
Hybrid Planning with Preferences Using a
Heuristic for Partially Ordered Plans

Pascal Bercher and Susanne Biundo

Institute of Artificial Intelligence, Ulm University, Germany

Abstract. This paper is concerned with the problem of finding preferred
plans in a hybrid planning setting, which is the fusion of classical and
hierarchical planning. Here, we define preferences as weighted soft goals
— facts one would like to see satisfied in a goal state, but which do not
have to hold necessarily.
We present a branch-and-bound algorithm that allows a broad variety of
search strategies, as opposed to the majority of existing planning systems
which usually perform progression. The algorithm prunes task networks
from the search space which will never lead to a better solution than
the best solution found so far. To this end, we developed an admissible
heuristic, based on a combination of the h2 heuristic and delete relax-
ation, which takes as input a task network and estimates the best quality
of any solution that can be developed from it.

Keywords: preferences, soft goals, hybrid planning, POCL planning,
h2 heuristic, delete relaxation, reachability analysis

1 Introduction

In real-world planning, for example, when assisting human users in their everyday
life [3], plans are often of different quality depending on the specific user carrying
out the plan. One user may like to go by bus, whereas the other may prefer to
travel by taxi. In many application contexts, there is therefore the need to specify
a quality measure that reflects the different needs and preferences of different
human users. In this setting, which is called planning with preferences, a planning
problem is augmented with a set of preference formulas. The goal is to find a
solution to the planning problem that satisfies the preferences to the largest
possible extent.

Planning with preferences has attracted increased attention with the devel-
opment of pddl3 [11], the language for the fifth International Planning Com-
petition (IPC-5). In pddl3, preferences are either soft goals (also called simple
preferences) or plan constraints. The former are certain conditions that should
hold in the final state produced by a solution plan; i.e., they are not mandatory,
but should be achieved if possible. The latter are soft (i.e., non-mandatory)
constraints on the state trajectories induced by a plan. They can be expressed
by a special form of Linear Temporal Logic (LTL) formulas. These plan con-
straints enable the expression of rich user preferences, like “never drive by bus”

2 Pascal Bercher and Susanne Biundo

or “before calling taxi, check whether there is enough money to pay it”. Each
preference is associated with a numerical value (we call it weight in this paper),
which represents the importance of the respective preference.

This paper is concerned with solving hybrid planning problems favoring those
solutions which satisfy the weighted preferences — given in terms of soft goals
— to a larger extent. The hybrid planning paradigm is particularly well suited
for solving real-world planning problems, as it fuses ideas from classical planning
with those of hierarchical task network (HTN) planning: many real-world prob-
lems are inherently hierarchical and can more easily and adequately be encoded
in the HTN planning paradigm. However, parts of the domain might be non-
hierarchical and could be modeled more adequately in the classical state-based
paradigm. Hybrid planning fuses both, in that it allows for the specification of
an initial task network and of compound tasks as in HTN planning, but also en-
ables the arbitrary insertion of tasks to support open preconditions as in classical
planning.

The paper is organized as follows. In Section 2, we explain the concepts
of hybrid planning and introduce our notion of preferences. In Section 3, we
introduce our novel preference-based branch-and-bound algorithm for hybrid
planning. This algorithm uses a heuristic function to estimate the final quality
of a current task network in order to prune it from the search space if it leads
to a suboptimal solution. In Section 4, we introduce such a heuristic function,
which is based on a variant of the h2 heuristic [12] using delete relaxation. After
that, we give a brief review of related work followed by a summary and outlook.

2 Planning with Preferences

We are interested in solving hybrid planning problems [4,7,10,13] with prefer-
ences. Hybrid planning relies on the concept of HTN planning and classical
planning; the former of which will be explained next.

HTN planning is based on the concepts of tasks and methods [6]. Compound
tasks represent high-level activities like making a business trip or transport-
ing certain goods to a specific location. Primitive tasks correspond to classical
planning operators. Hierarchical domain models hold a number of methods for
each compound task. Each method provides a task network which specifies a
predefined abstract/partial solution of the corresponding compound task. The
decomposition of a compound task by an appropriate method replaces this task
by the task network specified by the respective method. A solution to a plan-
ning problem is an executable decomposition of the initial task network. Thus,
a planning problem is solved by incrementally decomposing the compound tasks
in the initial task network until it contains only primitive tasks and is consistent
w. r. t. their ordering and causal structure. Such a task network is a solution to
the given problem and called a plan.

