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Abstract

Although HTN planning is in general undecidable, there are
many syntactically identifiable sub-classes of HTN problems
that can be decided. For these sub-classes, the decision proce-
dures provide upper complexity bounds. Lower bounds were
often not investigated in more detail, however. We generalize
a propositional HTN formalization to one that is based upon
a function-free first-order logic and provide tight upper and
lower complexity results along three axes: whether variables
are allowed in operator and method schemas, whether the
initial task and methods must be totally ordered, and where
recursion is allowed (arbitrary recursion, tail-recursion, and
acyclic problems). Our findings have practical implications,
both for the reuse of classical planning techniques for HTN
planning, and for the design of efficient HTN algorithms.

1 Introduction
Hierarchical Task Network (HTN) planning (Ghallab, Nau,
and Traverso 2004) is an automated planning formalism
concerned with the completion of tasks (activities or pro-
cesses). Tasks in HTN planning are either primitive, corre-
sponding to an action that can be taken, or non-primitive.
HTN problems have a set of methods that act as recipes on
non-primitive tasks, decomposing them into a further set of
subtasks for which to plan. A non-primitive task may even
decompose into itself, either directly via a method, or indi-
rectly via a sequence of decompositions.

This recursive structure, when combined with partially-
ordered tasks, is powerful enough to encode semi-decidable
problems (Erol, Hendler, and Nau 1994). However, any
one of numerous restrictions on HTN planning are enough
to make HTN planning decidable (Erol, Hendler, and Nau
1994; Geier and Bercher 2011; Alford et al. 2012; 2014;
Höller et al. 2014). In this paper, we explore complexity
and expressiveness that results from the interplay between
syntactic restrictions on decomposition methods. Specifi-
cally, we examine all combinations of three characteristics:
whether...

• there is no recursion, tail-recursion, or arbitrary recursion,

• the methods and initial task network are totally ordered,
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Table 1: Complexity classes for HTN planning (only
completeness results). The undecidability result (“semi-
decidable”) is from Erol, Hendler, and Nau (1994).
Hierarchy Ordering Variables Complexity Theorem
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total no PSPACE 4.1
total CFM NEXPTIME 4.2
total yes EXPSPACE 4.1
partial no NEXPTIME 6.1
partial CFM NEXPTIME 4.2
partial yes 2-NEXPTIME 6.1
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n total no PSPACE 3.7
total CFM EXPSPACE 3.7
total yes EXPSPACE 3.7
partial no EXPSPACE 6.1
partial CFM EXPSPACE 3.7
partial yes 2-EXPSPACE 6.1
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total CFM 2-EXPTIME 5.1
total yes 2-EXPTIME 5.1
partial — semi-decidable —

• methods and operators are ground, and whether constants
may be mixed with variables in method definitions.

We find that even without variables, the restricted classes
of HTN planning range in expressivity from PSPACE-
complete to EXPSPACE-complete. Just as in classical plan-
ning, extending these problems to include variables in the
method and operator schemas gives an exponential bump
in complexity. However, we identify a new (yet commonly
met) restriction on HTN structure, that of constant-free
methods (CFM), which often mitigates the computational
impact of planning with variables. Table 1 provides a sum-
mary of our results. Erol, Hendler, and Nau (1994) provide
the semi-decidability result. The rest constitute new lower
bounds, new upper bounds, or both.

2 Lifted HTN Planning
In this section, we present a lifted version of the HTN plan-
ning formalism of Geier and Bercher (2011), which we ex-
tend to introduce variables.



In HTN planning, task names represent activities to ac-
complish and are syntactically first-order atoms. Given a set
of task names X , a task network is a tuple tn = (T,≺, α)
such that:

• T is a finite nonempty set of task symbols.

• ≺ is a strict partial order over T .

• α : T → X maps from task symbols to task names.

The task symbols function as place holders for task names,
allowing multiple instances of a task name to exist in a task
network. We say a task network is ground if all task names
occurring in it are variable-free.

An HTN problem is a tuple (L,O,M, sI , tnI), where:

• L is a function-free first order language with a finite set of
relations and constants.

• O is a set of operators, where each operator o is a triple
(n, χ, e), where n is a task name (referred to as name(o))
not occurring in L, χ is a first-order logic formula called
the precondition of o, and e is a conjunction of positive
and negative literals in L called the effects of o. We refer
to the set of task names in O as primitive task names.

• M is a set of decomposition methods, where each method
m is a pair (c, tn), where c is a (non-primitive or com-
pound) task name, called the method’s head, not occur-
ring in O or L, and tn is a task network, called the
method’s subtasks, defined over the names in O and the
method heads inM.

• sI is the (ground) initial state and tnI is the initial task
network that is defined over the names in O.

