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Abstract
Hierarchical task network (HTN) planning is well-
known for being an efficient planning approach.
This is mainly due to the success of the HTN plan-
ning system SHOP2. However, its performance de-
pends on hand-designed search control knowledge.
At the time being, there are only very few domain-
independent heuristics, which are designed for dif-
fering hierarchical planning formalisms. Here, we
propose an admissible heuristic for standard HTN
planning, which allows to find optimal solutions
heuristically. It bases upon the so-called task de-
composition graph (TDG), a data structure reflect-
ing reachable parts of the task hierarchy. We show
(both in theory and empirically) that rebuilding
it during planning can improve heuristic accuracy
thereby decreasing the explored search space. The
evaluation further studies the heuristic both in terms
of plan quality and coverage.

1 Introduction
In contrast to classical planning, the goal in hierarchical plan-
ning is not to find a plan that satisfies a goal formula that
holds in the state produced by executing the plan, but to find
an executable refinement of an initial partial plan (a partially
ordered set of primitive and/or abstract tasks). This initial
plan is thus the “goal” – the set of tasks one wants to have
achieved. Partial plans consist of two kinds of tasks: primi-
tive and abstract ones. As it is the case in classical planning,
only primitive ground tasks (so-called actions) are directly
executable in a state, while abstract tasks need to be refined
into more primitive ones until an executable primitive (solu-
tion) plan is obtained.

The motivation for choosing a hierarchical problem class
as underlying framework is manifold, since the task hierarchy
can be exploited in several ways. In case a user is integrated
into the plan generation process, a hierarchical planning ap-
proach seems more natural, since it shows many similarities
with the way in which humans solve their problems [Byrne,
1977; Fox, 1997; Marthi et al., 2008]. For the same reason,
plan explanations (“Why do I have to perform this action?”)
can make use of the hand-designed hierarchy to give intuitive
explanations [Seegebarth et al., 2012; Bercher et al., 2014a].

The task hierarchy also allows to capture constraints restrict-
ing the set of plans that are regarded solutions, which can-
not be expressed without the hierarchy [Höller et al., 2014;
2016] (if no other expressive constructs such as functions are
available). This higher expressivity of hierarchical planning
problems comes at the cost of higher computational com-
plexities. That is, deciding whether there is a solution is
generally harder than in non-hierarchical planning – the pre-
cise complexity depends on structural properties of the task
hierarchy and is at most undecidable [Erol et al., 1994b;
Alford et al., 2015a; Bercher et al., 2016] – and even de-
ciding whether a partial plan is a solution is harder than in
non-hierarchical planning [Behnke et al., 2015; Bercher et
al., 2016]. Contrary to these seemingly negative results, the
hierarchy can also be exploited to reduce the time required to
find a solution. That is, instead of (or: in addition to) exploit-
ing the hierarchy to pose additional constraints on solutions,
it can be used to encode search control as exploited by the
well-known SHOP2 system [Nau et al., 2003].

Like in classical, non-hierarchical, planning, in some ap-
plication domains one wants to find optimal solutions or so-
lutions of a certain quality. Particularly in real-world ap-
plications this is of crucial importance, as plan quality of-
ten translates to costs in the real world, e.g., in terms of
money, time, or resource consumption. Several hierarchi-
cal planning approaches have addressed the issue of finding
optimal solutions [Lotem et al., 1999; Marthi et al., 2008;
Sohrabi et al., 2009; Shivashankar et al., 2016; 2017]. To
find such solutions, it suffices to use a suitable algorithm in
combination with an admissible heuristic. We propose such
an admissible heuristic for standard HTN planning.

Our heuristic is based upon the so-called task decomposi-
tion graph (TDG) – a representation of the AND/OR struc-
ture underlying the task hierarchy [Elkawkagy et al., 2012].
It exploits the TDG to find a least-cost set of primitive actions
into which the given abstract tasks can be decomposed. We
show after which plan modifications during search rebuild-
ing the TDG might lead to improved heuristic estimates. In
the empirical evaluation, we show that the heuristic performs
slightly worse than inadmissible ones when using A∗, but
finds plans of better quality. With Greedy-A∗, it becomes one
of the best configurations. The TDG-recomputation reduces
the search space in almost every problem instance, but also
increases the runtime for several instances.



2 Related Work

Independent of the purpose that hierarchical planning is de-
ployed for, it is always desirable to solve the respective prob-
lems as fast as possible. This is especially important if the
hierarchy is used for “physics” instead of “advice” (i.e., if
the domain is modeled in a hierarchical manner, but it does
not reflect search guidance). Several approaches were pro-
posed to find solutions fast. Some of these approaches pur-
sue the same basic approach than we do in this paper: using
a standard search procedure (such as progression search) in
combination with a domain-independent heuristic. Other ap-
proaches do not (only) rely on domain-independent heuris-
tics, but instead the information encoded in the task hierarchy
is exploited by the algorithm itself.