Hybrid planning extends HTN planning in the following way:

Planning with Preferences Using Heuristic Search 3

• Tasks may be inserted into any task network without the need of being
introduced via decomposition.1 This allows to plan for partially hierarchical
domain models [13], because missing tasks may be inserted ad hoc.

• Also compound tasks show pre- and postconditions. Hence, they can be in-
serted into task networks thereby improving the search efficiency. The perfor-
mance increase results from the fact that the decomposition methods specify
predefined standard solutions for the compound tasks’ postconditions.

• A goal description can be specified like in classical planning.

In our formalization of hybrid planning, we use the concepts of partial order
causal link (POCL) planning, as they allow explicit causal reasoning and a broad
variety of search strategies in addition to the standard progression and regression
search. In hybrid planning, a task network TN = (T,≺, V, C) consists of a set of
tasks T , where each task l:t ∈ T consists of a (partially) instantiated primitive
or compound task schema t and a label l to differentiate between multiple oc-
currences of t. The set ≺ of ordering constraints imposes a partial order on the
tasks in T . V is a set of variable constraints, each of the form (l, v) ◦ x, where
l is the label of the task schema to which the variable v belongs, ◦ ∈ {=, 6=},
and x is either another variable of the form (l′, v′), or a constant c. C is a set
of causal links; a causal link l′ →φ l indicates that the precondition literal φ of
l:t ∈ T is an effect of l′:t′ ∈ T and is supported this way. T denotes the set of
available task schemata, whereas M denotes the set of available decomposition
methods. A primitive or compound task schema t = (prec, eff) is a tuple con-
sisting of sets of preconditions and effects; both are sets of literals and depend
on the parameters v̄(t). For the sake of simplicity, we write prec(t) and eff(t)
to refer to the preconditions and effects of t. A method m = (t,TN) relates a
compound task schema t to a task network TN, which represents a predefined
abstract/partial solution or “implementation” of the task, or, more precisely,
of the task’s effects. In general, a number of different methods is provided for
each compound task. Given a set of available constants, we denote by P the
set of all possible ground atomic propositions. Then, a state is defined as usual
as a set of (positive) facts from P. Thus, given a set of constants, a hybrid
planning problem Π = (T ,M, sinit,TNinit, g) includes the task schemata T ,
the methods M, an initial state sinit ∈ 2P , an initial task network TNinit that
needs to be decomposed, and a goal description g ⊆ P which must be achieved
by any solution. Then, a solution to Π, also called a plan, is a task network
TN = (T,≺, V, C) that satisfies the following criteria:

• TN is a refinement of TNinit w. r. t. decomposition of compound tasks and
the insertion of tasks, causal links, ordering- and variable constraints,

• no causal links are threatened, i.e., for each causal link l′ →φ l ∈ C the
ordering constraints ensure that no task l′′:t′′ with t′′ ∈ T and effect ¬ψ
that can be unified with ¬φ, can be ordered between l′:t′ ∈ T and l:t ∈ T ,

1 In recent work [9] we showed that this feature makes hybrid planning decidable as
opposed to standard HTN planning in which tasks may not be inserted arbitrarily.

4 Pascal Bercher and Susanne Biundo

• the ordering and variable constraints ≺ and V are consistent, i.e., the order-
ing does not induce cycles on the tasks and the (in-) equations of variable
constraints are free of contradiction,

• all tasks in T are primitive, and
• TN is executable in sinit and all ground linearizations of tasks of TN generate

a state s′ that satisfies the goal description, i.e., s′ ⊇ g.

