
Hybrid Planning Heuristics Based on Task Decomposition Graphs

Pascal Bercher and Shawn Keen and Susanne Biundo
Institute of Artificial Intelligence,

Ulm University, Germany,
firstName.lastName@uni-ulm.de

Revised Version
(18. August 2014)

Abstract
Hybrid Planning combines Hierarchical Task Network
(HTN) planning with concepts known from Partial-Order
Causal-Link (POCL) planning. We introduce novel heuristics
for Hybrid Planning that estimate the number of necessary
modifications to turn a partial plan into a solution. These es-
timates are based on the task decomposition graph that con-
tains all decompositions of the abstract tasks in the planning
domain. Our empirical evaluation shows that the proposed
heuristics can significantly improve planning performance.

Introduction
Hierarchical Task Network (HTN) planning relies on the
concept of task decomposition (Erol, Hendler, and Nau
1994). While the goal in classical (non-hierarchical) plan-
ning is to find an action sequence that satisfies a goal de-
scription, the goal in hierarchical planning is to find an ex-
ecutable course of action that is a refinement of an initial
partial plan. Partial plans may contain primitive and abstract
tasks. While primitive tasks correspond to operators known
from classical planning, abstract tasks represent complex
activities and must therefore be refined (decomposed) into
more concrete courses of action using so-called decomposi-
tion methods. The difficulty in solving hierarchical planning
problems is to choose the “correct” decomposition method
for an abstract task in a given partial plan.

To improve the performance of hierarchical planning sys-
tems, one can follow domain-specific approaches that en-
code a domain-specific search advice within the domain.
SHOP2 (Nau et al. 2003) is one of the best-known hierar-
chical planning systems following that technique. Another
approach is to design domain-independent search strategies
(Marthi, Russell, and Wolfe 2008; Shivashankar et al. 2013;
Elkawkagy et al. 2012). The hierarchical planning system
GoDel (Shivashankar et al. 2013), for instance, uses land-
marks known from classical planning (Porteous, Sebastia,
and Hoffmann 2001) for search guidance. The hierarchical
planning system by Elkawkagy et al. (2012) uses hierarchi-
cal landmarks to guide its search. These are abstract and
primitive tasks, which occur on any refinement process from
the initial partial plan to any solution plan. Such hierarchi-
cal landmarks can be extracted from a task decomposition

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graph (TDG), which represents the decomposition hierarchy
of the planning problem at hand. They use these landmarks
in order to decide whether one decomposition method is pre-
ferred over another. For the selection of a most-promising
search node, however, conventional heuristics are used that
are unaware of the underlying hierarchy.

In this paper, we introduce novel heuristics that do take hi-
erarchical information into account. We use the Hybrid Plan-
ning paradigm (Kambhampati, Mali, and Srivastava 1998;
Biundo and Schattenberg 2001) that fuses hierarchical plan-
ning with concepts known from Partial-Order Causal-Link
(POCL) planning. We propose a novel variant of the Hi-
erarchical Decomposition Partial-Order Planner HD-POP
(Russell and Norvig 1994, edition 1, p. 374–375) suited for
Hybrid Planning. The resulting system, PANDA, guides its
search using informed heuristics. We propose such heuris-
tics that estimate the number of modifications necessary to
find a solution. To that end, the TDG is used to extract hi-
erarchical landmarks and further information about the hi-
erarchy. Our empirical evaluation shows that the proposed
heuristics can significantly improve planning performance.

Hybrid Planning
Planning problems are given in terms of a Hybrid Planning
formalization (Kambhampati, Mali, and Srivastava 1998;
Biundo and Schattenberg 2001), which fuses concepts from
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1994) with concepts from Partial-Order Causal-
Link (POCL) planning (McAllester and Rosenblitt 1991;
Penberthy and Weld 1992).

In Hybrid Planning, there are two kinds of tasks: primitive
and abstract tasks. Both primitive and abstract tasks t(τ̄) are
tuples 〈prec(τ̄), eff (τ̄)〉 consisting of a precondition and ef-
fect over the task parameters τ̄ . Preconditions and effects are
conjunctions of literals. As usual, states are sets of ground
atoms. Tasks are called ground if all variables are bound to
constants. Applicability of (sequences of) ground primitive
tasks is defined as usual.

Partial plans are tuples (PS ,≺,VC ,CL) consisting of the
following elements. The set of plan steps PS is a set of
uniquely labeled tasks l : t(τ̄). The set ≺ of ordering con-
straints induces a partial order on the plan steps in PS . The
set VC is a set of variable constraints that (non-)codesignate
the task parameters with each other or with constants. CL is



a set of causal links. A causal link l : t(τ̄) →ϕ(τi) l
′ : t′(τ̄ ′)

denotes that the precondition literal ϕ(τi) of the plan step
l′ : t′(τ̄ ′) is supported by the same effect of the plan step
l : t(τ̄). If there is no causal link to a precondition ϕ(τi) we
call it an open precondition.

Partial plans may also contain abstract tasks. These cannot
be executed directly. Instead, they need to be decomposed
into more specific partial plans using so-called (decompo-
sition) methods. A method m = 〈t(τ̄), P 〉 maps an ab-
stract task t(τ̄) = 〈prec(τ̄), eff (τ̄)〉 to a partial plan P that
“implements” that task (Biundo and Schattenberg 2001).
Thereby, causal links involving t(τ̄) can be passed down to
one of its sub tasks within P when decomposing t(τ̄).

Now, a Hybrid Planning Domain D is given by the tuple
〈Ta, Tp,M〉 consisting of a finite set of abstract and primi-
tive tasks Ta and Tp, respectively, and a set of methods M .
A Hybrid Planning Problem is given by a domain and an
initial partial plan Pinit . As it is the case in standard POCL
planning, Pinit contains two special primitive tasks that en-
code an initial state and a goal description. The task t0 has
no precondition and the initial state as effect. The task t∞
has the goal description as precondition and no effects.

A plan Psol is a solution to a hybrid planning problem if
and only if the following criteria are met:

1. Psol is a refinement of Pinit w.r.t. the decomposition of
abstract tasks and insertion of ordering constraints, vari-
able constraints, and causal links.