We define the semantics of lifted HTN planning through
grounding. Given that L is function-free with a finite set of
relations and constants, we can create a ground (or propo-
sitional) HTN planning problem P = (L, O,M, sI , tn

′
I),

where O and M are variable-free: Let V be the set
of all full assignments from variables in L to con-
stants in L. Then the ground methods M are given by⋃
v∈V,(c,tn)∈M{(c [v] , tn [v])}∪

⋃
v∈V {(ctop [v] , tnI [v])},

where the syntax c [v] denotes syntactic variable substitution
of the variables occurring in c with the matching term from
v. Note that we introduced additional methods not present in
M that are required to ground the initial task network. The
symbol ctop not occurring in O, L, or in one of the meth-
ods of M is a new compound task name that decomposes
into the possible groundings of the original initial task net-
work tnI . The initial task network tn′I of the ground HTN
problem P then consists of only this new task ctop . Let O′
be the set of quantifier-free operators obtained from O by
eliminating the variables with constants from L (Gazen and
Knoblock 1997). Then the ground operators O are given by⋃
v∈V,(n,χ,e)∈O′{(n [v] , χ [v] , e [v])}.
The ground operators O form an implicit state-transition

function γ : 2L ×O → 2L for the problem, where:

• A state is any subset of the ground atoms in L. The finite
set of states in a problem is denoted by 2L;

• o is applicable in a state s iff s |= prec(o);

• γ(s, o) is defined iff o is applicable in s; and
• γ(s, o) = (s \ del(o)) ∪ add(o).

A sequence of ground operators 〈o1, . . . , on〉 is exe-
cutable in a state s0 iff there exists a sequence of states
s1, . . . , sn such that ∀1≤i≤nγ (si−1, oi) = si. A ground task
network tn = (T,≺, α) is primitive iff it contains only task
names from O. tn is executable in a state s0 iff tn is prim-
itive and there exists a total ordering t1, . . . , tn of T con-
sistent with ≺ such that 〈α (t1) , . . . , α (tn)〉 is executable
starting in s0.

For a ground HTN problem P = (L, O,M, sI , tnI),
we can decompose the task network tnI = (T,≺, α)
if there is a task t ∈ T such that α(t) is a non-
primitive task name and there is a corresponding method
m =(α(t), (Tm,≺m, αm))∈ M . Intuitively, decomposition
is done by selecting a task with a non-primitive task name,
and replacing the task in the network with the task network
of a corresponding method. More formally, assume without
loss of generality that T ∩ Tm = ∅. Then the decomposition
of t in tn by m into a task network tn′ is given by:

T ′ := (T \ {t}) ∪ Tm
≺′ := {(t, t′) ∈ ≺ | t, t′ ∈ T ′} ∪ ≺m

∪ {(t1, t2) ∈ Tm × T | (t, t2) ∈ ≺}
∪ {(t1, t2) ∈ T × Tm | (t1, t) ∈ ≺}

α′ := {(t, n) ∈ α | t ∈ T ′} ∪ αm
tn′ := (T ′,≺′, α′)

A ground HTN problem P is solvable iff either tn is ex-
ecutable in sI , or there is a sequence of decompositions of
tn to a task network tn′ such that tn′ is executable in sI .
Checking whether an HTN problem has a solution is the
plan-existence decision problem.

Current HTN planners either solve problems using de-
composition directly, or by using progression (Nau et al.
2003; Alford et al. 2012). Progression consists of a choice of
two operations on just the unconstrained tasks (those with-
out a predecessor in the task network): decomposition, or
operator application. Operator application takes an uncon-
strained primitive task t in the current task network tn such
that α (t) is applicable in s, removes t from tn to form
a new task network tn′, and returns a new HTN problem
with γ (s, α (t)) as the initial state and tn′ as the initial task
network. Hence, progression interleaves decomposition and
finding a total executable order over the primitive tasks. A
problem’s progression bound is the size of the largest task
network reachable via any sequence of progressions.

3 Stratifications for propositional and
constant-free method domains

Decomposition and progression respectively decide, roughly
speaking, the class of acyclic HTN problems (HTN prob-
lems without recursion) and tail-recursive HTN problems
(those problems where tasks can only recurse through the
last task of any method). Alford et al. (2012) give syntactic
tests for identifying ground method structures that are de-
cided by decomposition and progression (identified by ≤1-
stratification and ≤r-stratification, respectively).



In this section, we generalize the≤1- and≤r-stratification
tests to identify all acyclic and tail-recursive lifted HTN
problems whose methods are constant-free. Formally a
constant-free method (CFM) HTN problem is one where
only variables may occur as terms in the task names of the
domain’s methods (both in the head and the subtasks). Fully-
ground domains can be trivially transformed into CFM do-
mains by rewriting the task names with 0-arity predicates,
and so we include both fully-ground and propositional prob-
lems in the class of constant-free method problems.

Extending the stratification tests to CFM problems will
yield upper complexity bounds for acyclic and tail-recursive
CFM problems (NEXPTIME and EXPSPACE, respec-
tively). Since propositional HTN planning is equivalent to
HTN planning with all unary predicates (and thus constant-
free), these are also upper bounds for acyclic and tail-
recursive propositional problems.

Upper bounds for mostly-acyclic HTN problems
When the method structure of a problem is acyclic, every
sequence of decompositions is finite, and so almost any
decomposition-based algorithm is a decision-procedure for
the problem (Erol, Hendler, and Nau 1994). Alford et al.
(2012) extend the class of ayclic problems to include those
whose methods only allow recursion when it does not in-
crease the size of the task network, and define a syntactic
test called ≤1-stratifiability to recognize ground instances
of these problems. Here we extend ≤1-stratification to CFM
HTN problems.

A CFM HTN problemP is≤1-stratifiable if there exists a
total preorder (a relation that is both reflexive and transitive)
≤1 on the task names in P such that:
• For any task names c1 and c2 in P , if there are variable

substitutions v1, v2 such that c1 [v1] = c2 [v2], then c1 ≤1

c2 ≤1 c1.
• For every method (c, (T,≺, α)) in P:

– If |T | > 1, then ∀ti∈Tα (ti) <1 c
– If T = {t}, then α(t) ≤1 c

The above conditions ensure that any decomposition in
≤1-stratifiable problems either replaces a task with a sin-
gle task from the same stratum, or replaces a task with one
or more tasks from lower strata. We can determine ≤1-
stratification in polynomial time with any algorithm for find-
ing strongly connected components in a directed graph, such
as Tarjan’s algorithm.