In addition to a planning problem Π, we are given a set of weighted ground
facts. Thus, Pref ⊆ P × N is a set of preferences or soft goals. For a preference
(p, n) ∈ Pref, the weight is interpreted as a violation value which depreciates a
given plan TN by n if p does not necessarily hold in the final state produced
by TN (which we denote by TN 6|= p). For a plan TN, the metric m is hence
defined as m(TN) :=

∑
(p,n)∈Pref,TN6|=p n. Then, a plan TN1 is preferred over a

plan TN2, written TN1 ≤ TN2, if and only if m(TN1) ≤ m(TN2).
Please note that this kind of preference and metric can also be expressed

in pddl3. There, each preference is given a specific name, which can then be
used by the metric function. For example, let Pref := {(accepted(paper1), 10),
(accepted(paper2), 5)} denote the user’s preference that it is twice as important
to him to have paper1 accepted as paper2. In pddl3, this would look as follows:

(: c o n s t r a i n t s (and (p r e f e r e n c e P1 (at−end (accepted PAPER1)))
(p r e f e r e n c e P2 (at−end (accepted PAPER2)))))

(: metr ic minimize (+ (∗ 10 (i s−v i o l a t e d P1))
(∗ 5 (i s−v i o l a t e d P2))))

Although pddl3 can also express preferences on state trajectories, from a
theoretical point of view, it is not a real restriction to design a planning algo-
rithm, that is “only” capable of searching for plans which are optimal w. r. t.
soft goals: Baier and McIlraith [2] have developed a technique which compiles a
classical planning problem with preferences on state trajectories into an equiv-
alent planning problem which only makes use of soft goals. Hence, any planner
capable of maximizing plan quality w. r. t. soft goals is in principle capable of
handling (the seemingly more expressive) state trajectory constraints.

3 Search Algorithm

In this section, we present our preference-based branch-and-bound algorithm,
which allows for arbitrary partial order search strategies. To enable the flexibil-
ity of making use of various search strategies, we provide an explicit representa-
tion of flaws and modifications. Flaws are deficiencies which are contradicting a
solution criterion or a preference. Modifications are refinements to address these
deficiencies like the decomposition of a compound task or the insertion of an
ordering constraint.

Algorithm 1 shows our planning procedure. It always keeps track of the best
solution found so far (best-tn) and its metric value best-m. The fringe is a
sequence of task networks; initially, it contains only the initial task network.

Planning with Preferences Using Heuristic Search 5

Algorithm 1: Preference-based Branch-and-Bound Planning Algorithm

Input : The sequence Fringe = 〈TNinit〉.
Output : A plan or fail.

best-m := ∞
best-tn := fail

while Fringe = 〈TN1 . . .TNn〉 6= ε do
Fringe := 〈TN2 . . .TNn〉
FH := fHardFlaw-Det(TN1)

FS := fSoftFlaw-Det(TN1)
// Store best plan and its metric value

if FH = ∅ and m(TN1) < best-m then
best-m := m(TN1)
best-tn := TN1

// Discard current task network or refine it further?

if h(TN1) < best-m then

〈m1 . . .mk〉 := fMod-Ord(
⋃

f∈FH∪FS
fMod-Gen(f))

Fringe := fTN-Ord(〈app(m1,TN1) . . . app(mk,TN1)〉 ◦ Fringe)

return best-tn

The closer a task network is to the front of the fringe, the faster it is expected
to lead to a solution. Inside the loop, the first — and thus most promising —
task network is removed from the fringe and all its hard flaws and soft flaws
are detected and stored into the sets FH and FS , respectively. A flaw is a set of
syntactical elements of a task network, which are involved in the violation of a
solution criterion in the case of a hard flaw, and in the violation of a soft goal in
the case of a soft flaw. For example, if a task network contains a compound task
l:t, FH contains the set {l:t}, as any plan must only contain primitive tasks. In
the case of an open/unsupported precondition literal φ of a task l:t, FH contains
the set {l:t, φ}. If the set of hard flaws is empty, the current task network is
a solution; it is hence tested, whether it has a better metric value than the
best solution found so far. If this is the case, best-tn and best-m are updated
accordingly. After that, the current task network is tested for sub optimality:
if the heuristic function h estimates a higher value than the best metric value
achieved so far, the current task network can be discarded. Obviously, all task
networks pruned by this step are suboptimal if h is admissible. If the current
task network can not be pruned, all modifications that resolve some flaw are
generated. For example, a hard flaw consisting of a compound task can only
be resolved by decomposing it. In this case, the modifications would be the
appropriate methods. In the case of an open/unsupported precondition literal φ
of a task l:t, the modifications would be the insertion of a causal link l′ →φ l from
a task l′:t′, which either may already exist or which would be inserted together
with the causal link. All modifications collected this way are ordered according
to the modification ordering function fMod-Ord. The task networks resulting from
applying the modifications, denoted by app(m,TN) for some task network TN

