
c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

SLOTH – the Interactive Workout Planner

Gregor Behnke1, Florian Nielsen2, Marvin Schiller1, Pascal Bercher1, Matthias Kraus2,
Wolfgang Minker2, Birte Glimm1, and Susanne Biundo1

1 Institute of Artificial Intelligence 2 Institute of Communications Engineering
Ulm University, Ulm, Germany

Abstract—We present the mixed-initiative planning system
SLOTH, which is designed to assist users in planning a fit-
ness workout. Mixed-initiative planning systems are especially
useful for companion systems, as they allow the seamless
integration of the complex cognitive ability of planning into
ambient assistance systems. This is achieved by integrating the
user directly into the process of plan generation and thereby
allowing him to specify these objectives and to be assisted
in generating a plan that not only achieves his objectives,
but at the same time also fits his preferences. We present
the capabilities that are integrated into SLOTH and discuss
the design choices and considerata that have to be taken into
account when constructing a mixed-initiative planning system.

1. Introduction

Traditionally, planning-based assistance systems behave
in a black-box manner. The user describes a problem he has
to solve. The planner then computes a sequence of actions
which, if executed, solves the problem posed by the user.
These instructions have to be followed without any (or only
limited) possibility of deviation or personalisation. In some
situations, such assistance is acceptable, e.g., if the user
only desires to solve a problem in which he does not have
any personal stakes. An example for such a situation is the
setting-up of a home-theatre [1], [2].

If the user has personal interests and preferences, this
black box interaction scheme can lead to significant prob-
lems in the human-companion relationship. This would ren-
der them useless for companion systems, which must be
able to adapt their assistance to their individual users [3]. To
mitigate this problem, the idea of mixed-initiative planning
(MIP) was developed. It aims at integrating the user directly
into the process of creating a plan, enabling him to exercise
control on the collaboratively developed plan. As a result,
the planner will provide a plan that is acceptable to the
user. MIP provides the individualised assistance thought for
in companion systems [3], as it allows the user to express
these wishes and preferences to the system, which in turn
adapts its assistance accordingly.

Only a few MIP systems have been studied – and
implemented – before. In this paper, we present the new
mixed-initiative planner SLOTH (the “Singularly Loveable

and Obliging Training Helper”), which can assist human
users in planning workouts for their fitness-training objec-
tives. In this domain, most users have individual preferences
(e.g. liking or disliking certain exercises or combinations
thereof) making it an interesting application domain for a
mixed-initiative planner. SLOTH extends the capabilities of
previous mixed-initiative planners in several ways. First, our
planner is thoroughly knowledge-based. We use a knowl-
edge base containing necessary background knowledge of
our application domain, which is used both to ensure internal
model consistency, but also to enable the user to pose ques-
tions only indirectly related to the current planning process.
Second, our planner uses a hybrid planning formalism which
is able to capture the processes occurring during planning,
i.e., both hierarchical and causal reasoning. Third, previous
planners did not integrate the user into the plan-generation
process itself, but rather used a critique-and-adapt cycle,
where a solution was repeatedly presented and the user was
able to request changes to it. Our planner integrates the user
directly into the planning process, increasing its flexibil-
ity. Fourth, our planner uses advanced dialogue-techniques
which take the user’s mental capacity into account, such
that it will neither be bored nor confused. Fifth, in contrast
to most existing approaches to MIP, we have chosen a
domain-independent approach, i.e., our planner can be used
in any application domain. In the remainder of the paper,
we will present the technical details of SLOTH, discuss the
challenges arising when integrating users into a planning
process, and show how SLOTH solves them.

2. Preliminaries

The main purpose of SLOTH is to provide adaptive
support when developing a fitness workout. The assistance
relies on the execution of automatically generated plans of
action. For generating these plans, we rely on the planner
PANDA [4], which generates knowledge-rich plans in a hi-
erarchical manner. It relies on a hybrid planning framework
[5], [6] that combines hierarchical task network (HTN) plan-
ning [7] with partial-order causal-link planning [8]. Hybrid
planning seems well-suited for the endeavour of providing
user-support for many reasons [9], most importantly because
humans often solve their problems in a hierarchical man-
ner [10] while also relying on causal reasoning.