Marthi et al. [2008] propose several algorithms for their
angelic hierarchical planning semantics. They are concerned
with generating provably optimal “high-level plans” that may
still contain abstract tasks. In their framework, abstract tasks
are associated with preconditions and effects, the latter de-
scribing the set of states reachable by some refinement of the
respective task. They further assume a totally ordered prob-
lem (making the problem decidable, because it prevents in-
tertwining plans [Erol et al., 1994b; Alford et al., 2015a]).
To find optimal plans, they deploy A∗ that exploits optimistic
and pessimistic estimates of abstract tasks, which estimate
the cost of their reachable refinements. They note: “we will
assume that the descriptions are given along with the hierar-
chy. However, we note that it is theoretically possible to de-
rive them automatically from the structure of the hierarchy.”
We believe that our admissible heuristic values can serve as
their optimistic estimates that they rely on. Shivashankar
et al. [2016; 2017] developed an admissible landmark-based
heuristic for finding optimal solutions in Hierarchical Goal
Network (HGN) planning, a formalism closely related to stan-
dard HTN planning (the relationship is investigated in de-
tail by Alford et al. [2016b]). In standard HTN planning,
decomposition methods specify into which task networks (a
partially ordered set of tasks) an abstract task may be decom-
posed. In HGN planning, methods specify into which goal
networks (a partially ordered multiset of goals) a goal may
be decomposed. The proposed heuristic exploits the close re-
lationship between goal networks and the (partially ordered)
landmarks of a problem. Sohrabi et al. [2009] are concerned
with finding high-quality plans for HTN planning with prefer-
ences. They propose a branch-and-bound algorithm that first
finds some solution quickly (guided by inadmissible heuris-
tics) and then tries to find better solutions by pruning plans
that will lead to solutions of equal or worse quality (based
on an admissible heuristic). Most heuristics are specific to
both progression search (as they exploit that the current state
is changing) and to their approach how the preferences are
compiled away. One of their heuristics, lookahead metric
function, is closer related to ours as it is an estimate of the
metric of the best successor to the current partial plan. It does
so by first calculating all refinements up to a certain depth.
For each of them, a single primitive partial plan is computed
based on Depth First search. The best metric serves as heuris-
tic. The MME heuristic for hybrid planning [Bercher et al.,

2014b] is closely related to the one proposed here. We will
detail the precise relationship later in the paper.

The planning system Duet [Gerevini et al., 2008] com-
bines the HTN planner SHOP2 [Nau et al., 2003] with LPG
[Gerevini et al., 2003], a stochastic search planner for non-
hierarchical problems. Duet is not directly concerned with
calculating heuristics for partial plans, but it shows how hi-
erarchical problems can be solved efficiently without relying
on hand-coded search control. It is also notable that Duet is
not concerned with solving standard HTN problems, since it
allows to insert actions into partial plans (for achieving goals)
that do not stem from task decomposition as allowed in TI-
HTN planning (HTN planning with task insertion [Geier and
Bercher, 2011; Alford et al., 2015b]). The planner Graph-
HTN [Lotem et al., 1999] solves standard HTN problems
via combining the so-called planning tree with the planning
graph. The planning tree is an AND/OR tree that represents
all decompositions of the initial partial plan up to a certain
depth. We rely on a similar graph representation. GraphHTN
works by extending both the planning graph and the planning
tree until a solution is found. It guarantees to find a solution
with shortest makespan.

3 Problem Formalization
We rely on a problem formalization that extends standard
HTN planning [Erol et al., 1994b; Geier and Bercher, 2011]
with concepts known from partial order causal link (POCL)
planning [McAllester and Rosenblitt, 1991]. In accordance
to previous work, we refer to the respective framework as hy-
brid planning [Biundo and Schattenberg, 2001; Bercher et al.,
2016]. Hybrid models extend standard HTN models in two
directions: First, abstract tasks syntactically look like primi-
tive ones, i.e., they also have preconditions and effects. That
way, the planning model can be restricted to methods that ad-
here the semantics intended by the modeler [Bercher et al.,
2016]. Second, the model’s methods can contain causal links
that annotate which (abstract or primitive) task’s precondition
has been achieved by which other task of that method.

We want to emphasize that the the proposed heuristic is
neither inherently making use of the preconditions and ef-
fects of abstract tasks nor of the causal links, both of which
distinguish hybrid models from standard HTN models. As a
consequence, the proposed heuristic can cope both with hy-
brid and with HTN models – i.e., it can be regarded both an
HTN as well as a hybrid planning heuristic.

In hybrid planning, both primitive and abstract tasks are
3-tuples 〈t(τ̄), pre(τ̄), eff (τ̄)〉 consisting of a parametrized
name t(τ̄), a precondition pre(τ̄), and effects eff (τ̄) – the lat-
ter two are conjunctions of literals and depend on the task’s
parameter variables τ̄ . We will often refer to a task by just
mentioning its name t(τ̄). Partial plans are partially ordered
sets of primitive and/or abstract tasks. A partial plan P is
given by a tuple 〈PS,≺,CL, VC〉 consisting of its plan steps
PS, ordering constraints ≺, causal links CL, and variable
constraints VC. A plan step l : t(τ̄) ∈ PS is a uniquely labeled
task. Labeling is required because P maintains a partial or-
der of its plan steps, so multiple occurrences of the same task
are differentiated relying on the labels. The set ≺ is a strict



partial order on PS. A causal link ps →ϕ ps ′ ∈ CL repre-
sents that the precondition ϕ of plan step ps ′ is achieved by
the plan step ps . The set VC is defined over the variables τ̄
of the tasks of PS. It can co- or non-co-designate variables
with each other or with constants. With GroundVC(P ) we
denote the set of all groundings of P under consideration of
the additional variable constraints VC.

Whereas primitive tasks have the same semantics as in
classical planning, abstract tasks are abstractions of several
primitive or abstract tasks. They can thus be regarded rep-
resentations of high-level activities that need to be refined
into more specific courses of action. This is accomplished
by a set of so-called (decomposition) methods. A method is
a tuple m = (t(τ̄), Pm, VCm) that maps an abstract task to
its pre-defined partial plan Pm. VCm denotes a set of vari-
able constraints that relates the variables τ̄ of t(τ̄) with the
variables of the partial plan Pm. In our formalism, meth-
ods are not associated with preconditions as it is the case in
other hierarchical planning formalisms (as exploited, e.g., by
SHOP2). That is, given a partial plan P contains a plan step
l : t(τ̄ ′) ∈ PS and τ̄ and τ̄ ′ can be unified, then m is ap-
plicable to P . Applying m to P results in a successor plan
P ′ in which t(τ̄) has been removed and replaced by Pm with
the according variable constraints. Any of the causal links in-
volving a precondition or effect of the decomposed abstract
task is inherited down to suitable tasks in Pm. Adhering to
legal methods ensures that this is always possible [Bercher et
al., 2016].

