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Abstract. Hierarchical planning approaches are often pursued when it
comes to a real-world application scenario, because they allow for incor-
porating additional expert knowledge into the domain. That knowledge
can be used both for improving plan explanations and for reducing the
explored search space. In case a non-hierarchical planning model is al-
ready available, for instance because a bottom-up modeling approach was
used, one has to concern oneself with the question of how to introduce
a hierarchy. This paper discusses the points to consider when adding a
hierarchy to a non-hierarchical planning model using the example of the
BAMS Cyber Security domain.
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1 Introduction

This work is an extended abstract based on the Bachelor’s Thesis “Hybrid Plan-
ning in Cyber Security Applications” [5]. The thesis is mainly concerned with
converting the classical planning domain Behavioral Adversary Modeling System
(BAMS) by Boddy et al. [2] into a hybrid planning domain. Hybrid planning is
a planning approach that fuses hierarchical planning with concepts from Partial
Order Causal Link (POCL) planning. When introducing a hierarchy to a non-
hierarchical planning domain, several issues arise. This work gives an overview
about some techniques that may be applied to come up with such a hierarchy.

Foremost the non-hierarchical planning model BAMS is presented. Subse-
quently hybrid planning, the planning formalism into which BAMS is trans-
formed, will be presented. The main part explicates what to consider when
adding a hierarchy to a non-hierarchical planning model.

2 Behavioral Adversary Modeling System

The non-hierarchical domain model that was used as a basis for this work is called
BAMS and was introduced by Boddy et al. [2]. Its purpose is to help detecting
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possible attacks against a computer network, especially from malicious insiders.
Generated solution plans for a BAMS planning problem are supposed to portray
possible attacks against the given network. Those plans can then be analyzed
and weak points of the computer network can be deducted.

The BAMS domain enables the modeling of a broad range of attacks. It
includes physical attacks such as keylogging, but also malware attacks, network
sniffing and even social exploits. The virtual and physical interconnection of
computers can be modeled as well as email communication and encryption.

3 Hybrid Planning

Hybrid Planning [1] is a planning formalism that fuses hierarchical planning with
POCL Planning. Here, not only primitive tasks have pre- and postconditions,
but also the abstract tasks. These conditions are conjunctions of literals. For
primitive tasks, the conditions specify in which states they can be executed.
The predicates used by the literals describe connections between objects (that
are represented using constants). For instance, in the BAMS domain, a specific
human could be the administrator of a specific computer. Each constant is of a
specific sort that represents a class of constants, such as humans or computers.
Sorts can be arranged in a hierarchy. Tasks describe the possible actions such as
logging in or writing an email. Only primitive tasks may be executed directly.
Abstract tasks are abstractions of one or more task sequences, so-called partial
plans. For each such partial plan, the domain model contains a so-called de-
composition method mapping the respective abstract task to that partial plan.
An abstract task’s pre- and postconditions describe its intended meaning. Any
partial plan of a task’s decomposition method needs to satisfy a legality crite-
rion to ensure that it is an “implementation” of its abstract task. To allow more
flexibility, the pre- and postconditions of abstract tasks may use abstract literals,
which are abstractions of ordinary literals. Those are defined by means of other
(possibly abstract) literals using so-called decomposition axioms.

The planning problem is given in terms of an initial partial plan Pinit (pos-
sibly containing primitive and/or abstract tasks) that specifies an initial state
as well as the goal properties that should hold after the execution of a solution.
A solution is an executable plan P that satisfies the goal properties and that
is a refinement of Pinit. Refinement means that P is obtained from Pinit via
decomposing abstract tasks (replacing them by their implementations) and the
insertion of ordering and variable constraints, causal links, and, if desired, the
insertion of tasks.

4 Introducing a Hierarchy

This section describes the most important points one should consider when
adding a hierarchy to a non-hierarchical domain model. It can be used either
for bottom up approaches of building a hierarchical model or in cases where
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there already exists a non-hierarchical model that is to be transformed into a
hierarchical (or hybrid) model.

Before we explain the deployed techniques, we want to mention that there
is only very little work in the literature that is concerned with the topic of au-
tomatically inferring a hierarchy of tasks. The constructive proof of Thm. 5 by
Erol et al. [3] shows how a classical planning problem can be translated into an
HTN planning problem with the same set of solutions than the original one. Such
a hierarchical domain does, however, not constitute a “meaningful” hierarchical
model as it does not calculate abstractions of tasks, but merely simulates task in-
sertion via decomposition. The paper “Automatically Generating Abstractions”
[4] is dedicated to the automated generation of abstractions. However, the pro-
duced domain model is tailored to a given problem instance, while we aim at
introducing a hierarchy that is problem independent. Furthermore, the approach
aims at reducing the search effort for planners, while we focus on developing a
domain than can easily be read and understood by humans.

4.1 Task Hierarchy

When building a hybrid planning domain based on a non-hierarchical model, one
mainly focuses on abstracting tasks. Given below are two types of abstraction:
merging alternatives and abstracting a task sequence.

Abstracting Alternatives. One possible kind of abstraction is to merge alterna-
tives. In the simplest case, there are two alternatives, each being a single task.
As an example, consider a task for logging in with a password and another one
for logging in with an installed certificate. Both tasks are used for logging in,
but they have slightly different preconditions. They can hence be merged into
a single abstract task login. The two primitive tasks still remain in the domain
model, but the additional abstract task login is introduced together with two
decomposition methods, each for one of the alternatives. The pre- and postcondi-
tions of abstract tasks must reflect the conditions of its primitive sub plans with
respect to the legality criterion of decomposition methods [3]. For that purpose,
abstract literals may be introduced. We will give an example later.

Abstracting Task Sequences. Another possibility is the abstraction of a sequence
of tasks that is often done in a specific way, like checking emails. The pattern is
always the same: logging in, reading all emails, opening attachments and logging
out. One can introduce an abstract task checkEmails that is an representative
for this task sequence.

4.2 Sort Hierarchy

A hierarchy of sorts is not only useful for imposing a logical structure on a domain
model, properly used, it can also help to reduce the search space. We do not go
into details how to find a plausible hierarchy of sorts, in particular, because the
concept is not specific to hierarchical planning approaches. For instance, PDDL
also allows to define a hierarchy on types, which is PDDL’s equivalent of sorts.
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4.3 Relation Hierarchy

Hybrid Planning uses abstract relations to model accurate pre- and postcondi-
tions of abstract tasks. Recall that any partial plan P that is used by a decom-
position method for t must be an “implementation” of t [1]. The implementation
criterion is defined by means of the pre- and postconditions of the task t.

Consider the two primitive tasks mentioned earlier: one performs a login using
a password and another using an installed certificate. The two tasks only differ
in their preconditions: the former requires a password and the latter requires an
installed certificate. The previously introduced abstract task login cannot use
any of these preconditions, since they do not hold for both alternatives. Instead,
we can introduce an abstract relation loginIsPossible that is used as precondition
of the abstract task. Then, we add a so-called decomposition axiom that defines
loginIsPossible as satisfied if and only if either of the two primitive relations is
satisfied.

5 Summary

To build a hierarchy for a non-hierarchical planning model one has to consider the
hierarchy of sorts, relations, and, most importantly, tasks. The hierarchy of sorts
can be easily used to reduce the search space. The hierarchy of relations is needed
to keep as much information as possible about pre- and postconditions of tasks
at higher levels of the hierarchy. These abstract tasks can mainly be introduced
by abstracting from different alternatives or by abstracting from sequences of
tasks that are often performed together.
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