2. Psol needs to be executable in the initial state. Thus,
(a) all tasks are primitive and ground,
(b) there are no open preconditions, and
(c) there are no causal threats. That is, given a causal link

l : t(τ̄) →ϕ(τi) l
′ : t′(τ̄ ′), we call the task l′′ : t′′(τ̄ ′′) a

threat to that link if and only if the ordering constraints
allow it to be ordered between the tasks of the causal
link and it has an effect ¬ψ(τ ′′i ) that can be unified with
the protected condition ϕ(τi).

Criterion 1 relates any solution plan to the initial partial
plan Pinit . This is necessary, since Pinit represents the ac-
tual planning problem. Note that one could also allow the in-
sertion of tasks into a partial plan without being introduced
via decomposition of an abstract task as one of the allowed
refinement options. In this paper, however, we do not allow
such insertions and thereby follow the typical HTN planning
approach (Erol, Hendler, and Nau 1994). Other hierarchical
planning approaches, such as the Hybrid Planning approach
by Kambhampati et al. (1998) or HTN Planning with Task
Insertion (Geier and Bercher 2011) do allow such insertions.

Criterion 2 is inherited from standard POCL planning. It
ensures that any linearization of the tasks in a solution plan is
executable in the initial state. Every linearization generates
a state which satisfies the goal condition.

Planning Algorithm
We search for solutions by systematically refining the initial
partial plan Pinit until it meets all the solution criteria. To
that end, we propose the following generic hybrid planning
algorithm (cf. Alg. 1). The corresponding planning system

PANDA (Planning and Acting in a Network Decomposition
Architecture) is based on earlier work (Schattenberg 2009).

Algorithm 1: Hierarchical Refinement Planning
1 F ← {Pinit}
2 while F 6= ∅ do
3 P ← planSel (F )
4 F ← F \ {P}
5 if Flaws(P ) = ∅ then return P
6 f ← flawSel (Flaws(P ))
7 F ← F ∪ { modify(m,P) | m ∈ Mods(f, P ) }
8 return fail

The algorithm employs search in the space of partial
plans. It uses a search fringe F consisting of all created re-
finements of Pinit that have not yet been chosen for expan-
sion. First, it picks and removes a partial plan from the fringe
F (line 3, 4). This choice is done by means of the plan selec-
tion function planSel. This function can be implemented
in various ways and determines the actual search strategy.
For instance, choosing always an “oldest” plan results in a
breadth first search. More elaborated strategies like A∗ or
greedy search need heuristic functions to judge the quality
or goal distance of partial plans, such as the ones we propose
in this paper.

After a partial plan P has been chosen for refinement, we
calculate all its flaws Flaws(P ). Flaws are syntactical rep-
resentations of violations of solution criteria. For instance,
every abstract task in P induces a so-called abstract task
flaw, since its existence violates the executability required
by solution criterion 2.(a). Further flaw classes are open pre-
condition flaws and causal threat flaws according to solution
criteria 2.(b) and 2.(c), respectively.

If P has no flaws, it is a solution and hence returned
(line 5). If there are flaws, they need to be removed in a
systematic manner. We follow the approach of the hierarchi-
cal planner HD-POP (Russell and Norvig 1994, edition 1,
p. 374–375) and pick one of its flaws (line 6) to be resolved.
To that end, the function Mods(f, P ) calculates all modifi-
cations that modify the partial plan P , such that the flaw f is
addressed in the resulting refinement. Modifications specify
which plan elements are to be added to or removed from a
given partial plan (Schattenberg, Bidot, and Biundo 2007).
The application of a modification m to the partial plan P
by the function modify(m,P) generates the correspond-
ing successor plan. Abstract task flaws can only be resolved
by applying a decomposition method for the respective task.
Open precondition flaws can only be resolved by inserting
a causal link or by decomposing an abstract task that might
possibly introduce a task with a suitable effect. Finally, a
causal threat flaw can be resolved by promotion, demotion,
and separation, as well as by decomposition if one of the
involved tasks is abstract.

The selection of a specific flaw does not constitute a back-
tracking point. This is due to the fact that every flaw needs
to be resolved at some point and we generate all its possi-
ble successor plans (line 7). Hence, any partial plan can be



discarded if there is a flaw without modifications. Although
the choice of a flaw does not influence correctness or com-
pleteness, it heavily influences planning performance. This
choice point is one of the major differences to the hierarchi-
cal planner used by Elkawkagy et al. (2012). That planner
orders all modifications and therefore comes without an ex-
plicit choice point for flaws.

After all successor plans of the selected partial plan and
flaw have been inserted into the fringe, the loop starts over
until a solution is generated or the fringe becomes empty. In
case of an empty fringe, there is (provably) no solution and
fail is returned (line 8).

Exploiting Task Decomposition Graphs
We now give some basic definitions based on TDGs that can
be used to design heuristic functions.

Let G = 〈VT , VM , E〉 be a TDG in accordance to Def. 5
given by Elkawkagy et al. (2012). Hence, G is a directed
AND/OR graph with the following elements: VT is a set
of task vertices consisting of ground abstract and primitive
tasks that can be obtained by decomposing the initial partial
plan. VM is a set of method vertices consisting of ground
methods that decompose an abstract task within VT . E is
a set of edges connecting vertices from VT with vertices
from VM and vice versa. More precisely: If t(c̄) ∈ VT and
m = 〈t(c̄), P 〉 ∈ VM , then (t(c̄),m) ∈ E. Then, the method
node m has an edge for every one of the ground plan steps
in P to its respective tasks in VT : If t′(c̄′) ∈ VT , t′(c̄′) being
a task of the plan steps in P , then (m, t′(c̄′)) ∈ E. Fig. 1
shows a small example TDG.

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Figure 1: Example TDG depicted as AND/OR graph. The
symbols t0, t1, t3 and t2, t4, . . . , t8 represent ground ab-
stract and ground primitive task vertices, respectively. The
symbols m1 through m6 depict method vertices for the ab-
stract tasks t0, t1, and t3.

Although TDGs are finite, they can still be quite large be-
cause of the huge number of ground task and method in-
stances that are possible in general. To be able to build TDGs
despite their potentially large size, we follow a technique
that allows to ignore certain irrelevant parts of the TDG
(Elkawkagy, Schattenberg, and Biundo 2010).

