADD $\in X$.

Changing Planning Models in HTN Planning

Changing Planning Models in HTN Planning

• State s: A set of proposition variables.

HTN Planning: Components

- State *s*: A set of proposition variables.
- Primitive tasks/actions (prec, add, del)
 - Preconditions *prec*: $prec \subseteq s$
 - Effects add and del: $(s \setminus del) \cup add$
- Compound tasks

HTN Planning: Components

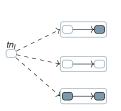
- State *s*: A set of proposition variables.
- Primitive tasks/actions (prec, add, del)
 - Preconditions prec: prec $\subseteq s$
 - Effects add and del: $(s \setminus del) \cup add$
- Compound tasks
- Task networks →→→→→→

HTN Planning: Components

- State *s*: A set of proposition variables.
- Primitive tasks/actions (prec, add, del)
 - Preconditions prec: prec $\subseteq s$
 - Effects add and del: $(s \setminus del) \cup add$
- Compound tasks
- Task networks → → → → →

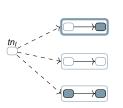
tnı

- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_i*: An initial task network.



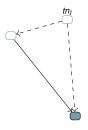
$$P = (D, tn_l, s_l)$$
 with
 $D = (F, N_c, N_p, \delta, M)$

- F: A set of proposition variables called facts.
- N_c: A set of compound tasks.
- N_p: A set of primitive tasks (actions).
- $\delta: N_p \to 2^F \times 2^F \times 2^F$
- M: A set of methods.
- *tn_i*: An initial task network.

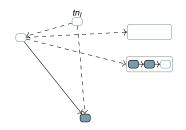


$$\mathcal{P} = (\mathcal{D}, \mathit{tn}_{\mathit{I}}, \mathit{s}_{\mathit{I}})$$
 with
 $\mathcal{D} = (\mathcal{F}, \mathit{N}_{\mathit{c}}, \mathit{N}_{\mathit{p}}, \delta, \mathit{M})$

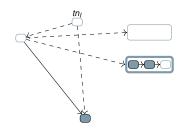
- F: A set of proposition variables called facts.
- N_c: A set of compound tasks.
- N_p: A set of primitive tasks (actions).
- $\delta: N_p \to 2^F \times 2^F \times 2^F$
- M: A set of methods.
- *tn_i*: An initial task network.



- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_i*: An initial task network.



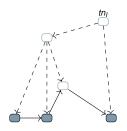
- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_I*: An initial task network.



- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_I*: An initial task network.

Changing Planning Models in HTN Planning

Conclusion

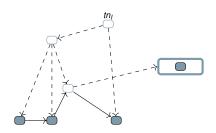


- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_i*: An initial task network.

Changing Planning Models in Classical Planning

Changing Planning Models in HTN Planning

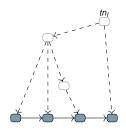
Conclusion



- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_I*: An initial task network.

Changing Planning Models in HTN Planning

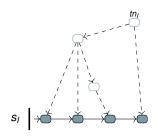
Conclusion



- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_i*: An initial task network.

Changing Planning Models in HTN Planning

Conclusion



- $P = (D, tn_I, s_I) \text{ with}$ $D = (F, N_c, N_p, \delta, M)$
 - F: A set of proposition variables called facts.
 - N_c: A set of compound tasks.
 - N_p: A set of primitive tasks (actions).
 - $\delta: N_p \to 2^F \times 2^F \times 2^F$
 - M: A set of methods.
 - *tn_I*: An initial task network.
 - s_i: An initial state.

			Changing Planning Models in HTN Planning	
Changing	Methods:	Allowed Changes		

Given an HTN planning problem and an action sequence, we want to change the planning model so that the given action sequence can be a solution.

Given an HTN planning problem and an action sequence, we want to change the planning model so that the given action sequence can be a solution.

• ADD-ACTION: Adding an action to a method.

Given an HTN planning problem and an action sequence, we want to change the planning model so that the given action sequence can be a solution.

ADD-ACTION: Adding an action to a method.

• DEL-ACTION: Removing an action from a method.

