
Encoding Partial Plans for Heuristic Search

Pascal Bercher and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany,

firstName.lastName@uni-ulm.de

Abstract

We propose a technique that allows any planning system that
searches in the space of partial plans to make use of heuristics
from the literature which are based on search in the space of
states.
The technique uses a problem encoding that reduces the prob-
lem of finding a heuristic value for a partial plan to finding a
heuristic value for a state: It encodes a partial plan into a new
planning problem, s.t. solutions for the new problem corre-
spond to solutions reachable from the partial plan. Evaluating
the goal distance of the partial plan then corresponds to eval-
uating the goal distance of the initial state in the new planning
problem.

Introduction
In most of today’s classical planning approaches, problems
are solved by informed (heuristic) progression search in
the space of states. One reason for the big success of
this approach is the availability of highly informed heuris-
tics performing a goal-distance estimate for a given state.
In plan-space-based search, search nodes correspond to
partially ordered partial plans. One of the most impor-
tant representatives of this technique is partial-order causal
link (POCL) planning (McAllester and Rosenblitt 1991;
Penberthy and Weld 1992). The least commitment princi-
ple of POCL planning seems to be advantageous compared
to the more restricted state-based search techniques, as it
enforces decisions such as variable bindings, only if neces-
sary. POCL planning has greater flexibility at plan execution
time (Muise, McIlraith, and Beck 2011) and eases the inte-
gration for handling resource or temporal constraints and du-
rative actions (Vidal and Geffner 2006; Coles et al. 2010). Its
knowledge-rich plans furthermore enable the generation of
formally sound plan explanations (Seegebarth et al. 2012).
However, due to the complex structure of partial plans, de-
veloping well-informed heuristics for POCL planning is a
challenging task (Weld 2011) and heuristics are still rare. To
address the lack of informed heuristics for POCL planning,
we propose an idea of how to use heuristics already known
from state-based search, rather than developing new specific
heuristics.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

POCL Planning
A planning domain is a tuple D = 〈V,A〉, where V is a fi-
nite set of state variables andA is a finite set of actions, each
having the form (pre, add , del), where pre, add , del ⊆ V .
2V is the set of states and an action is applicable in a state
s ∈ 2V if its precondition pre holds in s, i.e., pre ⊆ s.
Its application generates the state (s \ del) ∪ add . The ap-
plicability and application of action sequences is defined as
usual. A planning problem in STRIPS notation is a tuple
π = 〈D, sinit , g〉 with sinit ∈ 2V being the initial state and
g ⊆ V being the goal description. A solution to π is an
applicable action sequence starting in sinit and generating a
state s′ ⊇ g that satisfies the goal condition.

POCL planning is a technique that solves planning prob-
lems via search in the space of partial plans. A partial plan
is a tuple (PS ,≺, CL). PS is a set of plan steps, each being
a pair l:a with an action a ∈ A and a unique label l ∈ L
with L being an infinite set of label symbols to differenti-
ate multiple occurrences of the same action within a partial
plan. The set ≺ ⊂ L × L represents ordering constraints
and induces a partial order on the plan steps in PS . CL is
a set of causal links. A causal link (l, v, l′) ∈ L× V × L
testifies that the precondition v ∈ V of the plan step
with label l′ is provided by the action with label l. That
is, if l:(pre, add , del) ∈ PS , l′:(pre ′, add ′, del ′) ∈ PS , and
(l, v, l′) ∈ CL, then v ∈ add and v ∈ pre ′. Furthermore, we
demand l ≺ l′ if (l, v, l′) ∈ CL.

Now, π can be represented as a POCL planning problem
〈D, Pinit〉, where Pinit := ({l0:a0, l∞:a∞}, {(l0, l∞)}, ∅)
is the initial partial plan. The actions a0 and a∞ encode
the initial state and goal description: a0 has no precondi-
tion and sinit as add effect and a∞ has g as precondition
and no effects. A solution to a POCL planning problem is
a partial plan P with no flaws. There are two flaw classes:
FOpenPrecondition and FCausalThreat . An open precondition
in FOpenPrecondition is a tuple (v, l) ∈ V × L and specifies
that the precondition v of the plan step with label l is not yet
protected by a causal link. A causal threat in FCausalThreat

is a tuple (l, (l′, v, l′′)) ∈ L×CL and specifies that the order-
ing constraints ≺ allow the plan step l:(pre, add , del) with
v ∈ del to be ordered in such a way that ≺∪{(l′, l), (l, l′′)}
induces a partial order. That is, the plan step with label l
threatens the causal link (l′, v, l′′), since it might undo its
protected condition v.