6 Pascal Bercher and Susanne Biundo

and some modification m, are inserted into the fringe as its new head and then
rearranged according to the task network ordering function fTN-Ord.

The chosen functions fTN-Ord and fMod-Orddefine the planning strategy. For
instance, if fTN-Ord is the identity function, then the strategy is a depth-first
search, where fMod-Ord decides, which branches to visit first; fMod-Ord could then
be defined to prioritize those modifications higher, which are associated with
hard flaws thus directing the search to task networks which can be completed
to valid solutions faster.

After the fringe has been rearranged, the loop enters another cycle. The
search finally terminates when the fringe becomes empty. Because only those
task networks are discarded for which sub optimality can be proved, the last
plan returned (if any) is an optimal solution to the given problem. However, in
the general case, the fringe may never become empty although solutions have
been found. This is a well-known issue for POCL planners, as they perform
search in the space of plans rather than in the space of states. In the former,
cycle-detection is non-trivial which causes the lack of a simple pruning criterion.
Thus, in order to guarantee termination, one may specify a time-out criterion to
leave the loop in cases when the fringe does not become empty. In that case the
algorithm returns the best solution found so far.

4 Preference-based Heuristic for Partially Ordered Plans

In this section we describe a variant of the h2 heuristic [12] — the heuristic
implicitly used by the planning system Graphplan [5]. Graphplan builds a
directed, layered planning graph containing fact and task nodes. Each layer con-
tains only nodes of one of those types; the layers alternate between fact and task
layers, starting with fact layer 0 containing exactly the facts of the initial state
followed by task layer 0, which contains all tasks applicable in that state. More
generally, a task layer at level i contains all tasks applicable to the fact layer at
level i. Graphplan calculates binary symmetric mutex relations between facts
inside the same layer and between tasks inside the same layer. The former indi-
cates that two facts cannot be true at the same time, whereas the latter indicates
that two tasks can not be executed in an arbitrary order leading to the same
successor state. Blum and Furst have shown that the fact layers monotonically
increase, whereas the mutex relations monotonically decrease. Thus, the plan-
ning graph construction of Graphplan eventually terminates with a final fact
layer containing some mutex relations. Given a partially ordered task network
TN, our heuristic uses this final fact layer to estimate the best quality of any
solution obtainable by refining TN.

Although the h2 heuristic can be calculated in polynomial time, it is known
to be too expensive to calculate it in each state. Hence, we build the last fact
layer based on a relaxed domain model, in which negative effects of tasks are
ignored. Our heuristic differs from h2 in the following way: (1) it takes into
account the metric function m which is purely based on the final state produced
by a plan, whereas h2 estimates the cost of a plan based on action costs. Hence,

Planning with Preferences Using Heuristic Search 7

our heuristic uses only the final fact layer for the estimate of m, whereas h2

takes also the previous layers into account, (2) the planning graph construction
is based on delete relaxation, i.e., tasks do not show negative effects, and (3) it
takes as input a partially ordered task network rather than a state. Our heuristic
can hence be regarded as a relaxed reachability analysis for task networks, which
takes the preference-based metric into account.

Our heuristic consists of two steps: First, we transform a given hybrid plan-
ning problem Π = (T ,M, sinit,TNinit, g) and a task network TN (for which
the heuristic value is calculated) into a relaxed classical planning problem Π ′ =
(T ′, ∅, s′init, ε, g′), such that Π ′ has a solution if Π has one. Furthermore, any
solution of Π ′ contains the tasks of TN and respects its constraints. This trans-
formation enables the use of any heuristic that is defined for a state rather than
for a task network. Section 4.1 explains this transformation. The second step is
the actual heuristic calculation; it is described in Section 4.2.