Some of our TDG-based estimates are based on the con-
cept of mandatory tasks. They have been introduced by
Elkawkagy et al. (2012, Def. 6) and serve as approxima-
tion for landmarks (cf. Def. 4). Mandatory tasks are ground
tasks that occur in all decomposition methods of the same
abstract task. Elkawkagy et al. need these tasks as an inter-
mediate step to calculate the set of optional tasks. In their
algorithm, they use the number of these optional tasks to de-
cide whether one decomposition method is preferred before
another. We only require the mandatory tasks and use them
to obtain an estimate for the modifications that need to be
performed when decomposing abstract tasks. In contrast to
Elkawkagy et al. (2012), we do not only count the tasks, but
also use the number of their preconditions for our estimates.

To define mandatory tasks, we first need to define the sub
task set S(t(c̄)) of a ground abstract task t(c̄), c̄ denoting a
sequence of constants the task’s parameters are codesignated
with. For each method m for a task t(c̄), S(t(c̄)) contains a
set with all tasks in the partial plan referenced by m:

S(t(c̄)) = {{t′(c̄′) | (m, t′(c̄′)) ∈ E} | (t(c̄),m) ∈ E}
For the TDG in Fig. 1, S(t0) = {{t1, t2, t3}, {t3, t4}},

S(t1) = {{t1, t5}, {t5, t6}}, and S(t3) = {{t7}, {t7, t8}}.
The set of mandatory tasks M(t(c̄)) of a ground abstract

task t(c̄) is then given by:

M(t(c̄)) =
⋂

s∈S(t(c̄))

s

The set M(t(c̄)) contains only tasks that inevitably will
be inserted into a partial plan when decomposing t(c̄). It
therefore serves as a lower bound for estimating the modifi-
cation effort for decomposing t(c̄). In our example, we have
M(t0) = {t3}, M(t1) = {t5}, and M(t3) = {t7}.

So far, we only consider the very next level of decom-
position. Recursively incorporating the next levels for all
tasks in M(t(c̄)) results in higher estimates which are still
lower bounds on the actual modification effort. The resulting
set, the closure of M(t(c̄)), denoted as M∗(t(c̄)) is given
by the following recursive equation having M∗(t(c̄)) =
M(t(c̄)) = ∅ for a primitive task t(c̄).

M∗(t(c̄)) = M(t(c̄)) ∪
⋃

t′(c̄′)∈M(t(c̄))

M∗(t′(c̄′))

Note that M∗(t(c̄)) is finite even if the underlying TDG
is cyclic. In our example, we have M∗(t0) = {t3, t7},
M∗(t1) = M(t1), and M∗(t3) = M(t3).

The setM∗(t(c̄)) can now be used to estimate the effort of
decomposing t(c̄). The easiest way is to take its cardinality,
because for each task in that set, the planner needs to apply
at least one modification (a task t′(c̄′) ∈ M∗(t(c̄)) needs to
be decomposed if t′(c̄′) is abstract and – assuming primitive
tasks have non-empty preconditions – at least one causal link
must be inserted if t′(c̄′) is primitive).
Definition 1 (Task Cardinality) Let t(c̄) be a ground ab-
stract task. Then, the task cardinality of t(c̄) is given by:

TC (t(c̄)) := |M∗(t(c̄))|



As argued before, TC (t(c̄)) can be regarded as a reason-
able estimate for the decomposition effort of t(c̄). However,
we can improve that estimate by taking their preconditions
into account. We know that every precondition of every task
needs to be supported with a causal link. Hence, we can as-
sume that the number of required modifications is at least as
large as the number of preconditions of the mandatory tasks.

Definition 2 (Precondition Cardinality) Let t(c̄) be a
ground abstract task. Then, the precondition cardinality of
t(c̄) is given by:

PC (t(c̄)) :=
∑

t′(c̄′)∈M∗(t(c̄)), t′(c̄′) primitive,
and t′(c̄′)=〈prec(c̄′),eff (c̄′)〉

|prec(c̄′)|

Note that we only incorporate the preconditions of the
primitive tasks to avoid counting preconditions twice: since
causal links to or from an abstract task are handed down to
their subtasks when decomposing that task, it suffices to in-
corporate the preconditions of their primitive sub tasks.

So far, we have introduced two estimates for the modifi-
cation effort of abstract tasks by focusing on the mandatory
ones. Only focusing on these tasks might be too defensive,
however. Consider a planning problem, where each abstract
task has at least two (ground) decomposition methods, but
only a few mandatory tasks. Our estimate does not consider
the remaining tasks and could therefore still be improved.
In our example, M∗(t0) ignores the tasks t1, t2, and t4, al-
though at least one of these is introduced when decompos-
ing t0 (they could be considered disjunctive landmarks). We
hence investigate a third estimate that judges the minimal
modification effort based on the entire TDG while combin-
ing the ideas of TC and PC .

Definition 3 (Minimal Modification Effort) Let V be an
arbitrary set of ground tasks. For a primitive task t(c̄) =
〈prec(c̄), eff (c̄)〉, we set h(t(c̄), V ) := |prec(c̄)|.

For an abstract task t(c̄) = 〈prec(c̄), eff (c̄)〉 we set:

h(t(c̄), V ) :=

1 + |prec(c̄)| if t(c̄) ∈ V, or else:
1 + min

s∈S(t(c̄))

∑
t′(c̄′)∈s

h(t′(c̄′), {t(c̄)} ∪ V )

Then, MME (t(c̄)) := h(t(c̄), ∅).

The basic idea of MME is to minimize the estimated
modification effort per decomposition method represented
by the different sets in S(t(c̄)). The effort for a set of tasks
within the same method is obtained by summing over the ef-
forts for the single tasks. If such a task is primitive, we take
the number of its preconditions as estimate, analogously to
the estimate PC . If such a task is abstract, we account for
its decomposition effort by 1 plus the effort of its “cheapest”
decomposition method. Since the traversed TDG might be
cyclic, we need to ensure termination. For that purpose, we
use a set V of already visited tasks. If we discover an abstract
task that was already decomposed and hence within V , we
estimate its modification effort by 1 (for its decomposition)
plus the number of its preconditions.

MME shows some similarities to the add heuristic (Bonet
and Geffner 2001) that estimates the number of actions re-
quired to achieve an atom. The add heuristic, however, is a
non-admissible heuristic w.r.t. the number of actions (due to
the assumption of sub goal independence), while MME is
admissible w.r.t. the number of modifications (while domi-
nating both TC and PC ).