A hybrid planning domain D = 〈Tp, Ta,M〉 contains the
primitive and abstract tasks Tp and Ta, respectively, and
a set of methods M . A hybrid planning problem P =
〈D, Pinit , C〉 is then given by a domain D, an initial partial
plan Pinit , and a set of constants C. The problem’s initial
state and, if given, its goal description, are encoded in Pinit

as additional actions as done in POCL planning.
A partial plan P is a solution (plan) to a hybrid planning

problem, if and only if the following two criteria hold:
• P is a refinement of Pinit with respect to the decom-

position of abstract tasks and the insertion of ordering
constraints, variable constraints, and causal links.
• P is executable in the initial state in the sense of the

standard POCL solution criteria. That is, all tasks are
primitive and ground, for each precondition ϕ of some
plan step ps ′ there is a causal link ps →ϕ ps ′ from a
plan step ps in P , and there are no causal threats. A
plan step ps ′′ threatens a causal link ps →ϕ ps ′ if and
only if it has some effect ¬ψ, such that ψ and ϕ can be
unified and ps ′′ could be ordered between ps and ps ′.

Note that we do not allow the insertion of tasks (cf. first so-
lution criterion), except via decomposition of abstract tasks,
in order to stick to the standard HTN solution criteria [Erol et
al., 1994b; Alford et al., 2015a] as opposed to a relaxation
thereof, called HTN planning with task insertion, TIHTN
planning [Geier and Bercher, 2011; Alford et al., 2015b].

4 On the Task Decomposition Graph
The so-called task decomposition graph (TDG) [Elkawkagy
et al., 2012] represents the AND/OR structure of the task hi-

erarchy. Since it is a canonical representation of hierarchi-
cal problems, similar structures are used for various purposes
(e.g., as the basis for HTN planning systems [Lotem et al.,
1999]). We use it to ground the domain model and to es-
timate the remaining effort of turning a given abstract task
into a primitive plan. We first give a formal definition of
TDGs, which is equivalent to the one given by Elkawkagy
et al. [2012], but simplified and therefore more intuitive.

Definition 1 (Task Decomposition Graph (TDG)). Let P =
〈D, Pinit , C〉 be a hybrid planning problem with domain
D = 〈Tp, Ta,M〉. Without loss of generality, we assume
that Pinit contains just a single ground abstract task TOP for
which there is exactly one method in M .1

The bipartite graph G = 〈VT , VM , ET→M , EM→T 〉, con-
sisting of a set of task vertices VT , method vertices VM , and
edges ET→M and EM→T is called the TDG of P if it holds:

1. base case (task vertex for the given task)
TOP ∈ VT , the TDG’s root.

2. method vertices (derived from task vertices)
Let vt ∈ VT with vt = t(c̄) and (t(τ̄), Pm, VCm) ∈ M .
Then, for all vm ∈ GroundVCm∪{τ̄=c̄}(Pm) holds:
• vm ∈ VM • (vt, vm) ∈ ET→M .

3. task vertices (derived from method vertices)
Let vm ∈ VM with vm = 〈PS,≺, CL, VC〉. Then, for all
plan steps l : t(c̄) ∈ PS with vt = t(c̄), holds:
• vt ∈ VT • (vm, vt) ∈ EM→T .

4. tightness
G is minimal, such that 1. to 3. hold.

The definition works inductively by first requiring that the
problem’s initial ground task TOP1 is part of the TDG as its
root. The second criterion, one of the inductive steps, requires
that for all methods that are applicable to any task vertex of
the TDG, their respective ground partial plans are method ver-
tices of the TDG. The third criterion, the second inductive
step, requires any task in any of the TDG’s method vertices
to be a task vertex of the TDG. Finally, the last criterion en-
sures minimality of the graph, so that no vertexes or edges are
in the TDG other than the ones demanded by the previous cri-
teria. Graphical illustrations of example TDGs are provided
by Lotem et al. [1999], Elkawkagy et al. [2012], and in Fig. 1.

Due to the undecidability of HTN planning [Erol et
al., 1994b; Geier and Bercher, 2011] and hybrid planning
[Bercher et al., 2016], there cannot always be a limit on the
number of method applications to find a solution. However,
since the TDG contains each decomposition method and task
at most once, the TDG is always finite.

Def.1 incorporates all tasks that can be reached via de-
composing the initial partial plan. Instead, we deploy the
technique by Elkawkagy et al. [2010] that removes parts of
the TDG which are unreachable when considering a delete-
relaxed reachability analysis of the primitive tasks.

1If the problem specifies an initial partial plan Pinit we can ob-
tain the required form by adding a new artificial (parameter-free)
abstract task TOP that decomposes exactly into Pinit .



5 An Admissible Heuristic Based on the TDG
In case TDG-recomputation is not enabled, the proposed
heuristic is a pre-processing heuristic, since it calculates the
TDG only once before planning and assigns cost estimates to
each of its vertices that also do not change. During search,
these values are retrieved for a given search node. We as-
sume that we have given a TDG and show how these cost es-
timates are calculated. To ensure termination, we assume that
every primitive ground task t(c̄) has a non-negative action
cost cost(t(c̄)) ∈ R+ and that the TDG contains only abstract
tasks that can be refined into a set of primitive tasks. Abstract
tasks that do not fulfill the latter property can easily be iden-
tified in polynomial time by relying on a bottom-up reacha-
bility analysis (proof of Thm. 3.1 by Alford et al. [2014]).