In hybrid (and hierarchical) planning, plans are partially
ordered sets of tasks. Tasks are 2-tuples, specifying their
preconditions and effects – both being conjunctions of lit-
erals. There are two kinds of tasks: the primitive ones (also
called actions) can be directly executed, whereas the abstract
ones need to be further refined into courses of (more)
primitive tasks. The different levels of abstraction are given
implicitly by the task hierarchy: for every abstract task, the
model contains a set of so-called decomposition methods.
A decomposition method is simply a 2-tuple mapping an
abstract task to a plan, which is a pre-defined standard
solution to the respective abstract task [6]. This plan can
in turn contain abstract tasks. Replacing an abstract task by
the plan specified by one of its decomposition methods is
called decomposing. Planning is done by successively de-
composing abstract tasks until a plan is generated containing
only primitive tasks, such that they can be arranged in an
order that allows the plan to be executed [4], [6].

Knowledge-representation in SLOTH is based on an
ontology, which is a suitable representation formalism to
express concept hierarchies and relationships between con-
cepts in a domain of interest. These relationships are formu-
lated in the ontology language OWL,1 which uses descrip-
tion logic (DL) as its theoretical underpinning. In SLOTH,
the employed fragment of OWL corresponds to the DL
ALC [11]. Concept hierarchies are expressed by subclass-
superclass relationships (also called subsumption). Further
relationships between concepts are formulated using exis-
tential and universal quantifiers and roles, which are inter-
preted as binary relations. Additionally, the language allows
the expression of negation, equivalence and disjointness of
concepts. To determine whether a subsumption between two
concepts follows from the knowledge represented in an
ontology, efficient automated reasoners can be used.

3. Related Work

Since its inception, AI planning has been used in a wide
variety of application scenarios. Naturally, there have been
situations where the use of a bare planning system has not
been appropriate and MIP systems have been developed.
Unfortunately, there has (as of now) not been much coherent
work on developing such systems – neither in theory nor
practice. Existing work in MIP has traditionally focussed
on developing systems for a single application. The first
such system was the planner developed in the TRAINS and
TRIPS projects [12], which assisted a user in planning rail-
way transport routes. This system was specifically tailored to
that scenario, so much so, that it did not even use a general-
purpose planner, but a dedicated solver. This contradicts the
idea of planning to be a means of general (i.e. domain-
independent) problem solving. SLOTH on the other hand
uses a general-purpose planner, enabling it to be used in
many different application domains.

One of the best-known mixed-initiative planners is
MAPGEN, which was developed by NASA to aid in the

1. https://www.w3.org/TR/owl2-overview/

action planning for the Mars rovers and was later also
deployed in other deep-space missions [13], [14]. Like
TRAINS/TRIPS, it has a specialised internal solver designed
to cope with both time as resource constraints, as well as
with competing needs from several groups of scientists. The
overall aim of the planner is however not to provide an
individualised plan, but to be able to mediate between the
(usually incompatible) interests of several users.

In two other application scenarios, the developers of
mixed-initiative planners have noted that classical (i.e. non-
hierarchical) planning is not appropriate to model the con-
straints of the application, but that hierarchical planning
provides for a flexible means to model them. These scenar-
ios include generating action plans for firefighters tackling
forest-fires (SIADEX [15]) and attack plans for military
special operations groups (PASSAT [16]). All these planning
systems are only capable of interacting with users based on
completely developed plans. Their control-loop requires the
planner to find a valid plan which is then presented to the
user, who is asked for his opinion or advice. His response
is then taken into account and planning starts again.

4. The SLOTH system

In SLOTH’s application scenario, it is the user’s ob-
jective to select a set of exercises for the current training
session, which help him to reach a fitness objective (e.g.
increasing strength or increasing stamina). In the planning
model, these goals are modelled as abstract tasks, while
the exercises themselves are primitive actions. Between
these two, there are two levels of abstraction: training
and workout. Workouts are predefined sets of exercises
belonging together, which we gathered from fitness-training
websites. A training describes a group of workouts achieving
a common training objective, e.g., FullBodyTraining,
which represents a training targeting the whole body, or
StrengthTraining. These in turn can be decomposed
into one or more workouts and those into primitive tasks.
The remainder of this section introduces all the components
of SLOTH. We start by describing the knowledge model and
how it is used, then focus on planner-specific considera-
tions and describe how change-requests are handled. Next,
we describe how the planner interacts with the dialogue-
management and it in turn with the user. Lastly, we show
how explanations are integrated into the planner.

