On Delete Relaxation in Partial-Order Causal-Link Planning

<u>Pascal Bercher</u> and Thomas Geier and Felix Richter and Susanne Biundo

Institute of Artificial Intelligence

November 5th, 2013

ulm university universität **UUU**

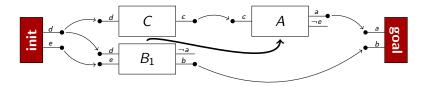
Outline

(**POCL** Planning == **P**artial-**O**rder **C**ausal-Link Planning)

- 1 POCL Planning
- 2 Delete Relaxation in POCL Planning
- 3 Complexity Results
 - NP Membership
 - NP Hardness
- 4 A new Heuristic for POCL Planning
 - Sample FF: Heuristic Function
 - Evaluation
- 5 Summary and Outlook

A planning domain is a tuple $\mathcal{D} = \langle \mathcal{V}, \mathcal{A} \rangle$ with:

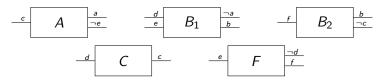
- \mathcal{V} is a finite set of state variables, $s \in 2^{\mathcal{V}}$ being a state,
- A is a finite set of actions, an action a := ⟨pre, add, del⟩ ∈ A consists of:
 - $pre \subseteq \mathcal{V}$, the precondition of *a*,
 - add $\subseteq \mathcal{V}$, the add list of a,
 - $del \subseteq \mathcal{V}$, the delete list of a


A planning domain is a tuple $\mathcal{D}=\langle \mathcal{V},\mathcal{A}\rangle$ with:

- \mathcal{V} is a finite set of state variables, $s \in 2^{\mathcal{V}}$ being a state,
- A is a finite set of actions, an action a := ⟨pre, add, del⟩ ∈ A is applicable:
 - in a state $s \in 2^{\mathcal{V}}$ iff $pre \subseteq s$,
 - and generates the state $(s \setminus del) \cup add$
 - (applicability of action sequences is defined as usual)

A POCL planning problem is a tuple $\mathcal{P} = \langle \mathcal{D}, \textit{P}_{\textit{init}} \rangle$ with:

- ${\mathcal D}$ is the planning domain
- P_{init} is the initial plan

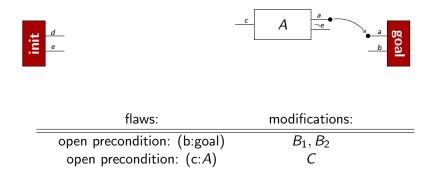


A POCL planning problem is a tuple $\mathcal{P} = \langle \mathcal{D}, \mathcal{P}_{init} \rangle$ with:

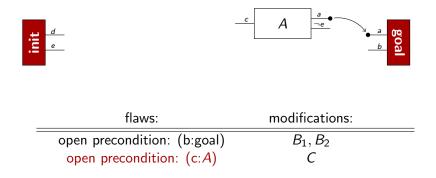
- ${\mathcal D}$ is the planning domain
- *P*_{init} is the initial plan
- A solution to \mathcal{P} is a plan P, s.t.:
 - every precondition is supported by a causal link
 - there are no causal threats

Initial plan P_{init}:

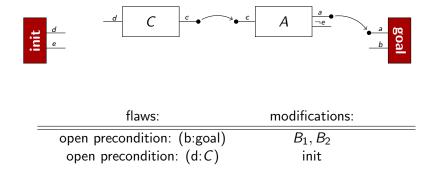
flaws:modifications:open precondition: (a:goal)Aopen precondition: (b:goal)B1, B2

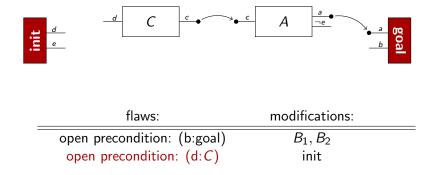


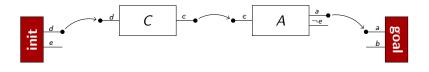
	d
D.	е

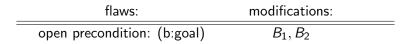


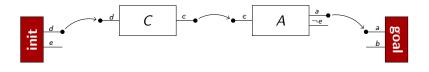
flaws:modifications:open precondition: (a:goal)Aopen precondition: (b:goal) B_1, B_2