By extending ≤1-stratification to CFM HTN problems,
we can show that there is a strict correspondence between
the stratification of a CFM problem and its grounding:
Lemma 3.1. A CFM HTN problem P is ≤1-stratifiable if
and only if there exists a ≤1-stratification of the grounding
of P of the same height.

Proof. Let L be the language of P and P be the grounding
of P . If P is ≤1-stratifiable, then grounding the task names
of each level of a ≤1-stratification for P is a stratification of
P of the same height.

So assume P is not ≤1 stratifiable. Then by the
negation of ≤1-stratifiability, there are methods

(c1, tn1) , . . . , (ck, tnk) and variable assignments v1, . . . , vk
such that tn1 has more than one subtask, tnk [vk] contains
the subtask c1, and each tni [vi] contains the subtask ci+1.

Let a be an arbitrary constant in L and va be the as-
signment that maps all variables in L to a. Then each
(ci [va] , tni [va]) is a ground method in P . Each tni [va]
contains the task name ci+1 [va], and tnk [va] contains
c1 [va] as a subtask, so P is also not ≤1-stratifiable.

We call HTN problems mostly-acyclic if either they are
CFM and ≤1-stratifiable or they are non-CFM and their
grounding is ≤1-stratifiable. If all sequences of decompo-
sitions of a given problem are finite, we call that problem
acyclic. Section 4 contains examples of both CFM and non-
CFM acyclic method structures.

We can transform any propositional ≤1-stratifiable prob-
lem into an acyclic problem in polynomial time as fol-
lows: Let P = (L, O,M, sI , tnI) be any ≤1-stratifiable
propositional HTN problem, and let S be the maximal ≤1-
stratification in the following sense: if c1 and c2 are task
names on a stratum of S, then c1 ≤1 c2 ≤1 c1 in any
≤1-stratification of P . So each task name is on a stratum
by itself, or the stratum consists of a set of task names
c1, . . . , ck such that c1 ≤1 . . . ≤1 ck ≤1 c1. Let Mr ⊆ M
be the methods responsible for these later constraints (each
having some ci as a task head and a task network with
a singular task of some cj), and let Ma ⊆ M be the
methods leading to strictly lower strata. Then (M \Mr) ∪⋃

1≤i≤k {(ci, tna) | (ca, tna) ∈Ma} eliminates recursion
at this stratum while still admitting the same set of primi-
tive decompositions as M . Repeating this process on each
strata eliminates recursion from the problem at the cost of a
polynomial increase in size.

This leads to an upper bound for ≤1-stratifiable CFM
HTN problems:

Corollary 3.2. Plan-existence for CFM (and propositional)
mostly-acyclic HTN problems is in NEXPTIME.

Proof. Let P = (L,O,M, sI , tnI) be a ≤1-stratifiable
CFM HTN problem, and let S be P’s maximal ≤1-
stratification. Let m be the maximum number of tasks in
tnI or any method, and let k be the number of task names
occurring inM.

Let P be the grounding of P (taking EXPTIME) with a
≤1-stratification S of the same height as S. By the above
process, we can create P ′ as an acyclic version of P , and
since that process preserves any stratification, S is also a
≤1-stratification of P ′.

By the construction of S from S , any decomposition of a
task results in a set of tasks from strictly lower strata. This
gives a tree-like structure to the decomposition hierarchy,
with a maximum branching factor of m and a max depth of
k. So mk is a bound on the length of any sequence of de-
compositions of the initial task network. Thus the following
is a decision procedure for P:

Pick and apply a sequence of decompositions of tnI of
length mk or less (NEXPTIME). Guess a total ordering of
the resulting network and check if it is executable in s.

Grounding an HTN problem produces a worst-case size



blowup that is exponential in the arity of task names and
predicates. Thus, if b(x) is an upper space or time bound
for a class of ground HTN problems B, then O

(
2b(x)

)
is an upper bound (space or time, respectively) for prob-
lems whose groundings are in B. So Corollary 3.2 implies
a 2-NEXPTIME upper bound for non-CFM mostly-acyclic
HTN problems. Section 5 provides matching lower bounds.

Upper bounds for tail-recursive HTN problems
Many problems are structured so that tasks can only re-
curse through the last task of any of its associated meth-
ods. These problems are guaranteed to have a finite pro-
gression bound, and thus are decided by simple progression-
based algorithms. Alford et al. (2012) introduced a syn-
tactic test called ≤r-stratifiability to identify all sets of
propositional methods that are guaranteed to have a finite
progression bound. Here we extend the definition of ≤r-
stratifiability to include CFM HTN problems. We then prove
upper space bounds on the size of task networks under pro-
gression for ≤r-stratifiable problems: an exponential bound
for ≤r-stratifiable CFM problems, and a polynomial bound
for totally-ordered propositional ≤r-stratifiable problems.

A CFM HTN problem P is ≤r-stratifiable if there exists
a total preorder ≤r on the task names in P such that:

• For each pair of task names c1 and c2 in P , if there are
variable substitutions v1, v2 such that c1 [v1] = c2 [v2],
then c1 ≤r c2 ≤r c1.