We estimate the effort of refining an abstract task vertex
by minimizing over the estimated effort of its method ver-
tices. Analogously, the effort of refining a method vertex can
be estimated by summing over the estimates of the tasks it
contains. We do this for each task in the TDG. The seman-
tics behind this calculation can be regarded as the cost of the
least-expensive set of primitive tasks into which a given ab-
stract task can be refined. This implies that these tasks must
not necessarily form an executable plan, but they can all be
made applicable using delete-relaxed primitive tasks, as they
would not be in the TDG otherwise.
Definition 2 (TDG Cost Estimates).
Let 〈VT , VM , ET→M , EM→T 〉 be a TDG.

hT (vt) :=

{
cost(vt) if vt is primitive

min
(vt,vm)∈ET→M

hM (vm) else (1)

For a method vertex vm = 〈PS,≺, CL, VC〉, we set:

hM (vm) :=
∑

(vm,vt)∈EM→T

hT (vt) (2)

We want to emphasize that each cost estimate of the TDG’s
vertices is finite even though the TDG itself might be cyclic.
Intuitively spoken, it can never be optimal (or required) to run
into a cycle for the sake of minimizing the estimates.

We use the following algorithm to compute the cost esti-
mates. First, we identify all strongly connected components
(SCCs) of the TDG, which is possible in polynomial time.
All primitive tasks form an SCC on their own, since they do
not have outgoing edges. They can be assigned their cost
value according to hT . We then sort all SCCs topologically,
which is possible since their dependencies form a directed
acyclic graph. We then process them in their topological (pos-
sibly partial) order, starting with the SCCs containing prim-
itive tasks. For the remaining SCCs, we use an iterate-until-
fixpoint procedure. We start by initializing the estimates for
all vertices in an SCC with ∞. Then we iterate over these
vertices and use the formulae for hT and hM to update the re-
spective estimates. This iteration is repeated until no value in
the SCC has changed, i.e., until the correct estimates accord-
ing to Def. 2 have been computed. This fixpoint is reached
after a polynomial number of steps, because in each itera-
tion at least one vertex in the SCC is assigned its final value,
which can be proven as follows. If the SCC contains one

vertex, the claim is trivial. Otherwise, there are one or more
vertices in it with outgoing edges. Consider a method vertex
in an SCC: since it has been included, all other vertices are
reachable from this one, i.e., at least one of its edges points to
a vertex in the SCC. Thus, one of the outgoing edges of the
SCC must originate from a task vertex (otherwise there were
an infinite recursion and the SCC would have been pruned).
Since the costs of a method vertex are additive with respect
to its children, the method vertices will be at least as costly
as the cheapest task vertex in the SCC. One of the outgoing
edges of the SCC originating from a task vertex vt will lead
to a method vertex with minimal cost estimate c. As noted,
every recursion must leave the SCC via a task vertex, and we
have picked the cheapest task vertex, therefore this is the ver-
tex with minimal costs (in the fixpoint). Since all estimates
in the SCC must be greater (or equal) to c, the vertex vt gets
assigned c as its fixpoint cost in the first round of iterations.
Since we have found the edge that determines the value of vt,
all other outgoing edges can be ignored from now on. Ignor-
ing these edges, vt falls out of the SCC. As such, the size of
the SCC would decrease and, by induction, n iterations suf-
fice to reach the fixpoint for an SCC with n vertices.

Def. 2 and the procedure above further forms an improve-
ment of the so-called minimal modification effort (MME)
heuristic, which is designed for hybrid planning systems that
rely on POCL search techniques [Bercher et al., 2014b].
MME is also based on the idea to exploit a TDG via mini-
mizing over different methods and summing within the same
method. But instead of action costs, it estimates the num-
ber of required decompositions and causal link insertions a
hybrid planner needs to perform: in (1), primitive tasks are
estimated by the number of their preconditions and abstract
tasks by the minimum as given here plus 1 for performing a
decomposition. In (2), we subtract |CL| from the given sum
to account for causal links that are already in a partial plan.
But in contrast to Def. 2, MME relies on a visited list of ab-
stract tasks that are taken into account when calculating the
TDG estimates. This list ensures termination in the presence
of cycles (cf. Def. 3 by Bercher et al. [2014b]), but it also pro-
duces smaller and less accurate estimates in these cases. We
give the respective improved version of the MME heuristic
later in this section.

During search, given a current partial plan and one of its
abstract plan steps l : t(τ̄), we retrieve the estimate of one of
its compatible groundings in the TDG, comp(t(τ̄)). When
using the TDG cost estimates given in Def. 2, the resulting
heuristic is called cost-aware TDG heuristic, TDGc.

Definition 3 (TDGc Heuristic).
Let P = 〈PS,≺, CL, VC〉 be a partial plan. Then,

hTDGc(P ) :=
∑

l:t(τ̄)∈PS
t(τ̄) abstract

(
min

vt∈comp(t(τ̄))
hT (vt)

)

TDGc basically relies upon the same mechanics as the def-
inition of the method vertex estimate in Def. 2, since both
inputs are partial plans. The heuristic for the costs of any
missing actions can be estimated by summing over the heuris-
tic estimates of its abstract tasks (which were pre-calculated,



cf. Def. 2). Since these tasks might still be lifted in the given
partial plan, we minimize over the possible groundings.

Since Def. 2 minimizes for each abstract task over its avail-
able methods, and again Def. 3 minimizes over all possible
groundings, the resulting heuristic is clearly admissible.
Prop 1. The cost-aware TDG heuristic hTDGc is admissible
with respect to action costs.