If a partial plan P has no flaws, then every linearization
of its plan steps that respects the ordering constraints is a so-
lution to the corresponding planning problem π in STRIPS
notation.

POCL planning can be regarded as a refinement procedure
(Kambhampati 1997), since it refines the initial partial plan
Pinit step-wise until a solution is generated. To that end,
first a partial plan P is selected, which is based on heuris-
tics estimating the goal-distance or quality of P . Given such
a partial plan P , a flaw selection function selects one of its
flaws and resolves it. For that end, all modifications are gen-
erated, which are all possibilities to resolve the given flaw.
There are three modification classes, each specifying modifi-
cations addressing certain flaw classes. A causal threat flaw
(l, (l′, v, l′′)) ∈ FCausalThreat can only be resolved by pro-
motion or demotion. Promotion and demotion modifications
belong to the class of MInsOrdering and are ordering con-
straints, which promote the plan step with label l before the
one with label l′ or demote it behind the one with label l′′.
An open precondition flaw (v, l) ∈ FOpenPrecondition can
only be resolved by inserting a causal link (l′, v, l) which
protects the open precondition v. This can be done either by
using a plan step already present in the current partial plan,
or by a new action fromA – the corresponding modification
classes areMInsCausalLink andMInsAction , respectively.

The procedure of selecting a partial plan, calculating its
flaws, and selecting and resolving a flaw is repeated until
a partial plan P without flaws is generated. Hence, P is a
solution to the POCL planning problem and returned.

Heuristics for POCL Planning
In this section we briefly review the current state of the art
heuristics for selecting a partial plan in POCL planning.

Although there are many heuristics for POCL planning,
most of them are based on pure syntactical criteria like the
number of open precondition flaws or the ratio of certain
flaws to the number of plan steps, etc. (Younes and Simmons
2003; Schattenberg 2009). However, we are only aware of
two heuristics for POCL planning which are based on a well-
informed means-ends analysis: the Additive Heuristic for
POCL Planning hradd (Younes and Simmons 2003) and the
Relax Heuristic hrelax (Nguyen and Kambhampati 2001).
The first one is a variant of the add heuristic (Haslum and
Geffner 2000), whereas the second one can be regarded as a
variant of the FF heuristic (Hoffmann and Nebel 2001).

While these heuristics are the currently best-informed
heuristics available for (non-temporal) POCL planning, they
both ignore the negative effects of the plan steps in the cur-
rent partial plan, although those could be used to strengthen
their heuristic estimates. In contrast to that, our technique
allows, in principle, heuristics to use all information given
by the current partial plan. To pinpoint our observation, we
briefly review hradd

1.
The heuristic hradd takes as input a set of open precondi-

tions of the partial plan and estimates the effort to achieve

1We do not review both heuristics, because hrelax is basically
just an improvement of the add heuristic taking into account posi-
tive interactions to a larger extent.

them based on a reachability analysis assuming sub-goal in-
dependence and delete relaxation.

Let 〈〈V,A〉, Pinit〉 be a POCL planning problem, V ⊆ V
a set of state variables, v ∈ V such a state variable,
A(v) := {(pre, add , del) ∈ A | v ∈ add} the set of actions
with an add effect v, and a := (pre, add , del) ∈ A an ac-
tion. Then, hradd is based on the following functions:

hvariablesadd (V) :=
∑
v′∈V

haVariable
add (v′)

haVariable
add (v) :=

0 if v ∈ sinit
min
a∈A(v)

hanAction
add (a) if A(v) 6= ∅

∞ else

hanAction
add (a) := 1 + hvariablesadd (pre)

The heuristic hradd(P), which does reuse actions in the
current partial plan P = (PS ,≺, CL), is now defined by
hvariablesadd (gP), where gP is a subset of all open precondi-
tions. Let OC ⊆ V × L be the set of all open precon-
ditions of P . Then, gP := {v | (v, l) ∈ OC and there
is no l′:(pre, add , del) ∈ PS , s.t. v ∈ add and the set
≺ ∪ {(l′, l)} induces a partial order}. Thus, gP is the set
of all open preconditions for which new plan steps must be
inserted in order to resolve these flaws.