• For every method (c, (T,≺, α)) in P:

– If there is a task tr ∈ T such that all other tasks are
predecessors (∀t∈T,t 6=tr t ≺ tr), then α(tr) ≤r c. We
call tr the last task of (T,≺, α).

– For all non-last tasks t ∈ T , α(t) <r c.

The above conditions ensure that methods in ≤r-stratifiable
problems can only recurse through their last task, yet it still
allows hierarchies of tasks. This is a strict generalization of
≤1-stratifiability from the previous section, and of regular
HTN problems from Erol, Hendler, and Nau (1994), which
only allow at most one non-primitive task in every method
(and the initial task network) that also has to occur as the last
task in the respective method (the initial task network, re-
spectively). As with ≤1-stratifiability, there is a strict corre-
spondence between a CFM problem’s ≤r-stratifiability and
its grounding’s ≤r-stratibiablity:

Lemma 3.3. A CFM HTN problem P is ≤r-stratifiable if
and only if there exists a ≤r-stratification of the grounding
of P of the same height.

We omit a formal proof, since it is structurally identi-
cal to the one of Lemma 3.1. We call both ≤r-stratifiable
CFM problems and non-CFM problems whose groundings
are ≤r-stratifiable tail-recursive.

This allows us to calculate a bound on the size of task
networks reachable under progression in a bottom-up fash-
ion. Let P = (L,O,M, sI , tnI) be a tail-recursive CFM
HTN problem where S1, . . . , Sn is a ≤r-stratification of P .
WLOG, assume that S1 contains only primitive task names.
The contribution of any primitive task in tn (those with

names in S1) to the progression bound is 1. The contribu-
tion of tasks of tn with names in S2 is then bounded by the
number of tasks in the largest method corresponding to a
task name in S2. Upper strata are bounded by the size of the
largest corresponding task network multiplied by the bound
for the next lower stratum. This gives an exponential worst-
case progression bound on ≤r-stratifiable problems:

Lemma 3.4. IfP is a tail-recursive CFM HTN problem with
k initial tasks, r is the largest number of tasks in any method
in P and h the height of P’s ≤r-stratification, then k · rh is
a progression bound for P .

This implies upper bounds for all tail-recursive problems:

Corollary 3.5. Plan-existence for propositional and CFM
HTN ≤r-stratifiable problems is in EXPSPACE. Plan-
existence for non-CFM HTN problems whose groundings
are ≤r-stratifiable is in 2-EXPSPACE.

Consider the case that each task network in P is totally-
ordered. Then any progression of P leaves the initial task
network totally ordered. Moreover, decomposition of the
first task in the network can only grow the list with tasks
from lower strata. This gives a progression bound for totally-
ordered tail-recursive problems:

Lemma 3.6. If P is a totally-ordered tail-recursive CFM
HTN problem with k initial tasks, r is the largest number
of tasks in any method in P , and h the height of P’s ≤r-
stratification, then k + r · h is a progression bound for P .

This gives a PSPACE upper bound for propositional
totally-ordered tail-recursive problems. CFM≤r-stratifiable
problems, whether ordered or not, are dominated by the
size of the state and not the task network, and so have an
EXPSPACE upper bound. Via grounding, non-CFM totally-
ordered tail-recursive problems (those whose groundings
are ≤r-stratifiable) have an exponential progression bound,
which matches their worst-case state size, and so are also in
EXPSPACE.

Erol, Hendler, and Nau (1994) give encodings of both
propositional and lifted classical planning into regular
HTN problems, where every method has at most one non-
primitive task, and that task must be the last task in the
method. The lifted encoding uses no constants in the meth-
ods, so both are≤r-stratifiable. Since propositional planning
is PSPACE-complete (Bylander 1994) and lifted planning is
EXPSPACE-complete (Erol, Nau, and Subrahmanian 1995),
this gives our first completeness results of the paper:

Theorem 3.7. Plan-existence for propositional totally-
ordered tail-recursive problems is PSPACE-complete. Plan-
existence for tail-recursive CFM HTN problems and totally-
ordered non-CFM tail-recursive problems is EXPSPACE-
complete.

4 Hierarchies and counting in HTNs
Whereas tail-recursive HTN problems allow us to express
tasks that may repeat an arbitrary number of times, the num-
ber of repeats is fixed in advance for acyclic and mostly-
acyclic problems. In this section, we will show how to ex-
press in polynomial space tasks that occur in exponential



and double-exponential numbers of times in any solution.
This will give us immediate lower bounds for totally-ordered
acyclic problems, and will also be used in Section 6 for the
lower bounds of partially-ordered problems.

First, we show how to repeat a task an exponential num-
ber of times with a set of propositional ≤1-stratifiable meth-
ods: Let k ≥ 0 and let o0 be some task name. Let Mok =
{(o1, tn1) , . . . , (ok, tnk)} be task names such that each
tni = (T,≺, α) contains two tasks t1, t2, such that t1 ≺ t2
and α (t1) = α (t2) = oi−1. Thus o1 decomposes into two
copies of o0, o2 decomposes into four, and so on until ok
decomposes into 2k copies of o0. With Mok, any sequence
of o1 of length 2k+1 − 1 or less can be expressed in a task
network by taking the appropriate subset of {o0, . . . , ok}.