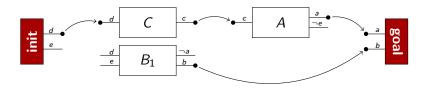






On Delete Relaxation in Partial-Order Causal-Link Planning

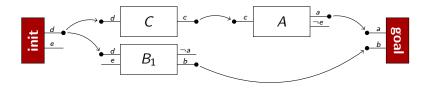


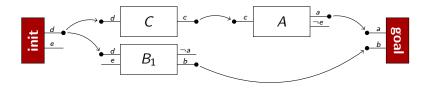


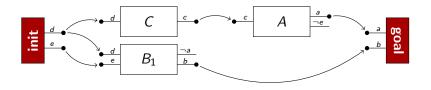
On Delete Relaxation in Partial-Order Causal-Link Planning

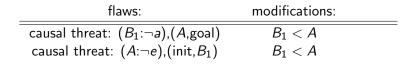
POCL Planning

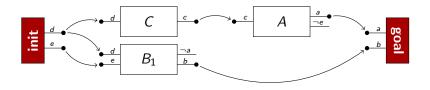
Search Algorithm: Plan and Flaw Selection

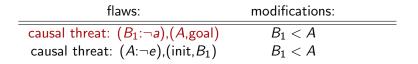

flaws:	modifications:	
open precondition: $(d:B_1)$	init	
open precondition: $(e:B_1)$	init	
causal threat: $(B_1:\neg a), (A, goal)$	$B_1 < A$	

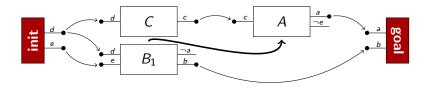

flaws:	modifications:	
open precondition: $(d:B_1)$	init	
open precondition: $(e:B_1)$	init	
causal threat: $(B_1:\neg a)$, $(A,goal)$	$B_1 < A$	


flaws:	modifications:	
open precondition: $(e:B_1)$	init	
causal threat: $(B_1:\neg a), (A, goal)$	$B_1 < A$	

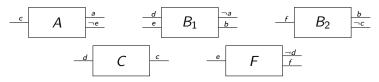



flaws:	modifications:		
open precondition: $(e:B_1)$	init		
causal threat: $(B_1:\neg a), (A, goal)$	$B_1 < A$		



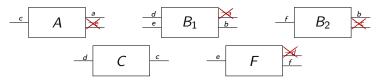


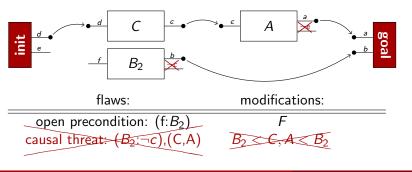
POCL Planning

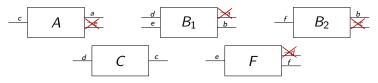

Choice points of search algorithm:

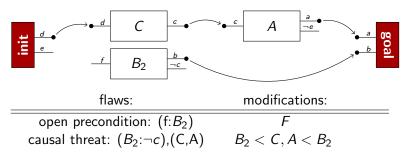
- Flaw selection like fewest modifications
- Plan selection via informed search like A* with heuristics


In this work: Delete Relaxation Heuristic for plan selection.


- How hard is that estimate? (theoretically)
- How to estimate? (practically)

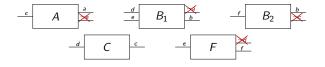


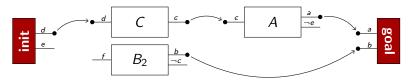

Plan to estimate:



Plan to estimate:

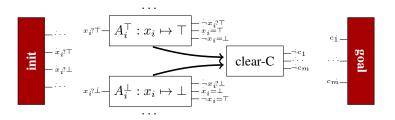
Plan to estimate:


Theorem:


It is in **NP** to decide whether there is a solution for a relaxed planning domain and a non-relaxed plan.