4.1. Overview

To assist the user, SLOTH guides him through the process
of generating a plan in the fitness training domain. The user
is repeatedly shown a current (partial) plan to consider. In
the process, he is offered options to refine the current plan,
which are based on the decomposition methods applicable
to the abstract tasks the plan contains. The user is also given
the opportunity to apply changes to the plan generated so
far (cf. Fig. 1). These requests are handled by the dialogue
management component (see Section 4.5), which also de-
termines how these options are presented to the user. As



a result, the dialogue manager informs the planner of the
user’s reaction (or any other input, in case of a request to
change the plan). The planner in turn reacts upon this input
and selects a new plan for presentation to the user. This
control loop repeats until the current plan is a solution to
the planning problem and the user does not want to change
it any further. In addition to this loop, the dialogue manager
can also handle requests of the user for an explanation of
the refinement options he is presented. These inquiries are
not handled by the planner, but by a separate explanation
component taking advantage of the fact the planning domain
is (partially) constructed from an ontology (see Section 4.6).

4.2. Knowledge models

Each component of a mixed-initiative planner needs a
dedicated domain model for the specific task, which that
component has to perform. These distributed models nat-
urally create consistency and redundancy issues. Recent
work provides a method for utilising a central ontology,
such that all necessary models can be derived from it au-
tomatically, ensuring consistency between the models with-
out any redundancy [17]. We have applied this technique
in SLOTH. As detailed by Behnke et at. [17], this tech-
nique not only ensures consistent models, but also pro-
vides additional benefits for cognitive systems. E.g. (at least
some) decomposition methods in the planning model can
be automatically derived from factual reasoning based on
background knowledge stored in the ontology. In the case
of our fitness-training domain, these methods, e.g., include
those relating training objectives to the workouts which fulfil
their objective. The planning domain specifies that every
muscle group in the body has to be trained to constitute a
FullBodyTraining. By using ontology reasoning, we
can infer that a given set of workouts combined achieves
this constraint and can thus create a decomposition method
from FullBodyTraining into these workouts. In fact,
all methods relating training objectives and workouts in our
model are inferred fully automatically. As these decompo-
sitions are derived from background knowledge, we can
also provide factual explanations for them, where previous
approaches were not able to do so (see Section 4.6). To allow
for the maximum degree of freedom during planning, we can
also create decomposition methods based on the ontological
descriptions of abstract tasks, if certain criteria are met. If
the task is defined in terms of a conjunction of necessary
concepts each describing a set of (sub-)tasks, we can create
a decomposition method containing tasks each representing
one of the these concepts. Decomposition methods for these
tasks can again be created automatically.

4.3. Planning

The first step in assisting the user is to determine the
objective which he actually wants to achieve. As the initial
plan effectively describes the objective (or goal) of the user,
prior to the planning process itself, we use a dialogue to
determine the user’s goal (see Section 4.5). We will discuss

Figure 1. Selection dialogue in SLOTH

the design choices that were made when developing the
planner that SLOTH uses, which adverse consequences the
planner’s strategy can have, and how to mend them.

As (almost) all other techniques developed for MIP,
SLOTH presents the user with a current plan and inquires
about the user’s accord until a solution to which the user
agrees has been reached. But in contrast to these techniques,
a plan can be shared with the user while still in an incom-
plete or abstract stage, which allows the user to influence
the planning process early on. This very general description
of the planner’s behaviour makes two design-choices of a
mixed-initiative planner obvious: Which plan(s) should be
presented to the user? and What the user should be asked
about that plan? As we are using the planning formalism
of hybrid planning, a natural answer to the latter question
is to present the user with all the possible options to refine
the current plan and to let him choose the one he wants,
or let him indicate any preference between them. Then the
former question boils down to deciding which planning
algorithm to use, as it determines an order in which the
plans are presented to the user. The main objective here is
not to choose an efficient algorithm, but to not overexert the
user’s mental capacity. We chose a depth-first-search (DFS)
strategy, which keeps the difference between two subsequent
plans as local as possible. This enables the user to focus on
the changes he wants to perform [18].