4.1 Domain Transformation

In this section we will see how a hybrid planning problem Π and a current task
network TN can be transformed into a relaxed classical planning problem Π ′,
such that any solution of Π ′ contains the tasks of TN and respects its constraints.

The domain transformation consists of the following three steps: (1) all tasks
are represented in STRIPS notation using the transformation technique de-
scribed by Gazen and Knoblock [8], (2) no tasks show negative effects, i.e.,
delete lists are ignored, and (3) for each task used in the task network TN, an
additional non-relaxed task schema is introduced which is modified in such a
way that each solution of Π ′ contains one task for each of these schemata thus
ensuring that each solution to Π ′ is a refinement of TN.

Before we formally describe the complete domain transformation, we briefly
sketch the details of step (3): we include an additional task schema in T ′ for
any task that occurs in TN. To ensure that these additional task schemata are
used by any solution of Π ′, we simply modify the goal description as follows.
Let l:t be a task in TN. To encode that the task l:t occurs in a plan, we augment
the postcondition of the (additional) task schema t by the fact occ-l . To ensure
that this task schema is used at most once in any solution, we augment the
precondition of t by the fact not-occ-l , which encodes ¬occ-l . Finally, to enforce
the occurrence of TN’s tasks, we simply add a fact occ-l for any task l:t of TN
to the goal description. The ordering constraints are also encoded by means of
the occurrence facts: let (l, l′) be an ordering constraint in TN and l:t, l′:t′ the
respective tasks. Then, this ordering is encoded by including the fact occ-l in
the precondition of the (additional) task schema t′.

Now, we formally define the domain transformation. As our heuristic is based
on Graphplan which uses the STRIPS specification to describe tasks, we also
transform the domain into the respective representation in which tasks do not
have negative preconditions and effects are explicitly represented using add and
delete lists. To this end, we introduce a fact not-p for each fact p ∈ P, which
occurs negatively in some task’s precondition and alter the schemata, such that

8 Pascal Bercher and Susanne Biundo

in each state s, either not-p ∈ s or p ∈ s. Let neg(T) := {p | ∃t ∈ T , s.t. ¬p ∈
prec(t)}. For t = (prec(t), eff(t)) ∈ T , let

STRIPS(t) = (pre(t), add(t),del(t)) :=

({p | p ∈ prec(t), p fact} ∪ {not-p | ¬p ∈ prec(t), p fact},
{p | p ∈ eff(t), p fact} ∪ {not-p | ¬p ∈ eff(t), p fact, p ∈ neg(T)},
{p | ¬p ∈ eff(t), p fact} ∪ {not-p | p ∈ eff(t), p fact, p ∈ neg(T)}).

Now, let Π = (T ,M, sinit,TNinit, g) and the current task network to refine
be TN = (T,≺, V, C). The transformed classical planning problem in STRIPS
notation is then given by Π ′ = (T ′, ∅, s′init, ε, g′) with:

T ′ := {(pre(t), add(t), ∅) | ∃t ∈ T , s.t. t is a primitive task schema (1.1)

and STRIPS(t) = (pre(t), add(t),del(t))} ∪
{({not-occ-l} ∪ {occ-l′ | (l′, l) ∈ ≺ or l′ →φ l ∈ C}, (1.2)

{occ-l},
{not-occ-l}) | ∃l:t ∈ T, t is a compound task schema} ∪
{(pre(t) ∪ {not-occ-l} ∪ {occ-l′ | (l′, l) ∈ ≺ or l′ →φ l ∈ C}, (1.3)

add(t) ∪ {occ-l},
del(t) ∪ {not-occ-l})[v1 ← c1, . . . , vn ← cn]

| ∃l:t ∈ T, s.t. t is a primitive task schema,

STRIPS(t) = (pre(t), add(t),del(t)),

V |= (l, vi) = ci for all 1 ≤ i ≤ n, and there is no c′ and no

v′ /∈ {v1, . . . , vn} s.t. V |= (l, v′) = c′}
s′init := sinit ∪ {not-p | p ∈ neg(T) and p /∈ sinit} ∪ {not-occ-l | ∃l:t ∈ T} (2)

g′ := g ∪ {occ-l | ∃l:t ∈ T} (3)

The set defined in (1.1) contains all primitive task schemata of T in a relaxed
form in which delete lists are ignored. This enables an efficient construction of
the planning graph, as the relaxed tasks cannot introduce any mutex relations.