We can also encode doubly-exponential repeats of tasks
with non-CFM ≤1-stratifiable methods: Let k be a positive
integer and let o be some task name, and let 0, 1 be arbi-
trary, distinct constants from L. Given a new k-arity predi-
cate oe, we will give a set of task names and methods that
form a counter from oe (1, . . . , 1) down to oe (0, . . . , 0). Let
oe1, . . . , oek be task names such that each oei has the form
oe (vk, . . . , vi+1, 1, 0, . . . , 0) where each vm is a variable.
So oe1 = oe (vk, . . . , v2, 1), oe2 = oe (vk, . . . , v3, 1, 0),
oek−1 = oe (vk, 1, 0, . . . , 0), and oek = oe (1, 0, . . . , 0).
Similarly, let oe′1, . . . , oe

′
k be task names of the form

oe (vk, . . . , vi+1, 0, 1, . . . , 1), so oe′1 = oe (vk, . . . , v2, 0),
oe′2 = oe (vk, . . . , v3, 0, 1), oe′k−1 = oe (vk, 0, 1, . . . , 1),
and oe′k = oe (0, 1, . . . , 1). So if v is an assignment of
v1, . . . , vk to {0, 1} and we view oei [v] as a binary num-
ber j, then oe′i [v] is j − 1.

Let Moek = {(oe0, tno0) , . . . , (oek, tnoek)}, where:
oe0 = oe (0, . . . , 0), tnoe0 has two copies of o as subtasks,
and each tnoei has two ordered copies of oe′i. Grounding
Moek to {0, 1} produces a set of ground methods with a
≤1-stratification of height 2k+1 (including o). Groundings
that include other constants are essentially truncated coun-
ters with no methods that lead to oe0 (though they are still
≤1-stratifiable and disjoint with the grounding to {0, 1}).

Thus, oe (0, . . . , 0) decomposes into two copies of
o, oe (0, . . . , 0, 1) decomposes first into two copies of
oe (0, . . . , 0) (and then four of o), and so on, until
oe (1, . . . , 1) has 22

k+1−1 copies of o.
Let K be any polynomially-bounded sum of integers of

the form 2i and 22
i

for i < k. The above two counting re-
sults allow us to express K repetitions of a task o in space
polynomial in k. We will use the shorthand K · o as the task
name that decomposes into such a sequence, along with im-
plying the existence of the supporting methods.

Erol, Hendler, and Nau (1994) use encoding of classi-
cal planning into regular HTN problems (a subset of tail-
recursive problems, but not acyclic) to achieve lower bounds
of PSPACE- and EXPSPACE-complete for propositional
and lifted regular HTN problems, respectively. Here we
sketch how to adapt this proof to acyclic problems:

Theorem 4.1. Plan-existence for totally-ordered mostly-
acyclic propositional HTN problems is PSPACE-complete.
For non-CFM totally-ordered mostly-acyclic problems,
plan-existence is EXPSPACE-complete.

Proof. The upper bounds of PSPACE and EXPSPACE, re-
spectively, are established by Theorem 3.7, since acyclic
problems are by definition tail-recursive.

Let PC = (L,O, s,G) be a classical planning problem
where G is a closed formula describing all goal states, and
the rest are defined as in HTN planning. Any executable se-
quence of operators leading to a state satisfying the goal is
a solution. The length of the shortest solution in classical
planning is bound by the number of possible states, which
in problems with variables is 2p·c

a

, where p is the number
of relations, c is the number of constants, and a is the max
arity of any relation. Let k = dlog2 p+ a · log2 ce. Then we
can encode PC as follows:

LetPH = (L,OH ,M, s, tnI) be an HTN problem where
L and s are the same as in PC . Let OH = O ∪ {skip, g},
where skip is an operator without preconditions or effects,
and g is an operator with the precondition of G.

LetM contain a new task name any, along with methods
for each operator o ∈ O∪{skip} that decomposes any into
o. M should also contain the necessary method for imple-
menting 22

k · any. Let the initial task network tnI contain
two tasks t1, t2 with t1 ≺ t2, such that α (t1) = 22

k · any
and α (t2) = g.

Then PH is a totally-ordered acyclic problem, and tn can
decompose into any sequence of 22

k

or less (ignoring skips)
followed by an operator g which checks that the goal con-
dition holds. Thus any solution to PH can be trivially trans-
formed into a solution to PC , and any solution to PC can
be padded with skip operators to form a solution to PH . So
PH is solvable if and only if PC is solvable, making totally-
ordered acyclic HTN planning EXPSPACE hard.

If, instead, P was ground, the number of possible states
(and thus the length of the shortest solution) is bound by 2p,
where p is the number of propositions in L. As 2p · any can
be represented in polynomial space in a propositional HTN
problem, the above translation is a polynomial encoding of
propositional classical planning into propositional totally-
ordered acyclic HTN planning. Thus totally-ordered acyclic
propositional HTN planning is PSPACE hard.

Acyclic CFM problems constitute a middle ground be-
tween propositional and lifted HTN planning. Here we adapt
the encoding of an EXPSPACE-bounded Turing machine
into classical planning (Erol, Nau, and Subrahmanian 1991).
However, we will only run it an exponential number of steps,
giving us a NEXPTIME lower bound.

Theorem 4.2. For CFM mostly-acyclic HTN problems,
regardless of ordering, plan-existence is NEXPTIME-
complete.

Proof. The upper bound for CFM acyclic problems is es-
tablished by Corollary 3.2.