Note that removing unreachable parts of the TDG [Elka-
wkagy et al., 2010] does not influence admissibility. In fact,
such pruning makes the heuristic more accurate, which means
that it profits from any future research that is concerned with
identifying and removing more unreachable parts of the TDG.

When using the modification-aware estimates described
above, we obtain an improved variant of the MME heuristic,
which we call modification-aware TDG heuristic, TDGm.
Definition 4 (TDGm Heuristic).
Let P = 〈PS,≺, CL, VC〉 be a partial plan. Then,

hTDGm(P ) :=
∑

l:t(τ̄)∈PS

(
min

vt∈comp(t(τ̄))
hT (vt)

)
− |CL|

5.1 Recomputing the TDG During Planning
All TDG-based search strategies or heuristics developed so
far are pre-processing heuristics [Elkawkagy et al., 2012;
Bercher et al., 2014b]. That is, they rely on a TDG that is
computed only once – prior search. However, decompositions
that are performed during search influence the TDG and, con-
sequently, the accuracy of any heuristic that is based upon it.
Therefore, we show after which plan modifications the TDG
could possibly change and after which it can not.

In order to understand in which situations a recomputation
of the TDG can result in a changed TDG, we need to explain
the TDG construction process. We do this only very briefly
and refer to the paper by Elkawkagy et al. [2010] for any fur-
ther details. Starting from the given initial partial plan, all
primitive tasks (i.e., actions) that are reachable via decompo-
sition are identified. Then, using only these actions, a relaxed
reachability analysis is performed. Afterwards, the TDG is
constructed and limited to partial plans in which all actions
are reachable via the relaxed reachability analysis.

Applying methods implies that certain actions may not be
reachable via decomposition anymore. The non-availability
of these actions might even prove further actions unreachable
via the relaxed reachability analysis. Thus, recomputing a
TDG after decompositions can improve heuristic estimates.
In the following, we only explain the technique for the pro-
posed heuristic, i.e., we assume h = hTDGc – but the recom-
putation can also be done for the TDGm heuristic.

Consider the example given in Fig. 1. When assuming
cost(p3) = i and hM (Pm4) = hT (p4)+hT (a3) = j > i, we
get hT (a2) = i. We now consider how the heuristic estimates
with and without TDG-recomputation differ after the abstract
task a1 in P

init
is decomposed. After decomposing a1 we get

two possible successor plans, P1 and P2. Since they both
contain the same abstract task a2, we get the same heuris-
tic value h(P1) = h(P2) = i without TDG-recomputation.
When recomputing the TDG, we can exploit updated reach-
ability information as follows. When assuming that the only

a1 a2

P
init

p1

m1

p2

m2

p3

m3

p4 a3

m4
Pm4

enables

a1 a2

P
init

p1 a2

P1

p2 a2

P2

use m1

use m2

Figure 1: On top, we show a fragment of a TDG and at the bottom
we show a fragment of a search space. Partial plans are denoted
by surrounding boxes, abstract tasks by round boxes, and primitive
tasks by square boxes.

action that enables the executability of p3 is p2 and further as-
sume that p2 cannot be reached via decomposing a3, then the
TDG for P1 will not include the sub graph that is introduced
via m3. Thus, we get h(P1) = j and h(P2) = i.

We can thus simply recompute the TDG after each decom-
position. In lifted planning, any new variable binding might
also influence the set of reachable tasks, but performing the
reachability analysis in all these cases turned out to be too
inefficient, so we assume a ground model. So, we can set
h(P ′) = h(P ) for a partial plan P and its successor P ′ that
is obtained by a modification other than a decomposition.

Even when a decomposition has been performed, there is a
special case in which we can reuse the parent node’s heuris-
tic value. This is the case if an abstract task has just a single
decomposition method in its initial TDG for all its ground-
ings, since applying such a method does not influence the
set of reachable actions. In previous work, we analyzed the
structural properties of the planning benchmarks that we also
use in this evaluation. We observed that the average branch-
ing factor of the TDG is often smaller than 2 [Bercher et al.,
2014b], which means that this special case does occur in prac-
tice. Further details about how often this occurs in our prob-
lem set is given in the empirical evaluation.

Let t be the decomposed task and vm =
〈PSm,≺m,CLm, VCm〉 its single method vertex
in the initial TDG. Due to Def. 2, we get that
hT (t) = hM (vm) =

∑
l:t′∈PSm

hT (t′). Since all primitive
tasks that are introduced via decomposing t were previously
accounted for by the heuristic for P , but are now part of P
itself and therefore contribute to its cost, we get the new
heuristic value h(P ′) = h(P )−

∑
l:t′∈PSm,t′primitive cost(t

′).
Note that this incremental heuristic computation, which

calculates a heuristic h(P ′) based on its parent’s heuristic
h(P ), also improves runtime of the TDG-based heuristics that
do not perform TDG-recomputation.



6 Evaluation
This section introduces the benchmark set, the search strate-
gies and heuristics, and presents the empirical results.

6.1 Domains
The empirical evaluation is done based on four different HTN
planning domains. Originally, these domains are hybrid plan-
ning domains. We converted them into standard HTN do-
mains by removing preconditions and effects from the ab-
stract tasks and by further removing all causal links that are
present in the methods’ partial plans.

The domains include all the ones used by Elkawkagy et
al. [2010; 2012] and Bercher et al. [2014b] for their evalua-
tions, which were also used by Alford et al. [2016a]. These
are the UM-Translog domain (originally designed specifically
for HTN planning), the SmartPhone domain (originally de-
signed for hybrid planning), and the Satellite and Woodwork-
ing domains (both were originally designed for the Interna-
tional Planning Competitions (IPCs), which were adapted to
hybrid planning). For further information about these four
domains, we refer to previous work [Bercher et al., 2014b].
In total, we have 59 problem instances. Note that all domains
use unit costs. Thus, for these domains, the proposed heuris-
tic estimates the length of a shortest solution.