The sets defined in (1.2) and (1.3) contain additional task schemata for all
tasks contained in the task network TN. Their preconditions as well as add-
and delete lists use the facts occ-l and not-occ-l to encode that a task in TN
with label l occurs in a task network; they are also used to encode the ordering
constraints and causal links of TN (cf. first line of (1.2) and (1.3), respectively).

The set defined in (1.2) adds schemata of compound tasks to T ′, which
can thereby be used by our heuristic like primitive tasks. However, because
our heuristic does not directly handle decomposition, they are only included to
represent the ordering constraints in TN , which would be lost if the compound
tasks would not be included in T ′. The preconditions and effects of the com-
pound tasks are ignored because their semantics are different from the ones of

Planning with Preferences Using Heuristic Search 9

primitive tasks. They are abstract specifications of their subtasks, but they do
not specify state transitions as is the case for primitive tasks.

(1.3) defines the task schemata for all primitive tasks occurring in TN. They
do not show any relaxation, because these tasks are the only information cur-
rently available. Planning systems that perform progression update the initial
state as the generated sequence of tasks increases. In our case, the initial state
remains always the same — it is just the current task network that is becoming
larger. Hence, the task schemata defined in this step encode the information
about the progression of the search and consequently should not be relaxed:
relaxing these task schemata would correspond to relaxing the current state in
a progression search. Please also note that it is only the tasks in this step that
might introduce mutex relations into the planning graph. To respect the variable
bindings, we simply substitute any bound variable in a task by the constant it
is bound to (denoted by [vi ← ci]). Thus, we do not encode variable constraints
of the form (l, v) 6= x, where x is either a constant or another variable. We
also do not encode variable constraints of the form (l, v) = (l′, v′) when neither
V |= (l, v) = c nor V |= (l′, v′) = c for some constant c; both cases remain future
work.

The new initial state is defined in (2). This definition belongs to the procedure
of transforming a planning domain into an equivalent STRIPS representation.

Finally, (3) defines the new goal description. It contains the original goal
description, but is extended by the occurrence facts for all tasks which are con-
tained in the current task network TN.

Our domain transformation clearly runs in polynomial time w. r. t. the size of
Π and TN. Please note that the delete-relaxation part of our transformation has
to be performed only once, whereas the construction of s′init, g

′, and the insertion
of the additional task schemata (cf. (1.2) and (1.3)) into T ′ has to be done for
each task network TN. Thus, ignoring preprocessing, the transformation can be
done in O(|TN|). However, an incremental domain transformation will clearly
reduce the necessary effort.

4.2 Heuristic Calculation

In this section, we describe how our heuristic calculates an admissible estimate
of the metric function m (cf. Section 2) based on the transformed domain model
Π ′ described in the last section. We call our heuristic h2

dr , since it fuses ideas
from the h2 heuristic with delete relaxation.

Given a task network TN, we build the planning graph starting in the new
initial state s := s′init of Π ′. Let layer be the fix point layer produced by calling
Graphplan in s and let mutex be the set of its symmetric mutex relations.

First of all, we can define h2
dr (s) := ∞, if g 6⊆ layer or if there is a mutex

relation {p, p′} ∈ mutex with p, p′ ∈ g, since in these cases the goal formula can
not be satisfied. Otherwise, the heuristic value is calculated as follows.

We can add all the weights of preference facts to h2
dr (s) that do not appear

in layer, as they can not be made true even by relaxed tasks.

10 Pascal Bercher and Susanne Biundo

Furthermore, all preference facts, for which there is a mutex to g are also
violated: let layerḡ := layer\g and {p, p′} ∈ mutex, p ∈ layerḡ being a preference
fact and p′ ∈ g. Then, the weight of p can be used to increase the value of h2

dr (s),
as p directly contradicts a goal fact.