Proof:

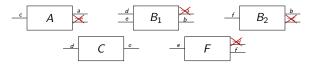
- Guess a non-conflicting linearization
- Apply all relaxed actions in initial state
- Apply the first plan step in the resulting state
- Continue until the last plan step (including goal) is applied

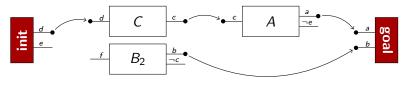

Theorem:

It is **NP-hard** to decide whether there is a solution for a relaxed planning domain and a non-relaxed plan.

Proof:

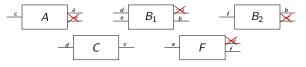
- Reduction from CNF-SAT. X = {x¹,...,xⁿ} is a set of boolean variables. C = {c¹,...,c^m} is a set of clauses; each c^j represents a disjunction of variables of X.
- Construct a delete relaxed domain and a non-relaxed plan, s.t. its solutions are isomorphic to the CNF-SAT's solutions.
- The order of A_i[⊤] and A_i[⊥] encodes the truth assignment of xⁱ ∈ X. For xⁱ ∈ c^j, an action C_{ij} = ({x_i = ⊤}, {c_j}, Ø) encodes truth assignment of clause c^j ∈ C.

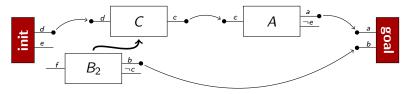

Sample FF: Heuristic Function


Idea:

- Sample a fixed number of linearizations (this approximates the "guessing" part ")
- For each linearization: build relaxed solution as in the membership proof
- Heuristic estimate is cheapest solution

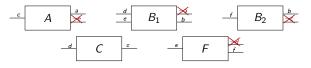
- Does not ignore present causal links:
 - Only non-conflicting relaxed actions are used
 - Only non-conflicting linearizations are used
- Does not ignore negative effects of present plan steps Example:

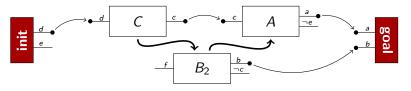




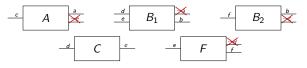
11.14

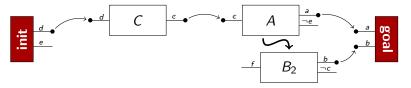
- Does not ignore present causal links:
 - Only non-conflicting relaxed actions are used
 - Only non-conflicting linearizations are used
- Does not ignore negative effects of present plan steps


Example:



- Does not ignore present causal links:
 - Only non-conflicting relaxed actions are used
 - Only non-conflicting linearizations are used
- Does not ignore negative effects of present plan steps Example:





- Does not ignore present causal links:
 - Only non-conflicting relaxed actions are used
 - Only non-conflicting linearizations are used
- Does not ignore negative effects of present plan steps

Example:

11.14

- Evaluation

Setting:

- Evaluation was done on 20 domains taken from the first 5 International Planning Competitions (IPCs).
- Comparison was done with:
 - Add and Relax Heuristic (for POCL planning)
 - 12 variants of SampleFF
 - (1, 3, 10, 30 samples, action filter feature on/off)

- Evaluation

Results:

- number of solved problem instances overall (of 446) Add: 292, Relax: 227/194, Sample-FF: 127 to 187
- For one problem, only Sample-FF disproved it
- Depending on the Sample-FF configuration, 1% to 46% of all plans had only invalid linearizations

Summary:

- Delete relaxation only for the domain is NP-complete
- We developed a new heuristic for POCL planning (Sample-FF)
 - pro: more pruning power/tighter estimates
 - con: sampled linearizations are often all invalid

Outlook:

- Solve the "con" problem
- More intelligent sampling. Using causal graphs?
- Lifting the heuristic