Despite the fact that depth-first strategies can be easily
understood, they can make planning an extremely tedious
process. This becomes apparent whenever – through the
choices of the human user – the current plan cannot be
refined into a solution any more. When using DFS, we here
have to explore the complete search space below this point,
often with repeatedly going through the same futile options.

To counteract this problem, we have added two ca-
pabilities to SLOTH. First, in an ideal world we would
be able to construct the whole search space in advance
and only present options to the user which can potentially
lead to a solution. This however is not feasible, both for
practical and for theoretical reasons. In general the search
space of a planning problem is not finite as a planning
problem can have infinitely many solutions, and even if



the search space is finite in practice it is often too large to
be constructed explicitly, which is the very reason complex
planning algorithms were developed. Also it would be un-
acceptable for a companion system to require a preparation
phase of a few minutes before being able to assist the user
by means of planning. Even though we take advantage of
the fact that whenever SLOTH shows a plan to the user
and provides options, the user will require some time (at
least a few seconds) to understand the plan, to assess the
presented options, and to make decisions. Every time a plan
is presented to the user, the planner would ordinarily be idle.
Instead SLOTH uses this time to filter out presented options
which cannot lead to a solution. This is done via search
in the plan space induced by each of the options. If we
find a solution in one of them, we know that this option is
still “viable”, i.e., it leads to a solution. If in contrast the
planner cannot find a solution below an option, we disable
the respective option. Since the planner might need a few
seconds (or even longer) to determine either outcome, we
have to cope with the situation where we have presented
the user with an option, he has (potentially) considered it,
and we only then disable it. We will elaborate on strategies
of how to handle this in Section 4.5. Replanning for each
option is not always necessary, as we will usually have
searched through (parts) of the search space below one of
the current options in a previous run. We use a simple
caching strategy to reuse results (i.e. the found solutions
and constructed search spaces) in this scenario.

As a second means to overcome the disadvantages of
DFS, we enable the user to not only react to the choices put
by the planner before him, but also to pro-actively instruct
the planner to alter the current plan in a specific way. By
that, the user can “escape” parts of the search space which
either do not contain solutions or revert previous decisions
(or consequences thereof) he does not like. To allow this,
SLOTH can handle so-called change requests, which are
instructions of the user to alter the current plan in a specific
way. We will elaborate on how these requests look like and
how SLOTH reacts to them in the next section.

4.4. Change requests

Being able to react to spontaneous instructions from the
user is one of the most important abilities for a MIP system.
Without it, the system would not interact with the user,
but the user would merely answer to questions without any
change in initiative. In previous work, possible requests to
change a plan were already investigated theoretically [19]
and five types of requests and three different sets of con-
straints the planner has to adhere to when answering them
were defined. These constraints express by how much the
planner can deviate from the current plan: it either can only
implement the changes requested by the user or also perform
implied changes to ensure that the resulting changed plan is
or can still be refined into a solution.

As the practical implementation of these requests has
not been studied so far, we have concentrated on the most
relevant type of request in the setting of fitness training:

replace requests. These requests ask to replace one of the
actions in the current plan with another one. Similarly to
the situation of dead-ends, it should be possible to refine the
plan resulting from this change request into a solution to not
frustrate the user. To ensure this property, the planner might
have to perform additional changes to the plan. Behnke et
al. [19] have given three different levels of allowed addi-
tional changes: none at all, up to K, or any arbitrary change.
As this essentially constitutes a single scale2, we have to
solve an optimisation problem: Find the plan with the least
amount of alterations that fulfils the posed requests and can
be refined into a solution. SLOTH solves this problem via
local search. Despite the fact that this technique is designed
to solve replace requests, it can be easily adapted to add,
remove, and change order requests. We first perform the
requested change itself and then perform a local breath first
search in the plan space, thus ensuring that we will always
find the plan with the minimal amount of alterations first. To
test whether a plan is a solution, we use the cached results
from the plan space exploration, detailed in the previous
section, or if such a result is not available start a planning
process from the current plan. This process will typically
terminate quickly, as users tend to only pose change requests
when the plan has already been refined several times, thus
reducing the possible search space below that plan.

