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Changing Plans

Planner

• Planning doesn’t take place in a vacuum
• Planners can generate solutions users might not like
• Preferences can be infeasible

• Users might not know their preferences
• ... or cannot be expected to be asked about them

⇒ Integrate the user into the planning process
⇒ We have to allow for changes to plans
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Changing Plans

Changing plans is important for user-centred planning applications,
e.g., mixed-initiative planning

We want to understand its theoretical foundations

• Discuss what changing plans means in an HTN context

• Provide formal descriptions of several change operations

• Investigate their computational complexity
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Hierarchical Task Network (HTN) Planning

P = (P,C, cI ,M, L, sI)

• P a set of primitive tasks

• C a set of compound tasks

• cI ∈ C the initial task

• M ⊆ C × 2TN the methods

• L a set of variables

• sI ⊆ L the initial state

A solution tn ∈ Sol(P) must

• be a refinement of the initial task

• only contain primitive tasks

• have a linearization,
executable from the initial state
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Motivation of Hierarchies

HTN planning problems can pose restrictions that classical planning cannot

• Every plan must contain the same amount of a’s and b’s

• a can be executed twice in a row, but not thrice

• HTNs can express all context free and some context sensitive language,
while classical planning is limited to regular structures

• Precondition-free HTNs can express classical planning

When changing plans, we can either:

• Ignore the domain’s hierarchy and just try to find an executable solution

• Find a solution adhering to the hierarchy, s.t. we keep all restrictions

5
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Results

We’ve investigated a wide range of change requests

• 5 request objectives

• 3 request restrictions

add delete exchange order avoid effect
no changes NP NP NP NP NP
k changes NEXPTIME NEXPTIME NEXPTIME NEXPTIME NEXPTIME

any changes un-dec un-dec un-dec un-dec un-dec

• Most proofs are structurally similar

• We will only show one from each group
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Add Task – no changes

Definition (ADD-NO-CHANGE)

Given a planning problem P , a solution tn ∈ Sol(P), and task t .
ADD-NO-CHANGE is to decide whether the task network tn′, which is tn with
an additional task t and some ordering constraints added, is still a solution.

cI

• Decomposition becomes invalid

• We (potentially) have to find a new linearisation
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Plan Verification

Definition (VERIFYTN)

Given a planning problem P and a task network tn. Is tn ∈ Sol(P)?

What do we have to check?

• Refinement

• Primitive

• Executability

cI

Theorem
VERIFYTN is NP-complete
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Add Task – no changes

Theorem
ADD-NO-CHANGE is NP-complete.

Proof: Membership:

• Add the new task t and guess some additional ordering constraints

• Check the resulting task network using the NP algorithm for VERIFYTN
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Theorem
ADD-NO-CHANGE is NP-complete.

Proof: Hardness: Reduction from VERIFYTN.

Also holds if the domain does not contain preconditions and effects.

tn • Can we add ta to tn?
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Add Ordering – k changes

Definition (ORDERING-K-CHANGE)

Given a planning problem P , a solution tn ∈ Sol(P), and two tasks t1, t2 from
tn. ORDERING-K-CHANGE is to decide whether another solution tn′ can be
obtained from tn by at most k of the following operations

• Adding/removing a primitive task

• Adding/removing an ordering constraint

such that t1 < t2 holds in tn′ and neither t1 nor t2 are deleted.

cIcI

• Remove tasks

• Old decomposition becomes invalid

• Add new tasks

• Add new ordering constraints

• Find new decomposition

10
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Add Ordering – k changes

Theorem
ORDERING-K-CHANGE is NEXPTIME-complete.

Proof: Membership:

• Guess a number l ≤ k

• Apply l allowed operations to the task network tn

• Check the resulting task network using the NP algorithm for VERIFYTN
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Add Ordering – k changes

Theorem
ORDERING-K-CHANGE is NEXPTIME-complete.

Proof: Hardness: Reduction from SOLUTION in acyclic HTNs.

cI

. . . . . . . . .

• Any plan has length ≤ m|C|

• Choose k = m|C| + (m|C|)2
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Add Ordering – any changes

Definition (ORDERING-ANY-CHANGE)

Given a planning problem P , a solution tn ∈ Sol(P), and two tasks t1, t2. Is
there any solution to P containing t1 and t2 and the ordering constraint t1 < t2?

• The solution tn does not really help
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Add Ordering – any changes

Theorem
ORDERING-ANY-SOLUTION is undecidable.

Proof:

cI

. . . . . . . . .

• The task network containing only a is a solution

• Ask whether a solution containing t1 < t2 exists
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Conclusion

• Adding ordering constraints or actions to HTN Plans is
• NP-complete if we can’t alter the plan otherwise
• NEXPTIME-complete if we can perform up to k changing operations
• Undecidable if we can alter the plan arbitrarily

Further results can be combined to obtain the following classification
add delete exchange order avoid effect

no changes NP NP NP NP NP
k changes NEXPTIME NEXPTIME NEXPTIME NEXPTIME NEXPTIME

any changes un-dec un-dec un-dec un-dec un-dec

Provided the first theoretical investigation of MIP requests to change plan
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