6.2 Experimental Setting
We evaluate the proposed TDGc heuristic in terms of its
heuristic guidance power (in form of coverage) and investi-
gate whether its admissibility creates plans of better quality
for the evaluated problem set.

We implemented all strategies within the same system to
allow a fair comparison. We use the hybrid planner PANDA
[Bercher et al., 2014b, Alg. 1], which is capable of solving
HTN and hybrid planning problems. Its code will be made
available online (www.uni-ulm.de/en/in/ki/panda).

Search Strategies We evaluate the blind strategies Uniform
cost, Breadth First (BF), and Depth First (DF) search.

We also compare our heuristic search approach with other
search techniques (i.e., systems) from the literature. We have
simulated the UMCP algorithm [Erol et al., 1994a, Fig. 2]
within the used system. It always chooses some partial plan
according to a plan selection function based on BF, DF, or
a “heuristic” that greedily selects a partial plan with a least
number of abstract tasks. In case the selected partial plan is
primitive, UMCP turns it into a solution or dismisses it al-
together in case this is impossible. We also include a tech-
nique for solving HTN problems that is based on a transla-
tion into classical planning [Alford et al., 2016a]. Since HTN
planning is more expressive than classical planning, any such
translation requires a bound (for Alford et al.’s translation the
maximum size of a task network under progression). If the
resulting problem is solvable so is the original one (and a so-
lution can be extracted from the classical solution), but if not,
there might still be a solution requiring a higher bound. Al-
ford et al. [2016a] provided a mechanic to compute a lower
bound on the progression bound and showed empirically that
the smallest bound allowing for a solution is often near this

lower bound. We have therefore started with the translation
using Alford et al.’s lower bound and increased the bound
by one if no solution was found. The translated classical
problems are solved by existing PDDL planners. We use the
best-performing (non-optimal) planner of the evaluation by
Alford et al. [2016a], JASPER [Xie et al., 2014]. In addition,
we use the (optimal) SymBAStar∗-2 planner [Torralba et al.,
2014], the winner of the optimal track of the IPC 2014. Since
the compilation creates additional actions, action costs for the
original primitive tasks are unaltered and the costs for the new
ones are set to zero. Note that JASPER can handle an ADL
model, whereas SymBAStar∗-2 handles only STRIPS. The
two configurations are referred to as Compile and Compileopt,
respectively. We have set the time limit for runs of the plan-
ner of each translated problem to two minutes (increasing this
bound does not improve the results of the planner). The times
reported are the sum of run times for all runs until a solution
has been found. Please note that we did not include a com-
parison to SHOP2, because our models do not encode search
guidance and, consequently, their decomposition methods do
not specify preconditions on which the success of SHOP2 is
based. For these models, SHOP2 would basically perform a
blind DF progression search.

Additionally, we use both A∗ as well as Greedy-A∗, where
the heuristic is accounted for by factor 2, denoted by A∗2.
Because PANDA is a hybrid planner (i.e., it performs plan-
space-based search relying on POCL concepts), we can also
use the well-known POCL heuristics hadd and hradd [Younes
and Simmons, 2003] as well as hrelax and hOC [Nguyen and
Kambhampati, 2001]. Since these heuristics are designed
for (non-hierarchical) POCL problems, they only take the
primitive tasks in a given partial plan into account, but make
up for being less informed about the hierarchy by being ex-
tremely fast. In addition to the TDGc heuristic, we evaluate
our improved version of the hybrid planning heuristic MME
[Bercher et al., 2014b], TDGm. We refer to the variants with
recomputation as TDGc-rec and TDGm-rec, respectively.

For our experiments, we ground the models prior search
and deploy the TDG construction and domain model reduc-
tion technique by Elkawkagy et al. [2010].

Hardware We used a machine with Xeon E5-2660 v3
CPUs with 2.60 GHz base frequency, a memory limit of 10
GB, and a time limit of 10 minutes (CPU time) per run.

6.3 Results
Coverage Results are given in Tab. 1. We can observe that
already the uninformed, blind search strategies perform im-
pressively well with solving between 47 and 53 problems
out of 59. This can in part be attributed to our ground-
ing procedure [Elkawkagy et al., 2010], which reduces the
model based on the given problem instances. Bercher et
al. [2014b] showed that almost all resulting (grounded) prob-
lem instances become acyclic.

The UMCP strategies perform similarly to the uninformed
ones. They solve between 47 and 52 problems. The two con-
figurations based on the compilation technique are perform-
ing quite differently. The compilation in combination with



Table 1: Per domain and strategy, we present the number of solved
problem instances (#s), the number of optimally solved instances
(#o), and the maximal plan cost over all solved problem instances
relative to the optimal solution (cost).

Strategy
UM-Tr. SmartPh. Satellite Woodw. Summary

(21 inst.) (5 inst.) (22 inst.) (11 inst.) (59 inst.)
#s #o cost#s#o cost #s #o cost #s #o cost #s #o cost

bl
in

d Uniform 21 21 1.00 4 4 1.00 17 17 1.00 8 8 1.00 50 50 1.00
BF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00
DF 21 21 1.00 5 1 1.60 19 7 2.09 8 4 1.44 53 33 2.09

sy
st

em
s UMCPBF 21 21 1.00 4 4 1.00 15 15 1.00 7 7 1.00 47 47 1.00

UMCPDF 21 21 1.00 4 1 1.60 17 6 2.09 6 4 1.29 48 32 2.09
UMCPh 21 21 1.00 5 4 1.40 19 11 1.50 7 7 1.00 52 43 1.50
Compile 18 18 1.00 5 5 1.00 21 18 1.10 5 5 1.00 49 46 1.10
Compileopt 16 16 1.00 5 5 1.00 9 9 1.00 5 5 1.00 35 35 1.00