The more interesting case is the handling of mutexes for the remaining facts
layer′ḡ := layerḡ \ {p | ∃p′ ∈ g, s.t. {p, p′} ∈ mutex}. Let b : layer′ḡ → {>,⊥} be a

truth assignment of the facts in layer′ḡ which respects the mutex relations; i.e.,
if {p, p′} ∈ mutex, then either b(p) = ¬b(p′) or b(p) = b(p′) = ⊥. Since we are
going to use this assignment to calculate a non-overestimation of the metric m,
b needs to minimize the sum

∑
(p,n)∈Pref ,b(p)=⊥ n.

Putting it all together, we get:

h2
dr (s) :=

∑
(p,n)∈Pref and

(p/∈layer or {p,p′}∈mutex,p′∈g)

n+ min
b

∑
(p,n)∈Pref ,b(p)=⊥

n

Whereas the first summation term can clearly be calculated in linear time
w. r. t. the size of Pref, the (optimal) calculation of the second term turns out to
be NP hard. We can prove this by a reduction from the weighted minimum vertex
cover problem: let G = (V,E) be a graph with a weight w(v) for each v ∈ V .
Then, the minimal weighted vertex cover is a set V ′ ⊆ V , such that for each
edge (v, v′) ∈ E, at least one of the vertices v, v′ is in V ′ and the weighted sum∑
v∈V ′ w(v) is minimal. If we set layer′ḡ := V , mutex := E, and Pref ={(p, n)|p ∈

V, w(p) = n}, it is easy to see that the value of minb
∑

(p,n)∈Pref ,b(p)=⊥ n is also
the value of the minimal weighted vertex cover. As the minimal weighted vertex
cover problem is a generalization of the NP complete vertex cover problem [14], in
which there are no weights and the decision problem is whether there is a vertex
cover V ′ of size at most k, we have shown the NP hardness of the calculation of
the second term in our heuristic function.

Please note that the input size of this NP hard subproblem is bounded by
the size of the intersection of the preference facts with layer′ḡ. Because only
the tasks in TN can introduce mutex relations, we do not expect this set to
be overly large. Hence, the calculation will probably be tractable in practice.
As a second observation, please note that the NP hardness of our heuristic
comes with the prize of admissibility together with high accuracy. One could
easily drop this term and still achieve an admissible, but less accurate, heuristic.
A second possibility to achieve tractability is to use polynomial-time bounded
approximations for this term thus sacrificing admissibility.

5 Related Work

Our work is closely related to that of Baier et al. [1]. Using their compilation
technique [2], they transform a (classical) planning problem with preferences on
state trajectories into an equivalent planning problem that does only contain
soft goals. They solve this problem via heuristic search using a branch-and-

Planning with Preferences Using Heuristic Search 11

bound algorithm that performs progression in the space of states (whereas our
algorithm is a POCL algorithm which performs search in the space of plans).

They propose several heuristics for the search guidance and for pruning. The
heuristics they propose for pruning are the Optimistic Metric Function (O) and
the Best Relaxed Metric Function (B).

We do not give details about O , as its calculation relies on their compilation
technique to represent state trajectories constraints and because B dominates
O , anyway.

B basically reduces to the same idea like our h2
dr heuristic, but it is much

easer to formulate and calculate, as it takes a state as input rather than a task
network: starting in the current state, it builds the relaxed planning graph using
tasks with delete relaxation until it reaches the final fact layer. Note that due to
the absence of negative effects this graph does not show any mutex relations. B
is then the metric value m evaluated in the last fact layer2.

6 Summary and Future Work

We presented a branch-and-bound algorithm for solving hybrid planning prob-
lems with soft goals. Its explicit representation of flaws and modifications enables
it to use arbitrary partial order search strategies rather than just progression as
most of the other preference-based search algorithms do.