It is easy to see that the given partial plan P and its struc-
ture are only used to identify open preconditions. Positive
interactions are used only to a certain extent and negative in-
teractions are completely ignored. Of course, the very idea
of this heuristic is the delete relaxation; however, to ignore
the negative effects of actions in PS is an additional relax-
ation, which might lead to a strong underestimation of the
heuristic. The original version of the add heuristic for state-
based search takes a current state s as input, and the heuristic
assumes that all state variables of s remain true. Since there
is no such state in our setting, hradd assumes that all state
variables of sinit remain true. However, this assumption is
much more severe than in the original version of the add
heuristic, since in state-based search, s reflects all effects of
all actions leading to s, whereas hradd does only incorporate
the positive effects of all actions leading to P , but not its
negative ones.

We argue that the plan structure and the positive and neg-
ative interactions of the plan steps given in the partial plan
should be used to improve heuristic estimates. Our proposed
technique allows to take all these factors into account.

New Heuristics for POCL Planning
Our idea to make the heuristics from state-based planning
available to POCL planning involves encoding the current
partial plan by means of an altered planning problem, s.t.
estimating the goal distance for that partial plan corresponds
to estimating the goal distance for the initial state in the new
planning problem.

Please note that a similar encoding was already proposed
by Ramı́rez and Geffner (Ramı́rez and Geffner 2009). How-
ever, their transformation was used in the context of plan
recognition for compiling observations away.

Transformation
Our transformation works as follows: given a planning
problem in STRIPS notation π = 〈〈V,A〉, sinit , g〉 and
a partial plan P = (PS ,≺, CL), let encP(π, P) =
〈〈V ′,A′〉, s′init , g′〉 be the encoding of π and P with:

V ′ := V ∪ {l−, l+ | l:a ∈ PS , l /∈ {l0, l∞}}
A′ := A ∪ {encPS (l:a,≺) | l:a ∈ PS , l /∈ {l0, l∞}},
with encPS (l:(pre, add , del),≺) :=

(pre ∪ {l−} ∪ {l′+ | l′≺ l, l′ 6= l0},
add ∪ {l+}, del ∪ {l−}),

s′init := sinit ∪ {l− | l:a ∈ PS , l /∈ {l0, l∞}}
g′ := g ∪ {l+ | l:a ∈ PS , l /∈ {l0, l∞}}

The transformed problem subsumes the original one and
extends it in the following way: all plan steps present in P
are additional actions in A′ – we do not encode the artificial
start and end actions, since their purpose is already reflected
by the initial state and goal description. The new actions
use the labels of their corresponding plan steps as additional
state variables to encode whether they have already been ex-
ecuted or not. Thus, for every label we introduce two new
state variables: l− for encoding that the corresponding plan
step/action has not yet been executed and l+ to encode that
it has been executed. Initially, none of these plan steps were
executed and the (additional) goal is to execute all of them.
Furthermore, the new actions use these labels to ensure that
they can only be executed in an order consistent with the
ordering present in the plan to encode. Please note that we
do not encode the causal links for the sake of simplicity, al-
though it is possible.