In addition to the ability to perform change re-
quests we also have to keep track of previous requests.
For example, if the user has requested to exchange a
BarbellSquat with a BodyWeightSquat and subse-
quently asks to change another action, we should not change
the BodyWeightSquat back into a BarbellSquat.
SLOTH keeps track of past change requests, and checks them
as “must contain” action constraints during local search.
Here, the user might arrive at a situation where it becomes
impossible to find a plan satisfying all past change requests
(e.g. if two actions have to be included in the plan that
exclude each other according to the training rules). In this
case, we present the current list of constraints to the user
and ask him which of them we are allowed to drop.

4.5. Dialogue Management

The dialogue management (DM) module of SLOTH ad-
dresses three challenges of MIP [18]: determining the initial
planning task in a user-friendly dialogue, integrating the
user into the planning process to provide for a collaborative
decision making, and handling of failures during planning.

In order to generate a valid planning problem, the se-
mantics of the dialogue and planning domain have to be
coherent. Therefore, the DM module and the planner use a
mutual knowledge base (see Section 4.2). This allows the
dialogue to be structured in a hierarchical way, which helps
the user to define an initial set of tasks (i.e. the tasks he
wants achieved) efficiently. For example, the user states the
goal that he would do strength training in the upper body,

2. The distinction is only interesting for a theoretical investigation of
change requests.



In
it

G
o
alwarmup

BarbellDeadlift
(8, 60)

Legs

BarbellSquat

DumbbellSquat

…
BarbellSquat

DumbbellSquat

…

Leg Training

Chose your exercise:

Don‘t careBack

Barbell

In
it

G
o
alwarmup

BarbellDeadlift
(8, 60)

BarbellSquat
(?,?)

Available modifications

Figure 2. Integration of the user in the planning process

while working out two days a week. This goal definition is
then used as the topmost element of the dialogue hierarchy,
as the StrengthTraining can be decomposed into a
set of workouts, whereas each workout consists of a set of
exercises. In order to render the interaction user-friendly,
the DM needs to handle free and complex naturally spoken
utterances. For this purpose, a more sophisticated approach
for linguistic analysis than generic grammars has to be
applied. We use the statistically-driven approach of language
understanding intelligent service (LUIS) [20], which allows
to handle complex and natural user input, e.g., so-called
”one-shot” utterances like, ”I want to do strength training
for my upper body, two times a week”, which then can be
passed on directly to the planner, instead of conducting a
lengthy dialogue. LUIS relies on the concepts of intents
(what does the user want?) and entities (which parts of
the utterance are interesting for the system?). The LUIS
model in SLOTH has been trained on three different kinds
of intents by the user: Inform the system about certain
entities, Request the system for additional information on
entities. Confirm previously provided information that the
system has understood with a low confidence. Furthermore,
the model has been trained on a set of entities. For the
sentence, ”I want to do strength training, two times a week”,
”strength training” would be recognized as value for the
entity AbstractGoal and ”two times a week” as value
for the entity TrainingDates. The intents and entities
of an utterance are then transformed into a dialogue act of
the following form:

Inform︸ ︷︷ ︸
Intent

(AbstractGoal︸ ︷︷ ︸
Slot

= ”strength training”︸ ︷︷ ︸
V alue

)

As described in Section 4.3, the plan itself is presented to
the user together with a list possible refinements. This leads
to another critical issue in MIP regarding if, when, and how
user-involvement during the planning process is generally
useful or necessary, as this largely affects how the interaction
with the planner is perceived by the user [21]. Therefore
the DM component contains an elaborate decision model,
integrating various information sources. This includes, e.g.,
the dialogue history, the kind of presented refinements, the
user profile, and the current situation. The decision model

can either initiate a user interaction, determine by itself that
the planner should make the decision, or ask the user ex-
plicitly or implicitly for confirmation that the system decides
on the next planning step. In case of user involvement the
information on the current plan decision has to be commu-
nicated to the user (see Fig. 2). This means that the open
decision and the corresponding choice between available
modifications have to be represented in a suitable dialogue.
Hence, the corresponding actions or methods need to be
mapped to human-understandable dialogue information, us-
ing the mutual knowledge base. As the user is dependent on
the reasoning capabilities of the planner, there may occur a
mismatch between the user-expected plan and the system-
generated one. In order to detect these critical situations
in HCI, which may cause a loss of trust in the system
behaviour, and to react appropriately, the DM component
of SLOTH augments the dialogue by integrating additional
content, e.g. explanation steps, and decides on the form of
representation of selection or confirmation dialogue steps.
This is conducted by using a POMDP-decision module [22].
This module monitors whether the users trust is endangered.
At run-time the next action of the planned dialogue is
compared to the one determined by the POMDP. If the next
action is not the same as the POMDP would expect, the flow
of the dialogue is interrupted, and the ongoing dialogue is
augmented as mentioned above.

