Change the Plan - How hard can that be?

Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne Biundo

Ulm University. Institute of Artificial Intelligence

June 17, 2016

ICAPS 2016 - London

Deutsche Forschungsgemeinschaft DFG

Planning doesn't take place in a vacuum

- Planning doesn't take place in a vacuum
- Planners can generate solutions users might not like

- Planning doesn't take place in a vacuum
- Planners can generate solutions users might not like
- Preferences can be infeasible
 - Users might not know their preferences
 - ... or cannot be expected to be asked about them

- Planning doesn't take place in a vacuum
- Planners can generate solutions users might not like
- Preferences can be infeasible
 - Users might not know their preferences
 - ... or cannot be expected to be asked about them
- \Rightarrow Integrate the user into the planning process

- Planning doesn't take place in a vacuum
- Planners can generate solutions users might not like
- Preferences can be infeasible
 - Users might not know their preferences
 - ... or cannot be expected to be asked about them
- \Rightarrow Integrate the user into the planning process
- \Rightarrow We have to allow for changes to plans

Changing plans is important for user-centred planning applications, e.g., mixed-initiative planning

Changing plans is important for user-centred planning applications, e.g., mixed-initiative planning

We want to understand its theoretical foundations

Changing plans is important for user-centred planning applications, e.g., mixed-initiative planning

We want to understand its theoretical foundations

- Discuss what changing plans means in an HTN context
- Provide formal descriptions of several change operations
- Investigate their computational complexity

$$\mathcal{P} = (P, C, c_l, M, L, s_l)$$

- P a set of primitive tasks
- C a set of compound tasks

$$\mathcal{P} = (P, C, c_l, M, L, s_l)$$

- P a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task

A solution $tn \in Sol(\mathcal{P})$ must

be a refinement of the initial task

СI О

$$\mathcal{P} = (\mathcal{P}, \mathcal{C}, \mathcal{c}_l, \mathcal{M}, \mathcal{L}, \mathcal{s}_l)$$

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution $tn \in Sol(\mathcal{P})$ must

$$\mathcal{P} = (\mathcal{P}, \mathcal{C}, \mathcal{c}_l, \mathcal{M}, \mathcal{L}, \mathcal{s}_l)$$

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution $tn \in Sol(\mathcal{P})$ must

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution $tn \in Sol(\mathcal{P})$ must

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods

A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods

A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must

- *P* a set of primitive tasks
- C a set of compound tasks
- $c_l \in C$ the initial task
- $M \subseteq C \times 2^{TN}$ the methods

A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must

- be a refinement of the initial task
- only contain primitive tasks

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods
 - L a set of variables
 - $s_I \subseteq L$ the initial state
- A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must
 - be a refinement of the initial task
 - only contain primitive tasks

- $\mathcal{P} = (P, C, c_l, M, L, s_l)$
 - P a set of primitive tasks
 - C a set of compound tasks
 - $c_l \in C$ the initial task
 - $M \subseteq C \times 2^{TN}$ the methods
 - L a set of variables
 - $s_I \subseteq L$ the initial state

A solution $\mathit{tn} \in \mathit{Sol}(\mathcal{P})$ must

- be a refinement of the initial task
- only contain primitive tasks
- have a linearization, executable from the initial state

HTN planning problems can pose restrictions that classical planning cannot

HTN planning problems can pose restrictions that classical planning cannot

- Every plan must contain the same amount of *a*'s and *b*'s
- a can be executed twice in a row, but not thrice
- HTNs can express all context free and some context sensitive language, while classical planning is limited to regular structures
- Precondition-free HTNs can express classical planning

HTN planning problems can pose restrictions that classical planning cannot

- Every plan must contain the same amount of *a*'s and *b*'s
- a can be executed twice in a row, but not thrice
- HTNs can express all context free and some context sensitive language, while classical planning is limited to regular structures
- Precondition-free HTNs can express classical planning

When changing plans, we can either:

- Ignore the domain's hierarchy and just try to find an executable solution
- Find a solution adhering to the hierarchy, s.t. we keep all restrictions

HTN planning problems can pose restrictions that classical planning cannot

- Every plan must contain the same amount of *a*'s and *b*'s
- a can be executed twice in a row, but not thrice
- HTNs can express all context free and some context sensitive language, while classical planning is limited to regular structures
- Precondition-free HTNs can express classical planning

When changing plans, we can either:

- Ignore the domain's hierarchy and just try to find an executable solution
- Find a solution adhering to the hierarchy, s.t. we keep all restrictions

Results

We've investigated a wide range of change requests

- 5 request objectives
- 3 request restrictions

	add	delete	exchange	order	avoid effect
no changes	NP	NP	NP	NP	NP
k changes	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME
any changes	un-dec	un-dec	un-dec	un-dec	un-dec

Results

We've investigated a wide range of change requests

- 5 request objectives
- 3 request restrictions

	add	delete	exchange	order	avoid effect
no changes	NP	NP	NP	NP	NP
k changes	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME
any changes	un-dec	un-dec	un-dec	un-dec	un-dec

- Most proofs are structurally similar
- We will only show one from each group

Definition (ADD-NO-CHANGE)

Definition (ADD-NO-CHANGE)

Definition (ADD-NO-CHANGE)

Definition (ADD-NO-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and task t. ADD-NO-CHANGE is to decide whether the task network tn', which is tn with an additional task t and some ordering constraints added, is still a solution.

Decomposition becomes invalid

Definition (ADD-NO-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and task t. ADD-NO-CHANGE is to decide whether the task network tn', which is tn with an additional task t and some ordering constraints added, is still a solution.