Before we can state the central property of the
transformed problem, we need some further definitions:
ref (P) := {〈PS ′,≺′, CL′〉 | PS ′ ⊇ PS ,≺′ ⊇ ≺, CL′ ⊇
CL} is called the set of all refinements of P , i.e., the set
of all partial plans which can be derived from P by adding
plan elements. Let sol(π) be the set of all solution plans of
π. Then, sol(π, P) := sol(π) ∩ ref (P) is the set of all so-
lutions of π, which are refinements of P . The cost of P is
denoted by c(P) := |PS |.
Theorem 1. Let π be a planning problem and P a partial
plan with no causal links. Then,

min
P ′∈sol(π,P)

c(P ′) = min
P ′∈sol(encP(π,P))

c(P ′)

This theorem states that an optimal solution for π, which
also has to be a refinement of P , has the same cost as an
optimal solution for the transformed problem. To prove that
theorem, we provide two propositions from which it directly
follows. The first proposition states that every solution of
the original planning problem, which is also a refinement of
the given partial plan, does also exist as a solution for the en-
coded problem. The second proposition states that every so-
lution of the encoded problem can be decoded into a solution
of the original one, which is a refinement of the given partial
plan, too. Before we can state these propositions formally,
we have to show how partial plans derived from encP(π, P)
can be transformed back into plans for π.

Let the decoding of a plan step be given by
decPS (l:(pre, add , del)) := l:(pre ∩ V, add ∩ V, del ∩ V)
and the decoding of a partial plan be given by
decP(〈PS ,≺, CL〉) := 〈{decPS (l:a) | l:a ∈ PS},≺,
{(l, v, l′) ∈ CL | v ∈ V}〉.
Proposition 1. Let π be a planning problem, P a partial
plan with no causal links, and Psol ∈ sol(π, P). Then,
there exists a plan P ′sol with P ′sol ∈ sol(encP(π, P)) and
decP(P ′sol) = Psol .

Proposition 2. Let π be a planning problem, P a partial
plan with no causal links, and P ′sol ∈ sol(encP(π, P)).
Then, decP(P ′sol) ∈ sol(π, P).

Proof Sketch. Follows from construction.

Theorem 1 can be exploited by using heuristics known
from state-based planning in the context of POCL plan-
ning: we want to find a heuristic function h(π, P) that es-
timates the goal distance in π from the partial plan P . To
that end, we transform π and P into the planning problem
π′ = encP(π, P) and set h(π, P) := max{hsb(π′, s′init) −
c(P), 0}, where hsb is any heuristic that takes a state as in-
put. We subtract the action cost of P from the estimate,
since the heuristic h has to estimate the distance from P ,
whereas hsb estimates the goal distance from the new initial
state thereby including the costs of the plan steps in P . We
maximize with zero, in case the heuristic hsb underestimates
the optimal goal distance by returning a value smaller than
the action costs of the given plan.

From Theorem 1, we can also conclude that we inherit ad-
missibility: if hsb is admissible, h is admissible, too. This is
an important property of our technique, as the currently best-
informed heuristics for POCL planning, hradd and hrelax ,
are both not admissible. Our technique thus provides POCL
planning with the first admissible heuristics by using admis-
sible heuristics from state-based planning.

Since our transformation ignores causal links, the en-
coded planning problem is already relaxed if the given par-
tial plan has causal links. Thus, given a partial plan with
causal links, the equality in Theorem 1 is weakened in such
a way that the optimal solution cost of sol(encP(π, P)) is
just a lower bound of the optimal cost of sol(π, P).

Evaluation
In this section, we evaluate the overhead of performing the
encoding process. We begin by examining the canonical ap-
proach where the transformation is done for each partial plan
independently, followed by an analysis of the costs if one
performs an incremental transformation. To that end, let
π := (V,A, sinit , g), P := (PS ,≺, CL) be a partial plan,
and encP(π, P) = (V ′,A′, s′init , g′).

We can directly observe that the elements of encP(π, P)
are supersets of the elements in π. The number of their addi-
tional elements (state variables and actions) is bounded by a
constant factor in the number of plan steps in PS . However,
the preconditions of the additional actions in A′ \ A need
some further attention. The size of the subset {l′+ | l′≺l, l′ 6=
l0} of the precondition of such an action can be linear in
the number of plan steps of P . We can hence conclude

that the transformation has a time and space consumption
of Θ(|π|+ |PS |+ |≺|), which is in O(|π|+ |PS |2).