In planning, a failure occurs if the current plan is
proved unsolvable (see Section 4.3). In case of a failure,
DFS typically uses backtracking, i.e., rolling back planning
steps, until the faulty decision is reverted. As this is a very
tedious and frustrating process, backtracking may result in
the user deeming the system’s strategy naive and the system
itself incompetent [18]. In order to prevent such a negative
experience, the computing power of the planner can be used
to determine whether a decision option for refinement is
a so-called dead-end (i.e. leads only to faulty plan, see
Section 4.3). The objective of the DM module is to convey
this information appropriately to the user. In SLOTH this
problem is addressed by providing explanations, which aim
to increase the user’s perceived system transparency [18].
In case of backtracking, the system informs the user that
previously user-made decisions cannot lead to a solution
and it explains to the user why the already made decisions
have to be rolled back. Dead-ends are communicated by
notifying the user that some refinement options had to be
deactivated, because they would not lead to a solution.

4.6. Explaining Facts and Decompositions

The ontology used by SLOTH incorporates the training
goals, training patterns, and exercises that can be used in
interactive planning. Axioms specify which logical relation-
ships hold in the domain, for instance, which muscles are
trained by a particular exercise and where they are located in
the body. This information is not only used in the process of
planning, but is also used to inform the user about the prop-
erties of exercises, training objectives, the human anatomy,
and how they are related, to foster the understanding of the



Figure 3. Generated explanation for “a chest-triceps workout is an upper
body training” in SLOTH

available choices offered by MIP. In the approach chosen
for SLOTH, decomposition methods available to planning
always correspond to subsumption relationships in the on-
tology. For instance, using an automated ontology reasoner
(SLOTH uses FaCT++,3 but other choices are possible), the
concept of ChestTricepsWorkout is derived to be a
sub-concept of UpperBodyTraining based on the prop-
erties of the exercises specified as parts of the workout. So,
for instance, if ChestTricepsWorkout includes (among
others) an exercise for the TricepsBrachii, which ac-
cording to the ontology is a part of the UpperBody, this
exercise is inferred to be engaging the UpperBody. The
concept of UpperBodyTraining is defined in the ontol-
ogy as consisting of (only) exercises for training the upper
body, which can be shown for ChestTricepsWorkout.

The explanation generation mechanism4 employed by
SLOTH uses a rule-based reasoning system (cf. [17]) to gen-
erate step-wise formal proofs for the derived subsumptions.
These represent the underlying reasons for relationships
between concepts in the domain, based on facts in the
ontology, for example why UpperBodyTraining can
be decomposed into ChestTricepsWorkout. Natural-
language explanations, as shown in Fig. 3 for the example,
are generated by applying text patterns to inference rules
and description logic formulas in the proof (cf. [23]).

5. Conclusion

We have described the MIP system SLOTH, which as-
sists users in planning their fitness training workouts. We
described which subsystems are necessary for such a planner
and how they can and should work together. We have
further described the challenges that we faced and solutions
we developed when developing the individual components.
Especially, we have described new planning techniques (e.g.
for answering change requests) that are useful for the de-
velopment of future MIP systems.

3. http://owl.man.ac.uk/factplusplus/ 4. http://verbalizer.github.io/

Acknowledgments
We acknowledge the support of the Transregional Col-

laborative Research Center SFB/TRR 62 “A Companion-
Technology for Cognitive Technical Systems” funded by the
German Research Foundation (DFG).

References
[1] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter,

and B. Schattenberg, “Plan, repair, execute, explain – How planning
helps to assemble your home theater,” in Proc. of ICAPS, 2014.