Please note that not only the TDG can be calculated in
a preprocessing step before the actual search, but also the
functions we have presented so far (Def. 1 to 3). Thus, dur-
ing search, no complicated calculations are necessary.

We still have to cope with the problem that the TDG con-
sists entirely of ground task instances while the actual search
process is done in a lifted fashion, where tasks are only par-
tially ground. Given a partial plan P = (PS ,≺,VC ,CL)
and one of its plan steps ps = l : t(τ̄), we define Inst(ps) as
a function that maps to a fixed, but arbitrary ground instance
t(c̄) of ps that is compatible with the variable constraints
VC . During search, we then use the task Inst(ps) when we
want to retrieve an estimate for t(τ̄) from the TDG. An al-
ternative would be to minimize or aggregate all (or some) of
the possible ground instances of t(τ̄). We did not yet evalu-
ate these possibilities, however.

Heuristic Functions
We want to estimate the number of necessary modifications
to turn a partial plan P into a solution. In standard POCL
planning, the heuristics for that purpose (Nguyen and Kamb-
hampati 2001; Younes and Simmons 2003; Bercher, Geier,
and Biundo 2013; Bercher et al. 2013) are based on the con-
cept of task insertion, rather than task decomposition and
hence not directly applicable in our setting. There are also
several heuristics for the hybrid planning approach (Schat-
tenberg, Bidot, and Biundo 2007; Schattenberg 2009). How-
ever, these heuristics incorporate the hierarchical aspects of
abstract tasks not to their full extent, in particular, because
they are not based upon a TDG.

A relatively simple hybrid and/or POCL heuristic is h#F

that returns the number of flaws. That heuristic might un-
derestimate the number of required modifications, however.
For example, estimating the number of modifications for an
abstract task flaw by one ignores that decomposing the re-
spective task introduces several new tasks thus raising new
flaws. We hence estimate the number of required modifica-
tions by h#F plus a value accounting for the hierarchy by
inspecting the TDG w.r.t. the abstract tasks in a partial plan.

We now give heuristics for partial plans based on Def. 1
to 3, i.e., TC , PC , and MME . For all definitions, assume P
to be a partial plan (PS ,≺,VC ,CL).

Definition 4 (Heuristic hTC+PC )

hTC+PC (P ) :=
∑
ps∈PS

TC (Inst(ps)) + PC (Inst(ps))

While both TC (t(c̄)) and PC (t(c̄)) guarantee not to
overestimate the number of modifications for t(c̄), hTC+PC

does not show this property. First, the arbitrary compatible
instantiation of the plan step ps can be suboptimal. Second,
TC , which is simply the cardinality of all the mandatory



tasks of Inst(ps), contributes to the modification effort for
each primitive task by one, assuming that for every primitive
task, at least one causal link must be inserted. This effort,
however, is already reflected in PC (Inst(ps)), as it counts
the preconditions of the primitive tasks. We did not “fix” this
possible overestimation, because we believe that the heuris-
tics already underestimate the actual modification effort in
practice (most importantly because both TC and PC restrict
their estimates to the mandatory tasks).

The next heuristic, based on MME , incorporates the
whole TDG for its estimates.

Definition 5 (Heuristic hMME )

hMME (P ) :=
∑

ps∈PS is abstract

MME (Inst(ps))

Evaluation
We evaluate the proposed TDG-based heuristics on four
hybrid planning domains and compare them with standard
search strategies that are not based on the TDG.

Planning Benchmarks
We use the same set of planning domains used by Elkaw-
kagy et al. (2012) for their evaluation. We shortly review
those domains and include information about the TDGs of
the evaluated problem instances. We only build the pruned
TDGs that incorporate reachability information of the re-
spective problem instances. One of the TDG-related infor-
mation is its maximal branching factor. Please note that this
number is different from the branching factor of the explored
search space, since not only decomposition methods need to
be chosen, but also open precondition and causal threat flaws
need to be resolved. In particular for inserting a causal link
there might be several refinement options during search.

The first planning domain is based on the well-known
UM-Translog (Andrews et al. 1995) domain for hierarchical
planning. UM-Translog is a logistics domain, where goods
of certain kinds need to be transported. It shows 48 primitive
and 21 abstract tasks for which there are 51 methods. The
domain contains recursive decompositions. In the conducted
experiments, the respective TDGs are acyclic and contain 7
to 22 ground primitive tasks and 12 to 30 ground abstract
tasks. The longest path within the TDG has length 11, while
the average branching factor of the abstract tasks is at most
1.11 indicating that the reachability analysis ruled out most
of the available decomposition options. The easiest problem
instance can be solved by applying 25 modifications, while
the hardest instance requires at least 76 modifications.

The Satellite domain is a hierarchical adaptation of a
domain taken from the International Planning Competition
(IPC) that features conducting orbital observations using a
certain number of satellites and modes. It consists of 5 primi-
tive and 3 abstract tasks with 8 methods in total. That domain
does also not contain recursive decompositions. Despite the
small number of tasks and the missing recursion, the do-
main is rather difficult due to the large number of reachable
ground task instances. Those vary from 7 to 87 for primitive
tasks and from 4 to 16 for abstract tasks. While the maximal

path length of these TDGs is always 4, the average branching
factor for decomposition ranges from 2.75 to 15.1. Depend-
ing on the problem instance, solutions require between 13
and 41 modifications.

The SmartPhone domain models a modern cell phone.
The tasks are concerned with sending messages and creat-
ing contacts or appointments. It is defined over 87 primitive
tasks, 50 abstract tasks, and 94 methods. The domain allows
for recursion. The TDGs contain between 10 and 19 prim-
itive ground tasks and 7 and 22 ground abstract tasks. The
maximal acyclic path length ranges from 4 to 6 with an av-
erage branching factor ranging from 1.42 to 1.95. Solutions
have a minimal depth of 18 to 54.

The last domain, Woodworking, is also based on a bench-
mark from the IPC and deals with cutting, planing, and fin-
ishing wood parts. The domain consists of 6 abstract tasks,
13 primitive tasks, and 14 methods. The domain does not
have cyclic method definitions. The TDGs of the problem
instances contain between 10 and 64 ground primitive tasks
and 15 to 492 ground abstract tasks. The depth varies from
2 to 4, and the average branching factor ranges from 2.53 to
7.21. Solutions require between 22 and 53 modifications.