14.14

Appendix

Empirical Results

					Sample-FF											
Domain	п	Add	Relax*	Relax	fro	$front: \perp end: \perp \qquad front: \perp end: \top$			Т	front: \top end: \top						
					1	3	10	30	1	3	10	30	1	3	10	30
grid	5	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
gripper	20	14	20	7	1	1	1	1	1	2	1	1	2	3	3	2
logistics	20	12	8	7	8	5	6	6	6	7	6	5	0	0	1	1
movie	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
mystery	20	8	8	9	10	11	9	9	10	11	10	9	12	12	11	11
mystery-prime	20	3	3	3	3	4	6	5	5	4	4	4	6	6	6	6
blocks	21	4	5	7	5	5	6	6	4	3	3	3	5	3	2	0
logistics	28	28	28	27	22	23	23	24	21	19	20	21	15	13	14	15
miconic	100	100	49	39	40	40	37	35	39	41	37	32	15	16	18	20
depot	22	2	2	1	1	1	1	1	0	1	1	1	2	2	3	2
driverlog	20	7	9	7	11	9	10	9	9	10	9	8	8	7	9	7
rover	20	20	18	19	13	14	15	15	11	11	12	11	7	9	9	9
zeno-travel	10	4	5	3	3	5	4	5	4	3	4	4	1	1	1	1
airport	20	18	15	9	10	11	11	11	7	10	10	10	7	8	6	4
pipesworld-noTankage	10	8	1	2	2	3	5	3	2	1	2	1	1	4	3	5
pipesworld-Tankage	10	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
satellite	20	16	7	7	7	5	6	6	5	5	7	5	1	2	3	3
pipesworld	10	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0
storage	20	7	6	4	6	7	9	8	6	7	7	6	9	9	10	10
tpp	20	19	11	11	8	7	6	7	6	6	6	6	5	6	6	6
total	446	292	227	194	182	183	187	183	168	173	171	159	127	132	136	133

└─NP Hardness (Problem Description)

Variables:
$$X = \{x^1, \dots, x^n\}$$
, Clauses: $C = \{c^1, \dots, c^m\}$

$$\begin{split} \mathcal{V} &= \{x_i ? \top, x_i ? \bot, x_i = \top, x_i = \bot \mid i \in \{1, \dots, n\}\} \cup \{c_i \mid i \in \{1, \dots, m\}\} \\ \mathcal{A} &= \{dr \cdot A_i^\top, dr \cdot A_i^\bot \mid i \in \{1, \dots, n\}\} \cup \{dr \cdot \text{clear-C}\} \cup \\ &\{C_{ij}^\top \mid c^j \in C, x^i \in c^j\} \cup \{C_{ij}^\bot \mid c^j \in C, \neg x^i \in c^j\} \\ \mathcal{P} &= (PS, \prec, CL) \text{ and} \\ \mathcal{P}S &= \{a_0, a_\infty, \text{clear-C}\} \cup \{A_i^\top, A_i^\bot \mid i \in \{1, \dots, n\}\} \\ &\prec = \{(I_i^\top, I_C), (I_i^\bot, I_C) \mid i \in \{1, \dots, n\}\} \\ \mathcal{C}L &= \emptyset \\ a_0 &= (\emptyset, \{x_i ? \top, x_i ? \bot \mid i \in \{1, \dots, n\}\}, \emptyset) \\ a_\infty &= (\{c_i \mid i \in \{1, \dots, m\}\}, \emptyset, \emptyset) \\ A_i^\top &= (\{x_i ? \top\}, \{x_i = \top\}, \{x_i ? \top, x_i = \bot\}), dr \cdot A_i^\top &= (\{x_i ? \top\}, \{x_i = \top\}, \emptyset) \\ \mathcal{C}\text{lear-C} &= (\emptyset, \emptyset, \{c_1, \dots, c_m\}), dr \cdot \text{clear-C} &= (\emptyset, \emptyset, \emptyset) \\ \mathcal{C}_{ij}^\top &= (\{x_i = \top\}, \{c_j\}, \emptyset), C_{ij}^\bot &= (\{x_i = \bot\}, \{c_j\}, \emptyset) \end{split}$$