Decomposition becomes invalid

Definition (ADD-NO-CHANGE)

- Decomposition becomes invalid
- We (potentially) have to find a new linearisation

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

What do we have to check?

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

What do we have to check?

Refinement

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

What do we have to check?

- Refinement
- Primitive

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

What do we have to check?

- Refinement
- Primitive
- Executability

Definition (VERIFYTN)

Given a planning problem \mathcal{P} and a task network *tn*. Is $tn \in Sol(\mathcal{P})$?

What do we have to check?

- Refinement
- Primitive
- Executability

RK A

Theorem

VERIFYTN is NP-complete

Theorem

ADD-NO-CHANGE is NP-complete.

Theorem

ADD-NO-CHANGE is NP-complete.

Proof: Membership:

- Add the new task t and guess some additional ordering constraints
- Check the resulting task network using the NP algorithm for VERIFYTN

Theorem

ADD-NO-CHANGE is NP-complete.

Theorem

ADD-NO-CHANGE is NP-complete.

Theorem

ADD-NO-CHANGE is NP-complete.

Theorem

ADD-NO-CHANGE is NP-complete.

Theorem

ADD-NO-CHANGE is NP-complete.

Proof: <u>Hardness:</u> Reduction from VERIFYTN.

Also holds if the domain does not contain preconditions and effects.

Theorem

ADD-NO-CHANGE is NP-complete.

Proof: <u>Hardness:</u> Reduction from VERIFYTN.

Also holds if the domain does not contain preconditions and effects.

Theorem

ADD-NO-CHANGE is NP-complete.

Proof: <u>Hardness:</u> Reduction from VERIFYTN.

Also holds if the domain does not contain preconditions and effects.

• Can we add *t_a* to *tn*?

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

such that $t_1 < t_2$ holds in tn' and neither t_1 nor t_2 are deleted.

Remove tasks

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

- Remove tasks
- Old decomposition becomes invalid

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

- Remove tasks
- Old decomposition becomes invalid
- Add new tasks

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

- Remove tasks
- Old decomposition becomes invalid
- Add new tasks
- Add new ordering constraints

Definition (ORDERING-K-CHANGE)

Given a planning problem \mathcal{P} , a solution $tn \in Sol(\mathcal{P})$, and two tasks t_1, t_2 from tn. ORDERING-K-CHANGE is to decide whether another solution tn' can be obtained from tn by at most k of the following operations

- Adding/removing a primitive task
- Adding/removing an ordering constraint

- Remove tasks
- Old decomposition becomes invalid
- Add new tasks
- Add new ordering constraints
- Find new decomposition

Theorem

ORDERING-K-CHANGE is NEXPTIME-complete.

Theorem ORDERING-K-CHANGE *is* **NEXPTIME**-*complete*.

Proof: Membership:

- Guess a number $l \leq k$
- Apply / allowed operations to the task network tn
- Check the resulting task network using the NP algorithm for VERIFYTN

Theorem ORDERING-K-CHANGE *is* **NEXPTIME**-*complete*.

Proof: <u>Hardness:</u> Reduction from SOLUTION in acyclic HTNs.

Theorem

ORDERING-K-CHANGE is NEXPTIME-complete.

Proof: <u>Hardness:</u> Reduction from SOLUTION in acyclic HTNs.

Theorem ORDERING-K-CHANGE *is* **NEXPTIME**-*complete*.

Proof: <u>Hardness:</u> Reduction from SOLUTION in acyclic HTNs.

• Any plan has length $\leq m^{|C|}$

Theorem ORDERING-K-CHANGE *is* **NEXPTIME**-*complete*.

Proof: <u>Hardness:</u> Reduction from SOLUTION in acyclic HTNs.

- Any plan has length $\leq m^{|C|}$
- Choose $k = m^{|C|} + (m^{|C|})^2$

Add Ordering – any changes

Definition (ORDERING-ANY-CHANGE)

Given a planning problem \mathcal{P} , a solution $t_1 \in Sol(\mathcal{P})$, and two tasks t_1, t_2 . Is there any solution to \mathcal{P} containing t_1 and t_2 and the ordering constraint $t_1 < t_2$?

Add Ordering – any changes

Definition (ORDERING-ANY-CHANGE)

Given a planning problem \mathcal{P} , a solution $t_1 \in Sol(\mathcal{P})$, and two tasks t_1, t_2 . Is there any solution to \mathcal{P} containing t_1 and t_2 and the ordering constraint $t_1 < t_2$?

• The solution *tn* does not really help

Add Ordering - any changes

Theorem

ORDERING-ANY-SOLUTION is undecidable.

Add Ordering - any changes

Theorem

ORDERING-ANY-SOLUTION is undecidable.

Add Ordering – any changes

Theorem

ORDERING-ANY-SOLUTION is undecidable.

- The task network containing only a is a solution
- Ask whether a solution containing $t_1 < t_2$ exists

Conclusion

- Adding ordering constraints or actions to HTN Plans is
 - NP-complete if we can't alter the plan otherwise
 - **NEXPTIME**-*complete* if we can perform up to *k* changing operations
 - Undecidable if we can alter the plan arbitrarily

Conclusion

- Adding ordering constraints or actions to HTN Plans is
 - NP-complete if we can't alter the plan otherwise
 - **NEXPTIME**-complete if we can perform up to k changing operations
 - Undecidable if we can alter the plan arbitrarily

Further results can be combined to obtain the following classification

	add	delete	exchange	order	avoid effect
no changes	NP	NP	NP	NP	NP
k changes	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME	NEXPTIME
any changes	un-dec	un-dec	un-dec	un-dec	un-dec

Provided the first theoretical investigation of MIP requests to change plan