Search Strategies
For the evaluation, we use greedy search with varying
heuristics. If some partial plans show the same heuristic
value, ties are broken by chance.

For the flaw selection function, we always use Least-Cost
Flaw-Repair (LCFR) (Joslin and Pollack 1994). LCFR min-
imizes the branching factor per search node by selecting a
flaw that has minimal “repair cost”, i.e., the least number of
modifications. Ties between flaws are broken by chance.

Besides our new TDG-based heuristics, we have also in-
cluded the Number of Flaws (h#F ) of a partial plan and the
Number of Modifications (h#M ) for all flaws1.

For every heuristic, we also evaluated a normalized ver-
sion thereof. Let P = (PS ,≺,VC ,CL) be a partial plan;
then ‖h(P )‖ is defined by h(P )

|PS | . Taking the ratio of a heuris-
tic (such as the number of flaws) to the number of plan steps
prevents heuristic values for two consecutive partial plans
from jumping too much. Consider two partial plans, P1 and
P2, P2 being the successor of P1 due to the decomposi-
tion of an abstract task. In general, P2 contains several new
plan steps and therefore several new flaws. According to the
heuristic h#F , for example, P2 looks much worse than P1

although the decomposition generating P2 was inevitable.
Normalizing tries to compensate that phenomenon.

In addition to greedy search using different heuristics, we
also include several base line configurations. These include
the uninformed Breadth First Search (BF) and Depth First
Search (DF). Furthermore, the core ideas behind the well-
known hierarchical planning systems UMCP (Erol, Hendler,
and Nau 1994) and SHOP2 (Nau et al. 2003) can be captured
by our hybrid planning framework (Schattenberg, Weigl,
and Biundo 2005).

1Greedy search using h#M corresponds to the search strategy
used in the evaluation by Elkawkagy et al. (2012). They called this
strategy Fewer Modifications First (fmf).



In case of UMCP, our emulation is very close to the origi-
nal system. We have employed all three variants of that sys-
tem described in Erol’s dissertation (1996, Chapter 6.1.2.1).
As proposed by Erol, we employ BF and DF as plan selec-
tion, as well as greedy search using a heuristic that always
selects a partial plan with the smallest number of abstract
tasks. UMCP always decomposes an abstract task before re-
solving open precondition flaws or causal threats.

To emulate SHOP2, we employ a depth first search with
the flaw selection earliest first. That function always prefers
a flaw associated with a plan element that is closest to the
initial task, i.e., closest to the execution horizon. Note that
our emulation of SHOP2 still shows some significant differ-
ences to the actual SHOP2 system. SHOP2 performs pro-
gression search in the space of states while our system is
based on POCL techniques. Furthermore, the actual SHOP2
system uses domain-specific search space information that is
encoded in the preconditions of methods while our approach
uses domain-independent search strategies.

System Configuration
In all experiments – including the ones for SHOP2 and
UMCP – we enable the TDG pruning technique described
by Elkawkagy et al. (2010). The explored search space is re-
duced by omitting decomposition methods that are not sup-
ported by the pruned TDG.

We conducted the experiments on a system with Intel
Xeon E5 2.5 Ghz processors. Because most of the problem
instances are solved within only a few seconds, we report
and focus on the number of expanded search nodes to ob-
tain a more accurate measure of search effort. Note that the
number of created search nodes is in general much larger.
We limited the available CPU time per problem instance to
10 minutes and the available memory to 2 GB.

To obtain statistically significant values, we run each ex-
periment 50 times and report the (rounded) mean number
of expanded search nodes µs, its relative standard devia-
tion σ/µs, and the (rounded) mean CPU time µt in seconds,
including preprocessing. We report the number of success-
ful runs in parentheses if some were not successful. The re-
ported values are based only on these successful runs.

Experimental Results
The results for the evaluated domains are shown in Tab. 1
to 4. The best result is highlighted in bold and the second
best in bold and italic.

UM-Translog In this domain, we did not find any signifi-
cant differences between the compared configurations.

The evaluated UM-Translog problem instances2 turn out
to be very easy, since even the uninformed BF and DF strate-
gies always found a solution very quickly. We attribute this
result to the TDG pruning that eliminates most of the choices

2We evaluated 20 problem instances while we report only 8 of
these in Tab. 1. The remaining instances turned out to be uninter-
esting for our evaluation, since all tested search strategies produce
the same number of search nodes with a standard deviation of 0.
Expanded search nodes vary from 25 to 55.

for different decomposition methods. Remember that the
pruned TDG has a branching factor of at most 1.11 in this
domain. Despite that observation, the experiments show that
the evaluated UMCP and SHOP2 configurations performed
much worse than the other strategies. Concerning the other
configurations, results have to be interpreted with care, since
the results do not differ significantly (cf. Tab. 1). We observe
that in all but one problem instances, greedy search using
h#F+hTC+PC and h#F+hMME , respectively, was among
the two best-performing configurations. Another interesting
result is that both h#F + hTC+PC and h#F + hMME dom-
inate the heuristic h#F in all problem instances. We can
hence conclude that adding the estimates based on the TDG
improves the estimate that is entirely based on h#F .

Satellite While the small problem instances can be solved
almost instantly, the problem instances in which three ob-
servations have to be taken require more than 100.000 node
expansions for many of the configurations. In this domain,
all our TDG-based heuristics appear to be quite well in-
formed. In 8 of 15 problem instances, ‖h#F + hTC+PC‖
and ‖h#F +hMME‖ are the two best-performing heuristics.
We can also observe that these normalized versions of our
heuristics expand less nodes than their non-normalized ver-
sions in all but a few cases. In 12 of the 15 evaluated prob-
lem instances, one of the proposed four heuristics is among
the two best-performing configurations. Our heuristics are
in general performing very well in this domain. Especially
in comparison to SHOP2 and UMCP, a much better search
efficiency can be observed for the proposed heuristics. In
some problem instances, for example in 3–1–1, 3–2–1, and
3–3–1, the proposed heuristics expand several hundred thou-
sand search nodes less than the SHOP2 and the BF and DF
versions of UMCP. The heuristic version of UMCP, how-
ever, works very well in that domain, but is still dominated
by our TDG-based heuristics in many cases.