However, we want to minimize the overhead we incur
by performing the transformation; thus, we desire an incre-
mental encoding of the current partial plan, where the trans-
formed planning problem depends only on the previous one
and the modification applied last.

Theorem 2. Let π be a planning problem, P a partial plan,
m a modification resolving some flaw of P thereby generat-
ing P ′, and π′ := encP(π, P). Then, π′ can be transformed
into π′′ := encP(π, P ′) in O(1), given P , and m.

Proof. We give a constructive proof by providing an algo-
rithm calculating encP-inc(π

′, P,m) := (V ′′,A′′, s′′init , g′′),
s.t. encP-inc(π

′, P,m) = encP(π, P ′). The modification m
can only belong to one of the classes MInsOrdering ,
MInsAction , and MInsCausalLink . If m is the insertion of
an ordering constraint or a causal link, V ′′, s′′init , and g′′ are
not changed w.r.t. the elements of π′ = (V ′,A′, s′init , g′). If
m is a task insertion, these sets are extended by just one or
two elements, each. Their incremental construction can thus
be performed in constant time. The more interesting part
is the calculation of A′′. Let m = (l, l′) ∈ MInsOrdering

and encPS (l′:a,≺) = (pre, add , del) be the encoding of
the plan step in PS with label l′. This action must be al-
tered in order to represent the new ordering constraint. Thus,
A′′ := (A′ \ {(pre, add , del)})∪{(pre ∪{l+}, add , del)}.
Since we only remove and add one element, we can com-
pute this set in constant time, assuming the set operations are
constant-time bounded. Since the insertion of a causal link is
only reflected via an ordering constraint, we obtain the same
result for m ∈ MInsCausalLink . For m ∈ MInsAction , we
also have to do the same as for the previous modification
classes, as m inserts a new action a ∈ A and a causal link
(l, v, l′) from l:a to l′:a′. In addition, we must insert the ac-
tion encPS (l:a, ∅), which can also be done in constant time.
Please note that we can use an empty set of ordering con-
straints, since this set only determines which plan steps must
precede l:a - however, since l:a is just being inserted, there
are no such plan steps, yet. Hence, no further alterations
must be made. We have thus shown that encP-inc(π

′, P,m)
can be calculated in constant time.

We do not show encP-inc(π
′, P,m) = encP(π, P ′), since

the proof is straight-forward.

Given a partial plan P ′, its parent P and the encoding
of P , π′ := encP(π, P), the theorem states that one can
calculate the encoding of P ′, π′′ := encP(π, P ′), in constant
time. However, note that the proof relies on an algorithm
which directly manipulates π′ in order to calculate π′′. Thus,
in case a partial plan has more than one successor, applying
the algorithm given in the proof violates the premise that
we have stored the encoding for every plan. To address that
problem, it suffices to maintain a copy for every encoded
planning problem, which can be done in linear time in the
size of the given plan. (Since every encoding contains the
original planning problem, it does not need to be copied for
each individual partial plan.)

Please note that we only discussed the runtime of the en-
coding process. However, for our purpose of using the tech-
nique for calculating heuristic estimates, the size of the re-
sulting problems is of more importance as the runtime of the
heuristic calculation heavily depends on this size.

Example
Let π = 〈〈V,A〉, sinit , g〉 be a planning problem with V :=
{a, b, c}, A := {({b}, {a}, {b}), ({a}, {c}, {a})}, sinit :=
{a, b}, and g := {a, c}. Let P be a partial plan which was
obtained by a POCL algorithm as depicted below:

l1:A1 l2:A2b
¬b
a

a
¬a
c

a

b

a
c

The arrows indicate causal links and A1 and A2 are the
two actions of A. P has only one open precondition:
(a, l∞), which encodes the last remaining goal condition.
Since a is already true in the initial state, both the add and
the relax heuristic estimate the effort to be 0. However, the
optimal goal distance is even∞, since there is no refinement
of P , which is a solution.

Due to Theorem 1, a heuristic based on the transformed
problem can incorporate the negative effects of l1:A1 and
l2:A2 and has thus the potential to discover the partial
plan/state to be invalid and thus prune the search space.
With A′ being defined below, encP(π, P) is given by
〈〈{a, b, c, l1+, l1−, l2+, l2−},A′〉, {a, b, l1−, l2−}, {a, c, l1+, l2+}〉.

