Using State-Based Planning Heuristics for Partial-Order Causal-Link Planning

Pascal Bercher and Thomas Geier and Susanne Biundo

Institute of Artificial Intelligence

September 19th, 2013

ulm university universität **UUU**

- (**POCL** Planning == **P**artial-**O**rder **C**ausal-Link Planning)
- **1** STRIPS and POCL Problems: Formalization
- 2 POCL Planning: Basics
- 3 Using State-Based Heuristics in POCL Planning
 - Problem Encoding
 - Theoretical Results
- 4 Empirical Evaluation
 - Setting
 - Results

A planning domain is a tuple $\mathcal{D}=\langle \mathcal{V},\mathcal{A}\rangle$ with:

- \mathcal{V} is a finite set of state variables, $s \in 2^{\mathcal{V}}$ being a state,
- A is a finite set of actions, an action a := ⟨pre, add, del⟩ ∈ A consists of:
 - $pre \subseteq \mathcal{V}$, the precondition of *a*,
 - $add \subseteq \mathcal{V}$, the add list of a,
 - $del \subseteq \mathcal{V}$, the delete list of a

A planning domain is a tuple $\mathcal{D} = \langle \mathcal{V}, \mathcal{A} \rangle$ with:

- $\mathcal V$ is a finite set of state variables, $s\in 2^{\mathcal V}$ being a state,
- A is a finite set of actions, an action a := ⟨pre, add, del⟩ ∈ A is applicable:
 - in a state $s \in 2^{\mathcal{V}}$ iff $pre \subseteq s$,
 - and generates the state $(s \setminus del) \cup add$
 - (applicability of action sequences is defined as usual)

A STRIPS planning problem is a tuple $\mathcal{P} = \langle \mathcal{D}, \textit{s}_{\textit{init}}, \textit{g} \rangle$ with:

- \mathcal{D} is the planning domain,
- *s*_{init} is the initial state,
- g is the goal description
- A solution to \mathcal{P} is an action sequence \bar{a} , s.t.
 - ā is applicable in s_{init},
 - \bar{a} generates a state $s' \supseteq g$

 $\approx \pi$

└─ Techniques for Solving Classical Planning Problems

- State-based planning with heuristics
- SAT-based approaches
- Symbolic methods (mostly BDD-based)
- Search in the space of incomplete, partially ordered plans

Techniques for Solving Classical Planning Problems

- State-based planning with heuristics
- SAT-based approaches
- Symbolic methods (mostly BDD-based)
- Search in the space of incomplete, partially ordered plans
 - inefficient, no good heuristics available
 - obsolete

(Bernhard Nebel, key note at KI 2013)

A POCL planning problem is a tuple $\mathcal{P} = \langle \mathcal{D}, \mathcal{P}_{init} \rangle$ with:

- ${\mathcal D}$ is the planning domain
- *P*_{init} is the initial plan (actions; partially ordered)

A solution to \mathcal{P} is a plan P, s.t.:

- for every action sequence \bar{a} induced by P holds:
 - ā is applicable in sinit,
 - \bar{a} generates a state $s' \supseteq g$

A partial plan is a tuple $P = (PS, \prec, CL)$ with:

- *PS* is a finite set of plan steps, a plan step *I*:*a* ∈ *PS* is a labeled action,
- \prec is a strict partial order on *PS*,
- CL is a set of causal links between the plan steps in PS

Example for a partial plan:

init
$$\stackrel{a}{\xrightarrow{b}} \rightarrow \stackrel{b}{\xrightarrow{}} I^2:A^2 \stackrel{\neg b}{\xrightarrow{}} \rightarrow \stackrel{a}{\xrightarrow{}} I^1:A^1 \stackrel{\neg a}{\xrightarrow{}} \rightarrow \stackrel{a}{\xrightarrow{}} goal$$

$$\mathcal{A} = \{A^1, A^2\} \text{ with: } A^1 = (a, \neg a \land c) \text{ and } A^2 = (b, \neg b \land a) \\ \text{initial state } s_{init} = a \land b, \quad \text{goal description } g = a \land c$$

$$\mathcal{A} = \{A^1, A^2\} \text{ with: } A^1 = (a, \neg a \land c) \text{ and } A^2 = (b, \neg b \land a) \\ \text{initial state } s_{init} = a \land b, \quad \text{goal description } g = a \land c$$

$$\mathcal{A} = \{A^1, A^2\} \text{ with: } A^1 = (a, \neg a \land c) \text{ and } A^2 = (b, \neg b \land a)$$
 initial state $s_{init} = a \land b$, goal description $g = a \land c$

$$\mathcal{A} = \{A^1, A^2\} \text{ with: } A^1 = (a, \neg a \land c) \text{ and } A^2 = (b, \neg b \land a)$$
 initial state $s_{init} = a \land b$, goal description $g = a \land c$

Which plan to select further?

$$\mathcal{A} = \{A^1, A^2\} \text{ with: } A^1 = (a, \neg a \land c) \text{ and } A^2 = (b, \neg b \land a)$$
 initial state $s_{init} = a \land b$, goal description $g = a \land c$

Which plan to select further?