Since the Satellite domain shows the largest deviation
among the different search strategies and heuristics, we have
included a plot (Fig. 2(a)) showing the number of solved in-
stances over the number of search node expansions. Higher
curves indicate that more solutions were found given the
same number of expansions. As a baseline, we included
BF, DF, and the SHOP2 configuration as well as UMCP-H,
which is the best-performing variant of UMCP in that do-
main, and h#M . Concerning our proposed heuristics, we in-
cluded ‖h#F + hMME‖ in the plot, as it is the one with
the best results. The heuristic ‖h#F + hTC+PC‖ shows a
similar behavior: its graph lies only slightly below that of
‖h#F + hMME‖. We also included the non-normalized ver-
sion of that heuristic, h#F + hMME . Again, the graphs of
h#F + hMME and h#F + hTC+PC are almost identical.

The plot clearly reveals the superiority of the normal-
ized versions compared to their non-normalized counter-
parts. Furthermore, the best configuration in that domain is
the one based on ‖h#F + hMME‖. Also, UMCP-H and DF
both perform very well in that domain.

Concerning CPU time, we also produced a plot corre-
sponding to Fig. 2(a) where the x-axis shows the CPU time.



Table 1 to 4: Strategy lists the used system configuration in the first six cases. In the remaining cases, it specifies the heuristic
used with greedy search and the flaw selection LCFR. Problem lists the used problem instances. The column µs reports the
rounded mean number of expanded search nodes over 50 runs, σ/µs its relative standard deviation, and µt the rounded mean
CPU time in seconds. The number of successful runs is reported in parentheses if it is not 50.

Table 1: Results for the UM-Translog domain.

Problem #06 #08 #09 #10 #11 #12 #13 #14
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 71 0.06 0 93 0.29 0 765 0.54 5 34 0.00 0 33 0.00 0 85 0.03 1 77 0.03 1 78 0.03 1
DF 62 0.14 0 35 0.00 0 76 0.02 2 34 0.00 0 33 0.00 0 80 0.05 1 73 0.04 1 73 0.05 1
SHOP2 21121 2.43 6 35 0.00 0 80 0.37 2 34 0.01 0 33 0.00 0 94 0.25 1 71 0.08 1 83 0.28 1
UMCP-BF 205 0.19 1 84 0.04 0 1548 0.08 8 36 0.02 0 33 0.02 0 174 0.14 3 266 0.13 6 168 0.16 3
UMCP-DF 119 0.57 1 35 0.01 0 542 0.74 4 35 0.03 0 33 0.02 0 133 0.33 2 168 0.47 4 126 0.32 2
UMCP-H 93 0.55 0 38 0.14 0 315 1.08 4 34 0.02 0 33 0.02 0 99 0.29 1 132 0.49 3 90 0.25 1
h#M 58 0.10 0 35 0.00 0 81 0.07 3 34 0.00 0 33 0.00 0 84 0.02 2 75 0.02 2 77 0.02 2
‖h#M‖ 56 0.10 0 35 0.00 0 76 0.02 3 34 0.00 0 33 0.00 0 84 0.03 2 76 0.02 2 77 0.03 2
h#F 58 0.08 0 39 0.13 0 96 0.17 3 34 0.00 0 33 0.00 0 84 0.02 1 76 0.03 2 77 0.02 2
‖h#F ‖ 58 0.08 0 35 0.00 0 76 0.02 2 34 0.00 0 33 0.00 0 83 0.03 1 75 0.02 2 77 0.03 2
h#F + hTC+PC 54 0.05 0 35 0.00 0 76 0.02 1 34 0.00 0 33 0.00 0 78 0.03 1 75 0.03 2 71 0.03 1
‖h#F + hTC+PC‖ 57 0.11 0 35 0.00 0 76 0.03 1 34 0.00 0 33 0.00 0 80 0.04 1 75 0.03 2 73 0.04 1
h#F + hMME 55 0.07 0 35 0.00 0 76 0.02 1 34 0.00 0 33 0.00 0 78 0.04 1 75 0.03 2 71 0.04 1
‖h#F + hMME‖ 64 0.12 1 35 0.00 0 76 0.03 1 34 0.00 0 33 0.00 0 81 0.04 1 76 0.03 2 74 0.04 1

Table 2: Results for the Satellite domain. The caption X–Y–Z stands for X observations, Y satellites, and Z modes.

Problem 1–1–1 1–2–1 2–1–1 2–1–2 2–2–1 2–2–2 3–1–1 3–1–2
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 21 0.18 0 44 0.10 0 292 0.22 1 4145 0.26 7 354 0.08 2 3012 0.31 8 10498 0.24 8 (7) 1670647 0.13 469
DF 16 0.20 0 24 0.46 0 72 0.68 0 521 0.57 2 57 0.70 0 442 0.74 2 1214 0.78 3 171006 1.16 31

SHOP2 15 0.13 0 25 0.55 0 399 1.38 1 376 0.76 1 238 2.10 1 653 0.90 2 246446 1.47 46 115096 1.35 28
UMCP-BF 16 0.11 0 39 0.11 0 673 0.20 1 1080 0.17 4 2021 0.25 5 2165 0.26 5 112686 0.18 26 368516 0.11 79
UMCP-DF 15 0.12 0 20 0.33 0 389 1.38 0 339 0.87 1 352 1.79 1 273 0.62 1 238745 1.26 33 35242 1.62 12
UMCP-H 15 0.12 0 24 0.28 0 75 0.39 0 344 0.66 1 89 0.36 0 443 0.47 2 413 1.53 1 6374 0.79 7
h#M 18 0.17 0 26 0.39 0 157 0.25 1 968 0.43 5 136 0.10 1 784 0.46 5 2557 0.20 6 29040 1.26 15
‖h#M‖ 14 0.08 0 14 0.00 0 42 0.11 0 620 0.62 3 43 0.30 1 325 0.76 2 1561 0.46 5 127033 1.52 31
h#F 17 0.16 0 26 0.40 0 111 0.25 0 793 0.30 4 86 0.16 1 620 0.43 3 1418 0.22 5 18236 0.74 12
‖h#F ‖ 14 0.09 0 15 0.08 0 72 0.28 0 450 0.29 2 33 0.14 0 252 0.59 1 3316 0.35 7 248677 0.84 45
h#F + hTC+PC 16 0.20 0 24 0.39 0 41 0.08 0 880 0.34 5 54 0.36 0 373 0.74 2 940 0.38 4 60745 1.80 18
‖h#F + hTC+PC‖ 13 0.00 0 17 0.40 0 22 0.03 0 92 0.30 1 31 0.30 0 123 1.07 1 46 0.42 0 21939 1.29 12
h#F + hMME 16 0.19 0 25 0.10 0 42 0.10 0 739 0.42 4 44 0.45 0 333 0.83 2 997 0.33 4 62353 1.77 18
‖h#F + hMME‖ 13 0.00 0 21 0.42 0 22 0.03 0 105 0.37 1 27 0.38 0 160 0.94 1 37 0.34 0 24459 1.30 12