A′ := {({b}, {a}, {b}}),
({b, l1−}, {a, l1+}, {b, l1−})
({a}, {c}, {a}),
({a, l2−, l1+}, {c, l2+}, {a, l2−})}

Discussion
Relaxation Every (practically relevant) heuristic performs
some kind of relaxation. Therefore, one must investigate
which impact the relaxation of actions in Anew := A′ \ A
has for the resulting heuristic estimates. Since these actions
encode the current partial plan, relaxing them would contra-
dict the goal to use all information of the current planning
progress. Thus, only relaxing the actions in A, but none in
Anew would improve the heuristic accuracy. However, one
has to investigate how this can be done for each individual
heuristic and how much it would influence the time to cal-
culate its heuristic estimate. But, of course, relaxing them to
a certain extent still captures some information obtained by
the current partial plan.

Preprocessing Some heuristics, like merge and shrink ab-
straction (Dräger, Finkbeiner, and Podelski 2006; Helmert,
Haslum, and Hoffmann 2007), perform a preprocessing step
before the actual search and make up for it when retrieving
each single heuristic value. Since we obtain a new plan-
ning problem for each single partial plan using the results
of that preprocessing step might not be possible, directly.
Thus, one would have to find a way of using this kind of
heuristics in our setting, for instance by updating the result

of the preprocessing incrementally, as it can be done for the
transformation itself.

Runtime Although we proved that the transformation it-
self can be done efficiently, we expect that the computational
time of the used heuristics increases with the size of the par-
tial plan to encode. This seems to be a strange property,
since one would expect the heuristic calculation time either
to remain constant (as for abstraction heuristics) or to de-
crease (as for the FF or add heuristics) as closer a partial
plan comes to a solution. However, that might be a direct
consequence from partial plans being complex structures, as
many interesting decision problems involving them are NP
hard w.r.t. their size (Nebel and Bäckström 1994).

Conclusion
We presented a technique which allows planners performing
search in the space of plans to use standard classical plan-
ning heuristics known from state-based search. This tech-
nique is based on a transformation which encodes a given
partial plan by means of an altered planning problem, s.t.
evaluating the goal distance for the given partial plan corre-
sponds to evaluating the goal distance for the initial state of
the new planning problem. We proved that performing the
transformation can be done incrementally in constant time
under certain assumptions.

We conclude that our technique allows to fuse the benefits
of the least-commitment principle and regression-like search
of POCL planning with very strong heuristics known from
state-based progression search.

An empirical evaluation showing the practical impact of
using state-based heuristics in POCL planning is currently
ongoing work.

Acknowledgements
This work is done within the Transregional Collaborative
Research Centre SFB/TRR 62 “Companion-Technology for
Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-chaining partial-order planning. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS 2010), 42–49. AAAI Press.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In
Valmari, A., ed., SPIN, volume 3925 of Lecture Notes in
Computer Science, 19–34. Springer.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Proceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS 2000), 140–149. AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2007), 176–183.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Kambhampati, S. 1997. Refinement planning as a unifying
framework for plan synthesis. AI Magazine 18(2):67–98.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlin-
ear planning. In Proceedings of the Ninth National Confer-
ence on Artificial Intelligence (AAAI 1991), 634–639. AAAI
Press.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2011. Mon-
itoring the execution of partial-order plans via regression.
In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), 1975–1982. AAAI
Press.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125–160.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001),
459–466. Morgan Kaufmann.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the third International Conference on Knowledge Represen-
tation and Reasoning, 103–114. Morgan Kaufmann.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Boutilier, C., ed., Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2009), 1778–1783. AAAI Press.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, University of Ulm, Germany.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo,
S. 2012. Making hybrid plans more clear to human users
– a formal approach for generating sound explanations. In
Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS 2012), 225–233.
AAAI Press.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.
Weld, D. S. 2011. Systematic nonlinear planning: A com-
mentary. AI Magazine 32(1):101–103.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.