A
∗

ADD 21 21 1.00 4 1 1.20 21 21 1.00 10 9 1.17 56 52 1.20
ADD-r 21 21 1.00 5 5 1.00 19 18 1.08 9 4 1.25 54 48 1.25
Relax 21 21 1.00 5 5 1.00 18 18 1.00 10 8 1.17 54 52 1.17
OC 21 21 1.00 4 4 1.00 21 21 1.00 10 7 1.17 56 53 1.17
TDGm/-rec 21 21 1.00 5 5 1.00 22 21 1.31 9 9 1.00 57 56 1.31
TDGc/-rec 21 21 1.00 5 5 1.00 18 18 1.00 8 8 1.00 52 52 1.00

A
∗ 2

ADD 21 21 1.00 4 0 1.20 21 20 1.09 10 9 1.17 56 50 1.20
ADD-r 21 21 1.00 5 5 1.00 20 17 1.10 10 4 1.25 56 47 1.25
Relax 21 21 1.00 5 5 1.00 18 15 1.10 10 4 1.25 54 45 1.25
OC 21 21 1.00 4 4 1.00 22 21 1.09 10 7 1.22 57 53 1.22
TDGm/-rec 21 21 1.00 5 5 1.00 22 17 1.31 9 8 1.08 57 51 1.31
TDGc 21 21 1.00 5 5 1.00 20 20 1.00 10 10 1.00 56 56 1.00
TDGc-rec 21 21 1.00 5 5 1.00 20 20 1.00 11 11 1.00 57 57 1.00

JASPER performs similar to the previously discussed config-
urations: it solves 49 problems. The compilation that uses
the optimal planner SymBAStar∗-2 is performing worst with
solving only 35 instances. This can be attributed to two facts:
First, because it is an optimal planner, which are known to
incur extra search effort to guarantee optimality. Second, the
compilation used for SymBAStar∗-2 relies on a basic STRIPS
model, which is much larger than the ADL model that is used
for JASPER [Alford et al., 2016a].

Concerning the evaluated heuristics, we can make several
observations. First, they all perform very good, solving be-
tween 54 and 57 problems. We did not expect that the four
POCL heuristics perform so impressively well, since they are
completely unaware of the hierarchy and ignore all abstract
tasks (this would be different if we were using the original
hybrid formulations, in which also abstract tasks use precon-
ditions and effects). Similar to the good performance of the
uninformed strategies, we assume that this can in part be at-
tributed to our grounding procedure that eliminates much of
the problems’ difficulty. With A∗, all heuristics except for
TDGc perform similarly well. TDGc shows the lowest cov-
erage solving only 52 problems, which we attribute to its ad-
missibility. Best performing is the TDGm heuristic, which
solves 57 problems. With A∗2, TDGm remains being among
the best configurations, but additionally the TDGc heuristic is
among the best ones, which solves 56 problems when TDG-
recomputation is disabled and 57 if it is enabled.

Plan Quality In Tab. 1, we give for each strategy and do-
main the number of problems that were solved optimal as well
as the maximal solution cost relative to the optimal one. We
assume that many of our problem instances only allow for

Table 2: Per domain, we present the number of recomputations di-
vided by number of decompositions (rec/dec) and the number of
improved heuristic estimates divided by number of recomputations
(h-im/rec). For each of these values we report the minimum (min),
maximum (max), and mean of means (µ).

Strategy rec/dec h-im/rec rec/dec h-im/rec
min max µ min max µ min max µ min max µ

UM-Translog SmartPhone

A
∗ TDGm .027 .188 .086 .000 .333 .032 .300 .691 .476 .000 .117 .023

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .473 .000 .041 .008

A
∗ 2TDGm .027 .188 .086 .000 .333 .032 .300 .713 .484 .000 .121 .024

TDGc .027 .188 .086 .000 .333 .032 .300 .647 .471 .000 .041 .008
Satellite Woodworking

A
∗ TDGm .857 1.00 .956 .110 .608 .248 .294 .932 .581 .000 .548 .246

TDGc .750 1.00 .913 .087 .592 .264 .294 .943 .600 .000 .592 .330

A
∗ 2TDGm .857 1.00 .953 .110 .617 .268 .294 .961 .611 .000 .721 .306

TDGc .814 1.00 .934 .049 .609 .256 .294 .943 .615 .000 .587 .333

solutions with the same number of actions, which makes the
comparison of plan quality for these instances meaningless.
We assume this being the case because for many instances,
all strategies found solutions of the same quality. This is the
case for all problems in UM-Translog, for 1 of 5 problems in
SmartPhone, for 6 of 22 problems in Satellite, and for 2 of 11
problems in the Woodworking domain.

The overall worst-quality plans are produced by DF, which
produces supoptimal solutions in 20 out of 53 cases. Their
size is up to a factor of 2.09 as large as the optimal one. We
can see that A∗ with the admissible TDGc heuristic is the least
successful A∗ variant in terms of coverage, but guarantees to
find optimal solutions. Other heuristics sometimes find so-
lutions of suboptimal quality, ranging up to 31%. However,
in total, non-optimal solutions are only found in a few cases
(see Tab. 1, summary column). E.g., TDGm, although being
inadmissible, solves 56 of 57 problems optimal with A∗. Us-
ing A∗2, TDGc/-rec belong to the best-performing heuristics –
solving 56 and 57 problems, respectively, all of them optimal.