Problem 3–1–3 3–2–1 3–2–2 3–2–3 3–3–1 3–3–2 3–3–3
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF — — — 15174 0.15 13 710661 0.34 140 — — — 36408 0.14 17 322284 0.32 69 (16) 1122746 0.25 338
DF 668416 0.77 109 940 0.99 4 106748 1.22 28 318515 0.96 61 1639 0.95 5 43456 1.18 16 239418 0.89 48

SHOP2 472177 0.88 99 (40) 333398 2.41 64 (37) 294693 1.37 77 (11) 532783 1.29 133 (39) 82194 1.87 22 (29) 339167 1.22 83 (13) 461074 1.66 101
UMCP-BF 605241 0.10 122 810422 0.21 17 — — — — — — (42) 1628608 0.17 374 — — — — — —
UMCP-DF 129381 0.89 32 (41) 113375 1.94 20 (48) 287016 1.52 63 762774 1.13 151 566905 1.72 80 (49) 350331 1.51 72 581613 0.68 133
UMCP-H 125524 0.77 33 1101 2.03 2 19992 1.03 11 (49) 636852 1.03 133 1206 1.36 3 24799 0.99 12 513303 0.58 122

h#M 219016 0.64 42 2208 0.14 9 36058 0.97 19 205674 0.63 46 2692 0.10 9 25465 0.97 15 247083 1.07 52
‖h#M‖ 354407 0.91 72 1149 0.34 6 88179 0.96 29 308752 0.95 66 617 0.16 4 5996 0.99 10 184650 2.34 41
h#F (42) 468944 0.73 101 1133 0.09 6 19827 0.48 17 122587 0.96 34 1162 0.14 5 30125 0.57 18 163326 0.93 37
‖h#F ‖ 245524 0.75 46 691 0.42 5 112265 1.12 31 126640 1.12 31 599 0.33 4 20535 2.22 13 64105 2.30 19
h#F + hTC+PC 599905 0.47 106 410 0.37 3 5174 1.54 10 84298 1.88 26 729 0.35 4 3972 0.86 11 50111 1.93 19
‖h#F + hTC+PC‖ 132639 0.81 44 242 0.56 2 14283 1.63 12 113607 1.37 36 474 0.90 3 9438 1.68 10 47144 1.40 20
h#F + hMME 807016 0.46 142 601 0.74 3 11600 1.42 11 179804 1.22 44 699 0.34 4 7477 2.02 8 85274 1.45 26
‖h#F + hMME‖ 145929 0.64 46 128 1.19 1 14862 2.46 11 59059 1.10 27 248 1.28 2 14435 2.03 10 51977 1.28 22

Table 3: Results for the SmartPhone domain.

Problem #1 #2 #3
Strategy µs σs/µs µt µs σs/µs µt µs σs/µs µt

BF 30 0.14 0 486980 0.24 103 — — —
DF 20 0.06 0 (12) 166 1.57 1 164 1.04 1
SHOP2 20 0.08 0 (8) 82 0.24 0 60486 2.30 22
UMCP-BF 58 0.24 0 — — — 375530 0.04 55
UMCP-DF 19 0.08 0 (5) 2033 1.27 2 15863 1.45 6
UMCP-H 18 0.00 0 — — — 15964 1.21 7

h#M 18 0.00 0 — — — 27114 0.04 17
‖h#M‖ 18 0.00 0 — — — 27111 0.04 17
h#F 19 0.05 0 — — — 1608 0.61 9
‖h#F ‖ 20 0.00 0 — — — 826 0.78 7
h#F + hTC+PC 22 0.08 0 — — — 112 0.40 2
‖h#F + hTC+PC‖ 21 0.02 0 (4) 120 0.11 1 67 0.15 1
h#F + hMME 18 0.00 0 (2) 139 0.13 1 164 0.30 2
‖h#F + hMME‖ 20 0.07 0 — — — 230 0.89 2

Table 4: Results for the Woodworking domain.

#1 #2 #3 #4 #5
µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt µs σs/µs µt

23 0.02 0 48 0.01 0 60 0.05 0 565 0.25 1 474 0.27 1
23 0.02 0 47 0.01 0 46 0.18 0 210 0.41 1 168 0.43 1
30 0.59 0 96 1.90 1 332 1.56 2 (29) 198536 1.78 86 (30) 152786 1.93 59
26 0.18 0 54 0.19 0 74 0.15 0 1642 0.31 2 1612 0.18 2
24 0.11 0 48 0.07 0 51 0.25 0 164 0.32 1 167 0.34 1
25 0.11 0 49 0.10 0 50 0.25 0 115 0.34 1 106 0.39 0
23 0.02 0 47 0.01 0 37 0.07 0 99 0.17 1 74 0.19 1
23 0.02 0 47 0.01 0 37 0.07 0 103 0.24 1 71 0.23 1
23 0.02 0 47 0.01 0 37 0.02 0 89 0.20 1 67 0.12 1
23 0.02 0 47 0.01 0 37 0.02 0 90 0.27 1 62 0.10 1
23 0.02 0 47 0.01 0 37 0.03 0 92 0.24 1 71 0.18 1
23 0.02 0 47 0.01 0 37 0.03 0 101 0.51 1 72 0.27 1
23 0.02 0 47 0.01 0 36 0.02 0 82 0.47 1 84 0.43 1
23 0.02 0 47 0.01 0 37 0.07 0 171 0.47 1 175 0.37 1



0

200

400

600

750

1e+02 1e+04 1e+06
Expanded Search Nodes

S
ol

ve
d 

P
ro

bl
em

 In
st

an
ce

s

Search Strategy

BF

DF

SHOP2

UMCP-H

h#M

h#F + hMME

||h#F + hMME||

(a) Satellite Domain

770

1000

1400

1800

2150

1e+02 1e+04 1e+06
Expanded Search Nodes

S
ol

ve
d 

P
ro

bl
em

 In
st

an
ce

s

Heuristic

h#F

h#F + hTC+PC

h#F + hMME

||h#F||

||h#F + hTC+PC||

||h#F + hMME||

(b) All Domains

Figure 2: These plots show the number of solved problem instances (each run 50 times) over the number of expanded search
nodes. For Fig. (a) only results for the Satellite domain were used, while Fig. (b) shows results over all domains. For the latter,
we have omitted the data points below 750 solved instances for visual clarity.