 \rightarrow heuristic judges plan!

Problem:

- Desired: goal-distance estimates for plans
- Already available: goal-distance estimates for states

Idea:

Encode a *plan* P by means of new planning problem \mathcal{P}' s.t.:

solutions of $\mathcal{P}' \equiv \mathbb{P}$ solutions reachable from P

ightarrow goal distance of $P_{-}\equiv$ goal distance of the initial state of \mathcal{P}'

Consider the following plan *P* for $\mathcal{P} = \langle \langle \mathcal{V}, \mathcal{A}, \rangle, s_{init}, g \rangle$

init
$$a \rightarrow b$$
 $l^2:A^2 \rightarrow a \rightarrow l^1:A^1 \rightarrow a \rightarrow c$ goal

The encoding of P is given by $\mathcal{P}' = \langle \langle \mathcal{V}', \mathcal{A}' \rangle, s'_{init}, g' \rangle$ with:

•
$$\mathcal{V}' := \mathcal{V} \cup \{l^1, l^2\}$$

• $\mathcal{A}' := \mathcal{A} \cup \{enc(l^1:A^1), enc(l^1:A^1)\}$ with
- $enc(l^1:A^1) = \langle a \land \neg l^1 \land l^2, \neg a \land c \land l^1 \rangle$
- $enc(l^2:A^2) = \langle b \land \neg l^2, \neg b \land a \land l^2 \rangle$

Consider the following plan P for $\mathcal{P} = \langle \langle \mathcal{V}, \mathcal{A}, \rangle, s_{\textit{init}}, g \rangle$

init
$$a \rightarrow b$$
 $l^2:A^2$ $a \rightarrow a$ $l^1:A^1$ $a \rightarrow a$ goal

The encoding of P is given by $\mathcal{P}' = \langle \langle \mathcal{V}', \mathcal{A}' \rangle, s'_{init}, g' \rangle$ with:

•
$$\mathcal{V}' := \mathcal{V} \cup \{l^1, l^2\}$$

• $\mathcal{A}' := \mathcal{A} \cup \{enc(l^1:A^1), enc(l^1:A^1)\} \text{ with}$
- $enc(l^1:A^1) = \langle a \land \neg l^1 \land l^2, \neg a \land c \land l^1 \rangle$
- $enc(l^2:A^2) = \langle b \land \neg l^2, \neg b \land a \land l^2 \rangle$

•
$$s'_{\text{init}} := s_{\text{init}}$$

•
$$g' := g \cup \{l^1, l^2\}$$

9.14

Consider the following plan P for $\mathcal{P} = \langle \langle \mathcal{V}, \mathcal{A}, \rangle, s_{\textit{init}}, g \rangle$

init
$$a \rightarrow b$$
 $l^2:A^2$ $a \rightarrow a$ $l^1:A^1$ $a \rightarrow a$ goal

The encoding of P is given by $\mathcal{P}' = \langle \langle \mathcal{V}', \mathcal{A}' \rangle, s'_{init}, g' \rangle$ with:

•
$$\mathcal{V}' := \mathcal{V} \cup \{l^1, l^2\}$$

• $\mathcal{A}' := \mathcal{A} \cup \{enc(l^1:A^1), enc(l^1:A^1)\} \text{ with}$
- $enc(l^1:A^1) = \langle a \land \neg l^1 \land l^2, \neg a \land c \land l^1 \rangle$
- $enc(l^2:A^2) = \langle b \land \neg l^2, \neg b \land a \land l^2 \rangle$

Consider the following plan P for $\mathcal{P} = \langle \langle \mathcal{V}, \mathcal{A}, \rangle, s_{\textit{init}}, g \rangle$

init
$$a \rightarrow b$$
 $l^2:A^2$ $a \rightarrow a$ $l^1:A^1$ $a \rightarrow a$ goal

The encoding of P is given by $\mathcal{P}' = \langle \langle \mathcal{V}', \mathcal{A}' \rangle, s'_{init}, g' \rangle$ with:

•
$$\mathcal{V}' := \mathcal{V} \cup \{l^1, l^2\}$$

• $\mathcal{A}' := \mathcal{A} \cup \{enc(l^1:A^1), enc(l^1:A^1)\} \text{ with}$
- $enc(l^1:A^1) = \langle a \land \neg l^1 \land l^2, \neg a \land c \land l^1 \rangle$
- $enc(l^2:A^2) = \langle b \land \neg l^2, \neg b \land a \land l^2 \rangle$

•
$$s'_{init} := s_{init}$$

•
$$g' := g \cup \{l^1, l^2\}$$

Computational complexity:

- Plans $P = (PS, \prec, \emptyset)$ can be encoded in $O(|\prec|) = O(|PS|^2)$
- Plans $P = (PS, \prec, CL)$, $CL \neq \emptyset$ can be be encoded in ${f P}$
- Incremental encoding can be done in O(|P|) and $\Omega(1)$ if $P = (PS, \prec, \emptyset)$ (cf. KEPS 2013)

Admissibility:

• If the used state-based heuristic is admissible, so is the "new" one!

We evaluated (almost) all problems from the IPC 1 to IPC 5.

We used our POCL planner PANDA with weighted A* and:

- The Add Heuristic for POCL Planning (Younes & Simmons)
- The Relax Heuristic (Nguyen & Kambhampati)
- Transformation + Lm-Cut (Helmert & Domshlak)
- Transformation + Merge & Shrink (Helmert et al.)

Heuristic calculation:

- We generate a PDDL domain and problem file for each plan P
- Fast Downward calculates heuristic h of the initial state
- PANDA uses h cost(P) as heuristic estimate

We measured:

- Number of solved problem instances per domain
- Search space size when a solution was found

Results show many timeouts (due to file communication) But: the state-based heuristics are quite informed if not timed-out!

Summary:

- Encoding can be done in P, even with causal links
- Encoding provides the *first admissible heuristics* for POCL planning
- · Lm-cut seems to work well with our encoding

Outlook:

- Native implementation of Lm-cut for the encoding
- Native adaptation of Lm-cut for POCL planning

Appendix

Table with Solved Instances

Domain	n	$\mathrm{PB}_{\mathrm{Add}}$	$\mathrm{PB}_{\mathrm{Relax}}$	$\mathrm{PB}_{\mathrm{LM-Cut}}$	$\mathrm{PB}_{\mathrm{M\&S}}$	$\mathrm{SB}_{\mathrm{LM-Cut}}$	$\mathrm{SB}_{\mathrm{M\&S}}$
grid	5	0	0	0	0	2	2
gripper	20	14	20	1	1	20	8
logistics	20	16	15	6	0	16	1
movie	- 30	30	30	30	30	30	30
mystery	20	8	10	5	5	13	13
mystery-prime	20	3	4	2	1	12	12
blocks	21	2	3	3	5	21	21
logistics	28	28	28	27	5	28	15
miconic	100	100	53	65	29	100	68
depot	22	2	2	1	1	11	7
driverlog	20	7	9	3	3	15	12
freecell	20	0	0	0	0	6	6
rover	20	20	19	9	5	18	8
zeno-travel	20	4	4	3	5	16	13
airport	20	18	15	6	5	20	18
pipesworld-noTankage	20	8	5	1	1	18	19
pipesworld-Tankage	20	1	1	1	1	11	14
satellite	20	18	18	4	3	15	7
pipesworld	20	1	1	1	1	11	14
rover	20	0	0	0	0	18	8
storage	20	7	9	5	5	17	15
tpp	20	9	8	5	5	9	7
total	526	296	254	178	111	427	318

Let $\mathcal{P} = \langle \langle \mathcal{V}, \mathcal{A} \rangle, s_{init}, g \rangle$ be a planning problem and $P = (PS, \prec, CL)$ a plan.

The encoding of P is given by $\mathcal{P}' = \langle \langle \mathcal{V}', \mathcal{A}' \rangle, s'_{init}, g' \rangle$ with:

- $\mathcal{A}' := \mathcal{A} \cup \mathcal{A}_{new}$, with $\mathcal{A}_{new} := \{ enc(I:A) \mid I:A \in PS \}$
- \mathcal{A}_{new} encodes the plan steps in *PS*, s.t.:
 - each $a \in \mathcal{A}_{new}$ is executable exactly once
 - the actions in A_{new} can only be inserted in an order consistent with the one in *PS*
 - no action in \mathcal{A}' can violate causal links in CL
- The goal description is altered, s.t. all actions in \mathcal{A}_{new} have to be executed