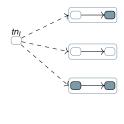
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)

Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)

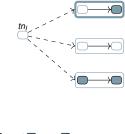
Given an HTN planning problem P and an action sequence tn, is there a way to change the methods in P by applying the respective changes according to the value of X so that tn becomes a solution.

tn

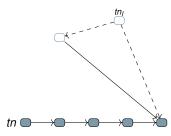
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



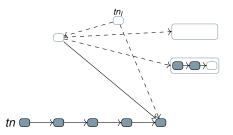
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



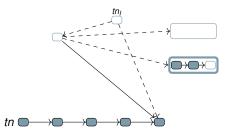
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



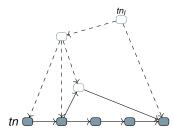
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



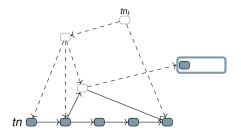
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



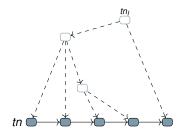
Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



Definition (FIX-METHS_X, $X \subseteq \{ADD, DEL\}$ and $|X| \ge 1$)



Given Only an Action Sequence: Membership

Theorem

FIX-METHS_X is in NP.

Proof.

Key Observation: If there exists a sequence of changes that turns *tn* into a solution, then there must be one of length bounded by a polynomial.

- A totally-ordered HTN planning can be regarded as a CFG.
- Parsing based plan verification algorithms.

Given Only an Action Sequence

Theorem

FIX-METHS_X is NP-hard.

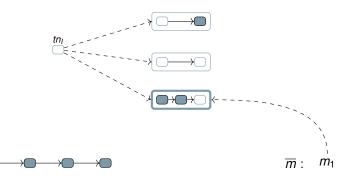
Proof.

• Reducing from the independent set problem.

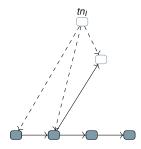
Definition (FIX-SEQ_X)

Definition (FIX-SEQ_X)

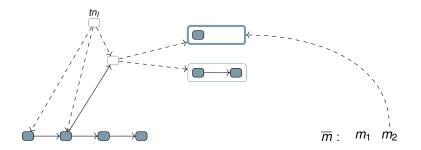
Definition (FIX-SEQ_X)



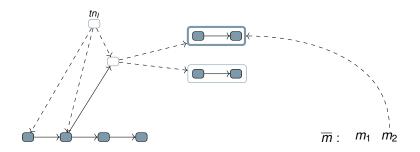
Definition (FIX-SEQ_X)



Definition (FIX-SEQ_X)

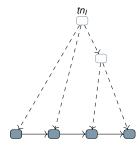


Definition (FIX-SEQ_X)



Definition (FIX-SEQ_X)

Given a planning problem *P*, a task network *tn*, and a method sequence \overline{m} . Is there a way to change the methods in *P* by using the allowed changes specified by *X* (e.g., ADD and DEL) such that \overline{m} decomposes the initial task network of *P* into *tn*.



 \overline{m} : m_1 m_2

Given an Action Sequence & a Method Sequence

Theorem

 $FIX-SEQ_X$ is NP-complete.

Proof.

• Reduction from the independent set problem again.

Optimization: Finding the Minimal Number of Changes

Definition (FIX-METHS $_X^k$ & FIX-SEQ $_X^k$)

Given an integer k, the problems FIX-METHS^{*k*} and FIX-SEQ^{*k*} are identical to FIX-METHS_{*X*} and FIX-SEQ_{*X*} except that we bounded the number of changes by k.

Corollary

FIX-METHS^k and FIX-SEQ^k are NP-complete.

Changing Planning Models in HTN Planning

Conclusion

Songtuan Lin, Pascal Bercher

Summary

	Changes	Complexity				
	prec	P NP-complete	Methods Given?	Changes	Comp Any Changes	lexity k Changes
_	del prec, del add		No	Del Add Add, Del	NP-complete	NP-complete
	prec, add del, add		Yes	All	NP-complete	NP-complete
			Yes: Unique	All	Р	Р
	prec, add, del					

Computational Complexity of Changing Actions.

Computational Complexity of Changing Methods.