TDG-Recomputation As indicated in Tab. 1, TDGm and
TDGm-rec produce exactly the same results in terms of cov-
erage and plan quality for A∗ and A∗2. The same holds for
TDGc and TDGc-rec for A∗, but for A∗2, TDGc-rec solves
one problem instance more than TDGc. The impact of the
recomputation can be summarized as follows: it increases
heuristic accuracy resulting into more-informed heuristics
(Tab. 2), which in turn results into smaller search spaces that
sometimes come at the cost of increased computation times
(Tab. 3) due to the overhead of recomputation.

Tab. 2 summarizes how often the TDG is recomputed and
how often these recomputations are beneficial in terms of
more accurate heuristic estimates. We report rec/dec, which
gives the ratio of TDG-recomputations to performed decom-
positions. A ratio of 1 indicates that the TDG is rebuilt each
time an abstract task is decomposed. We can see that in the
UM-Translog domain, the recomputation is almost never per-
formed, which goes back to the simplicity of the problem in-
stances, where the TDG often has an average branching fac-



Table 3: For each domain, we summarize in how many problem
instances the search space or time was deduced (<), unchanged (=),
or increased (>), due to TDG recomputation.

Strategy space time space time space time space time
<=><=><=><=><=><=><=><=>

UM-Translog SmartPhone Satellite Woodworking

A
∗ TDGm 2 19 0 1 15 5 1 4 0 1 4 0 22 0 0 0 17 5 7 2 0 1 6 2

TDGc 2 19 0 0 13 8 1 4 0 0 4 1 18 0 0 0 10 8 6 2 0 4 3 1

A
∗ 2TDGm 2 19 0 3 16 2 1 4 0 0 4 1 22 0 0 0 13 9 4 5 0 1 6 2

TDGc 2 19 0 4 11 6 1 4 0 1 4 0 20 0 0 0 11 9 5 5 0 4 3 3

tor near 1 [Bercher et al., 2014b]. All problems are solved
in less than 7 s by all strategies with only little deviation be-
tween them – so this domain does not provide much insights.
In the SmartPhone and Woodworking domains, recomputa-
tion is done in approximately 50% and 60% of all decompo-
sitions. In Satellite, this percentage ranges up to 95.6%. We
are also interested in the fact whether these recomputations
are beneficial, i.e., whether the heuristic estimates based on a
recomputed TDG are more accurate than compared to using
the TDG of its parent. That value is given by h-im/rec, the
ratio of improved heuristic estimates to performed recompu-
tations. A ratio of 1 means that every recomputation produced
an improved heuristic value. For UM-Translog, the mean is
relatively small, but this is due to the fact that only in 2 of 21
instances the recomputation improves the heuristic (in both
instances, the ratio is 33.3% for all strategies). Similarly for
SmartPhone: Here, the reduction increases heuristic accuracy
in only one problem instance (see table for its ratio). For the
others, we see a mean heuristic improvement in about 25%
to 33% of all cases. This tells us that further research should
investigate the issue of predicting when a recomputation will
result into smaller TDGs thereby increasing the ratio h-im/rec
(i.e., by reducing the number of non-beneficial recomputa-
tions). Interestingly, in nearly all cases the heuristic was in-
creased to∞ if it was increased at all. This means that in our
problem set, if any action that belongs to the set of least-cost
reachable actions becomes unreachable in the TDG, then so
does every action and the entire set becomes empty.

Tab. 3 summarizes how often the recomputation pays off
in terms of search space and search time. We can see that
the search space never becomes larger and that the impact of
recomputation depends severely on the specific domain. In
the UM-Translog and Smartphone domains the search space
is reduced in only a few instances, which is non-surprising
given the data reported above. In the respective SmartPhone
instance, the search space is reduced by 35% (both A∗ and
A∗2) for TDGm-rec and by 26% (A∗) and 28% (A∗2) for TDGc-
rec, whereas the runtimes are unaffected compared to the runs
without recomputation. In the Satellite and Woodworking do-
mains, search space reductions occur more frequently. Even
though every search space gets reduced in Satellite, these re-
ductions are usually quite small and do therefore not pay off
in terms of search time. E.g., in this domain, the highest
relative runtime increase is from 10 s to 20 s with a search
space reduction from 49.754 to 47.048 search nodes (5.4%).
In Woodworking, the reductions are usually larger. However,

also in this domain, they are not always severe enough to pay
off in terms of runtime. The worst result in terms of runtime,
e.g., is given in a problem instance where TDGm reduces the
search space from 121.661 nodes to 96.824 (by 20%). Due to
the overhead of recomputing the TDG, the runtime increases
here from 32 s to 71 s (factor 2.22). In total, the reduction
pays off in the majority of all instances in terms of runtime
in this domain (and it allows to solve one additional problem,
not reflected in Tab. 3). In one instance, search space was re-
duced from 86.935 to 15.213 (by 83%) coinciding with run-
time reduction from 15 s to 8 s (factor 0.46) for TDGm and for
TDGc from 2.360 to 158 (by 0.93%) coinciding with runtime
reduction from 5 s to 3 s (factor 0.4).

7 Summary and Conclusion
We presented one of the first admissible heuristics for hier-
archical planning. Our empirical evaluation reveals that, de-
spite its admissibility, the heuristic shows good performance
in terms of coverage when deployed with Greedy-A∗. With
A∗, it performs slightly worse than other evaluated heuris-
tics in terms of coverage, but it guarantees to find optimal
solutions – whereas other strategies also produce suboptimal
solutions. We further proposed a technique that improves
the heuristic quality. The evaluation shows that it often re-
duces the explored search space, but often at the cost of in-
creased solving time. The search space reductions vary sig-
nificantly between the different problem instances. The high-
est achieved search space reduction is 93%, which coincides
with a search time reduction of 40%.
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Reid G. Simmons. VHPOP: Versatile heuristic partial or-
der planner. JAIR, 20:405–430, 2003.