We did not include it in the paper due to space restrictions,
but we can report that the two plots look very similar indi-
cating that the reduced search space pays off and comes with
no additional overhead w.r.t. computation time.

SmartPhone The SmartPhone domain is the hardest do-
main that we evaluated. The first problem instance looks
very similar to the UM-Translog instances: while our heuris-
tics are among the best-performing strategies, there is only
very little difference between the configurations. Even BF
and DF find solutions very quickly. In the third problem in-
stance, our strategies also perform very well. They expand at
most 229 search nodes on average, where the best version of
UMCP expands more than 150.000 nodes. Surprisingly, DF
performs very well with only 163 expanded search nodes
on average. The second problem instance seems to be the
hardest one. All configurations except BF and DF produced
timeouts or exceeded the memory limit in almost all runs.
The SHOP2 configuration was able to find a solution very
quickly (81 on average), but only in 8 out of 50 runs. Two of
our proposed heuristics also solve the problem very quickly,
but only in 2 and 4 runs, respectively.

Woodworking In all but one problems, h#F + hMME is
among the two best-performing heuristics. However, clear
conclusions cannot be drawn, since planning performance
does not significantly vary among the deployed strategies.

Summary In summary, we have seen that our TDG-based
heuristics need to expand the smallest number of search
nodes in order to find a solution. To investigate the dif-
ference between the proposed heuristics, we include a plot

(Fig. 2(b)) that shows the number of solved problem in-
stances given a number of expanded search nodes for all
problem instances among all domains.

We can draw several conclusions when investigating the
data. First, we can see that the heuristics that need to ex-
plore the largest part of the search space are the relatively
simple heuristics h#F and ‖h#F ‖. This is our most im-
portant finding, since we can see that taking the TDG into
account actually improves these heuristics significantly. It
comes to our surprise, however, that there are no signifi-
cant differences between the heuristics ‖h#F +hMME‖ and
‖h#F +hTC+PC‖. Another interesting result is that the nor-
malized version of a heuristic clearly performs better on av-
erage than the corresponding non-normalized one.

Conclusion
We have proposed novel heuristics for Hybrid Planning that
estimate the necessary number of modifications for a par-
tial plan to turn it into a solution. These heuristics are based
on a task decomposition graph and hence capable of incor-
porating the hierarchical aspects of the underlying domain.
We conducted experiments using a novel algorithm for Hy-
brid Planning. Our heuristics proved to be the most informed
ones in the evaluated problem instances.

Acknowledgment
We want to thank Thomas Geier and Bernd Schattenberg
for proofreading the paper. This work is done within the
Transregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG).



References
Andrews, S.; Kettler, B.; Erol, K.; and Hendler, J. A. 1995.
UM translog: A planning domain for the development and
benchmarking of planning systems. Technical Report CS-
TR-3487, Department of Computer Science, Institute of
Systems Research, University of Maryland.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proceedings of the 2013 IEEE 25th International Confer-
ence on Tools with Artificial Intelligence (ICTAI 2013), 674–
681.
Bercher, P.; Geier, T.; and Biundo, S. 2013. Using state-
based planning heuristics for partial-order causal-link plan-
ning. In Advances in Artificial Intelligence, Proceedings of
the 36nd German Conference on Artificial Intelligence (KI
2013), 1–12. Springer.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proceedings of the 6th
European Conference on Planning (ECP 2001), 157–168.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129:5–33.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proceedings of the 26th National
Conference on Artificial Intelligence (AAAI 2012), 1763–
1769. AAAI Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in hierarchical planning. In Proceedings of the
20th European Conference on Artificial Intelligence (ECAI
2010), volume 215, 229–234. IOS Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proceedings of the 2nd International Conference on
Artificial Intelligence Planning Systems (AIPS 1994), 249–
254. AAAI Press.
Erol, K. 1996. Hierarchical Task Network Planning: For-
malization, Analysis, and Implementation. Ph.D. Disserta-
tion, University of Maryland.
Geier, T., and Bercher, P. 2011. On the decidability of
HTN planning with task insertion. In Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), 1955–1961. AAAI Press.
Joslin, D., and Pollack, M. E. 1994. Least-cost flaw re-
pair: A plan refinement strategy for partial-order planning.
In Proceedings of the 12th National Conference on Artifi-
cial Intelligence (AAAI 1994), 1004–1009. AAAI Press.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI 1998), 882–888. AAAI Press.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic hi-
erarchical planning: Optimal and online algorithms. In Pro-
ceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS 2008), 222–231. AAAI
Press.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proceedings of the 9th National Confer-
ence on Artificial Intelligence (AAAI 1991), 634–639. AAAI
Press.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. Journal of Artificial Intelligence Research (JAIR)
20:379–404.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001),
459–466. Morgan Kaufmann.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the third International Conference on Knowledge Represen-
tation and Reasoning, 103–114. Morgan Kaufmann.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering, and usage of landmarks in planning. In
Proceedings of the 6th European Conference on Planning
(ECP 2001), 37–48.
Russell, S., and Norvig, P. 1994. Artificial Intelligence – A
modern Approach. Prentice-Hall, 1 edition.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On the con-
struction and evaluation of flexible plan-refinement strate-
gies. In Advances in Artificial Intelligence, Proceedings of
the 30th German Conference on Artificial Intelligence (KI
2007), 367–381. Springer.
Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hybrid
planning using flexible strategies. In Advances in Artificial
Intelligence, Proceedings of the 28th German Conference on
Artificial Intelligence (KI 2005), 249–263. Springer.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, University of Ulm, Germany.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL planning system: A more perfect union of
domain-independent and hierarchical planning. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), 2380–2386. AAAI Press.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.