[2] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke,
F. Nothdurft, F. Honold, W. Minker, M. Weber, and S. Biundo, “A
planning-based assistance system for setting up a home theater,” in
Proc. of AAAI, 2015.

[3] S. Biundo and A. Wendemuth, “Companion-technology for cognitive
technical systems,” Künstliche Intelligenz, no. 1, 2016, Special Issue
on Companion Technologies.

[4] P. Bercher, S. Keen, and S. Biundo, “Hybrid planning heuristics based
on task decomposition graphs,” in Proc. of SoCS, 2014.

[5] S. Biundo and B. Schattenberg, “From abstract crisis to concrete
relief – a preliminary report on combining state abstraction and HTN
planning,” in Proc. of ECP, 2001.

[6] P. Bercher, D. Höller, G. Behnke, and S. Biundo, “More than a
name? On implications of preconditions and effects of compound
HTN planning tasks,” in Proc. of ECAI, 2016.

[7] K. Erol, J. Hendler, and D. Nau, “Complexity results for HTN
planning,” Annals of Math. and AI, vol. 18, no. 1, pp. 69–93, 1996.

[8] D. McAllester and D. Rosenblitt, “Systematic nonlinear planning,” in
Proc. of AAAI, 1991.

[9] P. Bercher, D. Höller, G. Behnke, and S. Biundo, “User-centered
planning – a discussion on planning in the presence of human users,”
in Proc. of ISCT, 2015.

[10] R. Byrne, “Planning meals: Problem solving on a real data-base,”
Cognition, 1977.

[11] M. Schmidt-Schauss and G. Smolka, “Attributive concept descriptions
with complements,” AIJ, vol. 48, pp. 1–26, 1991.

[12] G. Ferguson, J. Allen, and B. Miller, “TRAINS-95: towards a mixed-
initiative planning assistant,” in Proc. of AIPS, 1996.

[13] J. Bresina, A. Jónsson, P. Morris, and K. Rajan, “Activity planning
for the mars exploration rovers,” in Proc. of ICAPS, 2005.

[14] P. Bercher and D. Höller, “Interview with David E. Smith,” Künstliche
Intelligenz, vol. 30, no. 1, pp. 101–105, 2016, Special Issue on
Companion Technologies.

[15] J. Fernández-Olivares, L. Castillo, Ó. Garcı́a-Pérez, and F. Palao,
“Bringing users and planning technology together. Experiences in
SIADEX,” in Proc. of ICAPS, 2006.

[16] K. Myers, P. Jarvis, W. Tyson, and M. Wolverton, “A mixed-initiative
framework for robust plan sketching,” in Proc. of ICAPS, 2003.

[17] G. Behnke, D. Ponomaryov, M. Schiller, P. Bercher, F. Nothdurft,
B. Glimm, and S. Biundo, “Coherence across components in cognitive
systems – One ontology to rule them all,” in Proc. of IJCAI, 2015.

[18] F. Nothdurft, G. Behnke, P. Bercher, S. Biundo, and W. Minker, “The
interplay of user-centered dialog systems and AI planning,” in Proc.
of SIGDIAL, 2015.

[19] G. Behnke, D. Höller, P. Bercher, and S. Biundo, “Change the plan
– How hard can that be?” in Proc. of ICAPS, 2016.

[20] J. Williams, E. Kamal, H. Mokhtar Ashour, J. Miller, and G. Zweig,
“Fast and easy language understanding for dialog systems with mi-
crosoft language understanding intelligent service (LUIS),” in Proc.
of SIGDIAL, 2015, pp. 159–161.

[21] F. Nothdurft, P. Bercher, G. Behnke, and W. Minker, “User involve-
ment in collaborative decision-making dialog systems,” in Dialogues
with Social Robots: Enablements, Analyses, and Evaluation, K. Joki-
nen and G. Wilcock, Eds. Springer, 2017.

[22] F. Nothdurft, F. Richter, and W. Minker, “Probabilistic human-
computer trust handling,” in Proc. of SIGDIAL, 2014, pp. 51–59.

[23] M. Schiller, F. Schiller, and B. Glimm, “Testing the adequacy of
automated explanations of EL subsumptions,” in Proc. of DL 2017,
CEUR, vol. 1879, 2017.