Additionally, we have introduced h2
dr , a heuristic based on the h2 heuristic

in combination with a relaxed reachability analysis, for handling soft goals in
the context of hybrid and POCL planning. So far, all of the work in the field
of heuristics for POCL planners does either not incorporate the given metric
function at all, which is true for heuristics that only use the (number of) tasks,
open preconditions, ordering- and variable constraints and causal links and do
thus not perform any well-informed goal distance estimate, or the metric they
do estimate is based on actions costs [15,16]. Thus, h2

dr is — to the knowledge
of the authors — the first heuristic for partial order planners that estimates
the quality of a task network w. r. t. preferences, rather than action costs. h2

dr

works as follows: first, we perform a domain transformation that reduces the
problem of calculating a heuristic value for a task network to the problem of
calculating a heuristic value for a state. Starting in that state, we build a partially
relaxed planning graph to perform a relaxed reachability analysis. Afterwards,
we calculate the heuristic value based on the last fact layer of this planning
graph, taking into account the mutex relations present in that layer.

Beside an empirical evaluation of our search algorithm and heuristic, future
work will also include the adaptation of our heuristic to handle state trajectory
constraints. Their evaluation in POCL planning seems straight-forward as the
trajectories are implicitly given in the current task network.

2 To be precise, B is defined as the minimum of the metric value m evaluated in each
fact layer. These two definitions are different from each other only in the case where
violating a preference can increase the plan quality which is not the case in our
setting.

12 Pascal Bercher and Susanne Biundo

Acknowledgements

This work is done within the Transregional Collaborative Research Centre SF-
B/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded
by the German Research Foundation (DFG).

References

1. Baier, J.A., Bacchus, F., McIlraith, S.A.: A heuristic search approach to planning
with temporally extended preferences. Artificial Intelligence 173, 593–618 (2009)

2. Baier, J.A., McIlraith, S.A.: Planning with first-order temporally extended goals
using heuristic search. In: Proc. of the 21st National Conference on AI (AAAI
2006). pp. 788–795 (2006)

3. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user
assistance based on AI planning. Cognitive Systems Research 12(3-4), 219–236
(2011), special Issue on Complex Cognition

4. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary
report on combining state abstraction and HTN planning). In: Proc. of the 6th
European Conference on Planning (ECP 2001). pp. 157–168 (2001)

5. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90, 281–300 (1997)

6. Erol, K., Hendler, J., Nau, D.S.: UMCP: A sound and complete procedure for
hierarchical task-network planning. In: Proc. of the 2nd International Conference
on AI Planning Systems (AIPS 1994). pp. 249–254 (1994)

7. Estlin, T.A., Chien, S.A., Wang, X.: An argument for a hybrid HTN/operator-
based approach to planning. In: Proc. of the 4th European Conference on Planning:
Recent Advances in AI Planning (ECP 1997). pp. 182–194 (1997)

8. Gazen, B.C., Knoblock, C.A.: Combining the expressivity of ucpop with the effi-
ciency of graphplan. In: Proc. of the 4th European Conference on Planning: Recent
Advances in AI Planning (ECP 1997). pp. 221–233 (1997)

9. Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion. In:
Proc. of the 22nd International Joint Conference on AI (IJCAI 2011). pp. 1955–
1961 (2011)

10. Gerevini, A., Kuter, U., Nau, D.S., Saetti, A., Waisbrot, N.: Combining domain-
independent planning and HTN planning: The duet planner. In: Proc. of the 18th
European Conference on AI (ECAI 2008). pp. 573–577 (2008)

11. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Tech. rep.,
Department of Electronics for Automation, University of Brescia, Italy (2005)

12. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: The Fifth
International Conference on AI Planning Systems (AIPS 2000). pp. 140–149 (2000)

13. Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierar-
chical domains. In: Proc. of the 15th National Conference on AI (AAAI 1998). pp.
882–888 (1998)

14. Karp, R.M.: Complexity of Computer Computations, chap. Reducibility Among
Combinatorial Problems, pp. 85–103 (1972)

15. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proc. of the
17th International Joint Conference on AI (IJCAI 2001). pp. 459–466 (2001)

16. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research 20, 405–430 (2003)

	Hybrid Planning with Preferences Using a Heuristic for Partially Ordered Plans