Let M be a nondeterministic Turing machine (TM). We
will give an encoding of M that simulates 2k steps of M .
Erol, Nau, and Subrahmanian (1991) describe an encoding
of an EXPSPACE-bounded TM into a classical planning
problem with an initial state s and a set of operators Oinit,
Ostep, and Odone, where:



• Operators from Oinit initialize the ‘tape’ (a set of cell
relations indexed with a binary counter)

• Each operator o ∈ Ostep mimics a single transition of M .
• Each operator o ∈ Odone adds the literal done() to the

state whenever the machine is in an accepting state.
Let accepted be an operator which has a precondition of
‘done()’, and letO = Oinit∪Ostep∪Odone∪{accepted}.

We defineM to be a set of methods such that sim() is a
non-primitive task with methods that decompose it into any
operator inOstep∪Odone, andM contains methods for im-
plementing 2k · init and 2k · sim. Let tnI be the initial task
network which contains three tasks, t1 ≺ t2 ≺ t3 such that
α (t1) = 2k ·init, α (t2) = 2k ·sim, and α (t3) = accepted.
Then the acyclic CFM problem P = (L,O,M, s, tnI) is
solvable if and only if there is a run of M that finds an ex-
cepting state within 2k steps. Thus, acyclic CFM planning is
NEXPTIME-hard.

5 Alternating Turing machines for
totally-ordered problems

Erol, Hendler, and Nau (1994) show that while arbitrary re-
cursion when combined with partially-ordered tasks is un-
decidable, arbitrary recursion with totally ordered tasks in
EXPTIME for propositional problems and 2-EXPTIME oth-
erwise. Here we show that those bounds are tight by encod-
ing space-bounded alternating Turing machines.

An alternating Turing machine (ATM) is syntactically
identical to a nondeterministic Turing machine (NTM).
However, where an NTM accepts if any run of the ma-
chine accepts, an ATM accepts only if all runs of the ma-
chine accept. The classes of problems that run in polyno-
mial or exponential space on an ATM are APSPACE and
AEXPSPACE, respectively. Since APSPACE=EXPTIME
and AEXPSPACE=2-EXPTIME (Chandra, Kozen, and
Stockmeyer 1981), an encoding of a space-bounded ATM
gives lower time bounds for totally-ordered HTN planning:
Theorem 5.1. Propositional totally-ordered HTN planning
is EXPTIME-complete. CFM and non-CFM HTN planning
is 2-EXPTIME-complete.

Proof. Erol, Hendler, and Nau (1994) established the
EXPTIME and 2-EXPTIME upper bounds. Alford et al.
(2012) confirm these upper bounds with a set-theoretic for-
mulation of HTN planning.

Let A be an ATM, denoted by A = (S,Σ,Γ, δ, q0, F ),
where K is a finite state of state symbols, F ⊆ S is the set
of accepting states, Γ is the set of tape symbols with Σ ⊂
Γ being the allowable input symbols, q0 ∈ S is the initial
state, and δ is the transition function, mapping from S × Γ
to P (S × Γ× {Left, Right}).

We will use the same initial state s and operators Oinit
and Ostep that were used in the proof of Theorem 4.2. We
will use the operators Odone with the modification that they
have no effect, just the precondition of test whether the ma-
chine is in an accepting state. To this, we add a set of invert-
ing operators O−1step, such that for each o ∈ Ostep, there is a
o−1 ∈ O−1step such that γ

(
γ (s, o) , o−1

)
= s for every state

s in which o is applicable.

LetO = Oinit∪Odone∪Ostep∪O−1step. The set of meth-
odsM is defined as follows:

• For each operator o ∈ Oinit, we have a method (init, tn),
where tn contains just the task o.

• For each operator o ∈ Odone, we have a method
(sim, tn), where tn contains just the task o.

• For each state s and tape symbol c, we have a method
(sim, tn) ∈M. Let T = δ (s, c). T denotes a set of tran-
sitions, andAmust halt on each of these. So let o1, . . . , on
be the operators from Ostep associated with the transi-
tions in T . Then tn is the tasks network with the totally-
ordered tasks o1, sim, o−11 o2, sim, o−12 , . . . , on, sim,
o−1n .

Let tnI be the initial task network which contains
the totally-ordered tasks 2k · init and sim. Let P be
the totally-ordered CFM HTN problem given by P =
(L,O,M, s, tnI). Notice that, although the methods for
the sim task change the state, they always revert it before
they’re done: If the machine is already in an accepting state,
the first set of methods leave the state unchanged. Otherwise,
if there is a transition in δ for the current state and tape sym-
bol, then there is a corresponding method inM. The method
applies an operator, runs the sim task to conclusion, reverts
the operators, and so on until each operator has been applied
and the sim tasks run. So all possible runs of A (which we
bound to run in AEXPSPACE) are verified. Since A was ar-
bitrary, totally-ordered CFM planning is 2-EXPTIME-hard.

The encoding from Erol, Nau, and Subrahmanian (1991)
uses predicates of logarithmic arity in the size of the bound.
The only use of variables in our encoding was for these op-
erators, so if we had chosen a polynomial space bound, the
grounding of our encoding would have been polynomial in
size. Thus, the same proof works with the polynomial bound
to encode an APSPACE machine, so totally-ordered propo-
sitional planning is EXPTIME-hard.

6 Interactions with partial-orders and
hierarchies

In Section 4, we described acyclic counting techniques that
generated large numbers of tasks. When the methods and
initial tasks were ordered, progression-based algorithms had
to deal with only a small portion of those tasks at a time.
However, when the tasks are partially ordered, tasks can
interact with each other in intricate ways. Here we adapt
the EXPSPACE-completeness proof of reachability for com-
municating hierarchical state machines from Alur, Kannan,
and Yannakakis (1999) to obtain lower bounds for partially-
ordered HTN problems that match the upper bounds we pro-
vide in Section 3. Since the proofs will be nearly identical
to each other, we collapse them into one theorem and prove
only the completeness bound for the partially-ordered lifted
acyclic HTN problems:

Theorem 6.1. Plan-existence for partially-ordered propo-
sitional acyclic HTN planning is NEXPTIME-complete; for
partially-ordered propositional tail-recursive HTN planning
is EXPSPACE-complete; for partially-ordered lifted acyclic



HTN planning is 2-NEXPTIME-complete; and for partially-
ordered lifted tail-recursive HTN planning is 2-EXPSPACE-
complete.

Proof. Upper bounds were established by Lemma 3.1.
For the lower bound, let N = (S,Σ,Γ, δ, q0, F ) be a non-

deterministic Turing machine (NTM). Given a positive inte-
ger k, we will encode N into a lifted acyclic HTN planning
problem P such that P is solvable if and only if there is a
run of N that is in an accepting state after 22

k

steps.
Let K = 22

k

. Since N has a K size space bound,
we can view a configuration of N as the position of the
head, the state, and a string w over Γ of length K repre-
senting the tape. Then, if w0, . . . , wK are the tape config-
urations of an accepting run of N , then the string W =
#w0#w1# . . .#wK , where # is a separator, represents a
checkable proof that N halts on this input in K steps. To
check the proof, we need to make sure that each wi follows
from the wi−1 before it, which we will check character by
character. Specifically, if we are checking the jth character
of wi, then the jth character of wi+1 (or exactly K + 1 char-
acters later in W ) is either the same as it was in wi, or the
head was over the jth position and the jth character of wi+1

follows from some legal transition from δ. Without loss of
generality, we will assume that Γ contains the character #
used for separation, and that δ defines no transitions for it.
We also assume that N always has a transition from any ac-
cepting state back to an accepting state. Further, we assume
that the tape is initially blank (WLOG, since there is a poly-
nomial transformation from an NTM with input to one with
a blank input). Let 0 be the default tape character.

Our encoding of this check will have an entirely proposi-
tional state language L:

• There is a set of propositions for each state in S. Only
one of these propositions will be true at any point in time,
encoding the state of N for configuration wi up until we
check the character underneath the head, when we switch
to the state for the next tape configuration, wi+1.

• There is a set of propositions for each tape symbol in Γ.
Only one will be true at a time.

• There are three pairs of propositions used to syn-
chronize tasks: head step, head stepped , check step,
check stepped , sync step, and sync stepped . Of each
pair, at most one will be true at a time. We will describe
how these are used shortly.

LetO be the set of propositional operators defined below:

• For each character c ∈ Γ there are two operators: assertc
and check c, where assertc adds c to the state while re-
tracting every other character in Γ, and check c, which has
c as precondition and no effects.

• For all transitions (s′, c′,Left) ∈ δ (s, c), there is an op-
erator step s s′ c l, which has a precondition of head ∧
s ∧ c and has an effect of retracting k and asserting k′.
step s s′ c r is defined similarly for transitions that move
the head right.

• There is an operator done, which has a precondition of∨
k∈F k and no effects.

• There is an operator no head , which has ¬head as a pre-
condition and no effects, as well as operators assert head
and retract head for asserting and retracting the head
proposition.

• For the head step/head stepped propositions, we de-
fine four operators: call head which has no precondi-
tion, asserts head step; start head has the precondition
of head step which it retracts; respond head has no pre-
condition and asserts head stepped ; and wait head has
head stepped as its precondition which it retracts. Opera-
tors for the other step/stepped pairs are defined similarly.

LetM be the following set of methods:

• For the call head /wait head operators, we introduce a
method (step head , tn), where tn contains the totally-
ordered tasks call head and head wait . step tasks are
defined similarly for the rest of the call/wait operators.

• For each c ∈ Γ, a method (produce, tn), where tn
contains the totally ordered tasks: assertc, step head ,
2K · step check , 2K · step sync. We will define the
consumers for the step tasks below. We also have two
specialized versions of the method, (produce#, tn) and
(produce0, tn) specifically for asserting # and 0, but are
otherwise the same.

• We add a method (produce, tn) where tn contains
check done , which will only be applicable if a previous
produce gave a valid character that moved the machine
into an accepting state.

• We add a method (config producers, tn) which contains
the task (K+1)·produce, which decomposes into enough
produce tasks to ensure that the configuration wi+1 is
a valid successor of the current configuration wi. We
also add (config producersinit, tninit) to encode the ini-
tial tape configuration. tninit has two ordered subtasks:
produce# and K · produce0.

• A method (head, tn) for asserting the head, where
tn contains the tasks start head , assert head , and
respond head . A method for the task no head is defined
similarly with retract head .

• A method (heads, tn), where tn contains the totally-
ordered tasks no head , head, (K + 2) · no head . This
will place the head on the second character and, by de-
fault, move it one to the right in every subsequent config-
uration of N . We will show how to adjust for this when
checking the transitions.

• A method (wait, tn) where tn contains four totally-
ordered tasks which sequentially call the opera-
tors start check , respond check , start sync, and
respond sync. A wait task will then eat up one
call check followed by one call sync.

• For each c ∈ Γ, we have a method (check , tn) that,
when the head is not currently present, will ensure
that character K + 1 chars later is identical. tn con-
tains eight totally-ordered tasks: start check , no head ,
check c, respond check , K · wait, start check , check c
and respond check .



• For each transition (s′, c′,Left) ∈ δ (s, c), we have the
task (check , tn), where tn sets the new state and en-
sures that the character K + 1 chars later follows a legal
transition. tn contains the following totally-ordered tasks:
start check , step s s′ c l, 2·step head , respond check ,
K · wait, start check , check c′ and respond check . No-
tice how we call step head twice to make the head move
left (instead of moving to the right by default). We de-
fine check methods for Right moving transitions simi-
larly, omitting the 2 · step head subtask.

• We define a task config checks (v1, . . . , vk) with meth-
ods similar to the doubly-exponential counters of Sec-
tion 4. config checks (1, 0, . . . , 0) will be responsible for
launching K check tasks, starting in each cell of the con-
figuration. Instead of the two subtasks of the oe counting
methods, each method (config checks, tn) has three tasks
t1, t2 ≺ t3 (so t1 is not ordered with respect to the rest),
where α (t1) = α (t3) = config checks ′, and α (t2) =
wait′, where config checks ′ and wait′ are the appropri-
ate decrement of config checks . We will add a method
(config checks+1, tn) that launches exactlyK+1 checks
for each of the cells of the configuration.

Let P = (L,O,M, sI , tnI) be an HTN problem with the
above L, O, andM. Let s contain the proposition for N ’s
initial state q0, and let tnI contain the tasks t1 ≺ t2 ≺ tdone,
t3, t4, and t5 ≺ t6, where:

• α (t1) = config producersinit
• α (t2) = K · config producers

• α (t3) = (K + 1) · heads

• α (t4) = α (t6) = K · config checks+1

• α (t5) = (K + 1) · wait
• α (tdone) = done

t1 and t2 are the driving tasks of the problem, asserting
one character inW at a time, and driving the rest of the tasks
with call head and call check . t1 lays out the initial tape
cells, with the separator first followed by K 0 cells. t2 does
K sequential copies of the unconstrained producer. The pro-
ducer for each odd numbered wi is validated by the check
steps started by t4, while the even numbered ones (i > 0)
are validated by the check tasks from t6, which were forced
to wait one full configuration before starting by t5. Once
a producer validates a cell under the head of a configura-
tion that leads to an accepting state, the check done opera-
tor can be applied, and the rest of the tasks can short circuit
via the done operator. Thus, P simultaneously generates and
checks a witness W that N halts in 22

k

steps.
Since P is solvable iff there is a run of N that termi-

nates 22
k

, partially-ordered lifted acyclic HTN planning is
2-NEXPTIME-complete. Replacing the top level tasks with
tail-recursive tasks would encode a strictly space-bound
NTM. The only variables used in the encoding were for
countingK repetitions of tasks. ReplacingK with a merely-
exponential bound would let us encodeN in a fully proposi-
tional problem. Using combinations of either of these mod-
ifications (tail-recursive top level tasks or using K = 2k)
gives the remaining lower bounds of the theorem.

7 Conclusions
We proposed a straight-forward extension for propositional
HTN planning to a lifted representation that is based upon
a function-free first-order logic. We studied how the vari-
ables/constants, the (partial) order of tasks, and various vari-
ants of recursion interact w.r.t. the complexity of the plan
existence problem. Our results have straight-forward impli-
cations for other hierarchical planning formalisms, such as
hierarchical goal networks (HGNs), that have a direct cor-
respondence with HTN planning (Shivashankar et al. 2012),
and for hybrid planning, a framework that fuses HTN plan-
ning with partial-order causal-link (POCL) planning (Bi-
undo and Schattenberg 2001).

Apart from giving deeper theoretical insights of the com-
plexity and expressiveness of HTN planning, our work
also has implications on the design of future HTN algo-
rithms. For example, the TOPHTN algorithm from Alford
et al. (2012) uses a mixture of progression and problem-
decomposition, and is able to decide every totally-ordered
propositional problem in EXPTIME. However, it also takes
exponential space. The progression-based algorithm from
the same paper (PHTN) can be made space efficient on the
tail-recursive subset of these problems, taking only polyno-
mial space. This leaves an obvious gap in the literature that
could be filled with an algorithm that can decide both the
classes of problems efficiently.

Some HTN problems can also be solved via compil-
ing them into non-hierarchical planning problems. Alford,
Kuter, and Nau (2009) describe such a translation for
totally-ordered tail-recursive problems. It should be straight-
forward to extend this technique to tail-recursive problems
with arbitrary ordering. However, our results show that any
such translation for partially-ordered problems must yield an
exponential blow-up in the general case.

In future work, we want to extend our results to provide
tight complexity bounds for hierarchical planning with task
insertion (TIHTN planning) – a variant of hierarchical plan-
ning that allows to insert tasks into task networks without the
need to decompose abstract tasks (Geier and Bercher 2011;
Shivashankar et al. 2013). Other interesting problems in-
clude extending the NP-completeness results for both propo-
sitional acyclic regular HTN problems (Alford et al. 2014)
and for HTN plan verification (Behnke, Höller, and Biundo
2015) into our lifted HTN formalism.
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