
HTN Plan Repair Using Unmodified Planning Systems

Daniel Höller and Pascal Bercher and Gregor Behnke and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany
{daniel.hoeller, pascal.bercher, gregor.behnke, susanne.biundo}@uni-ulm.de

Abstract

To make planning feasible, planning models abstract from
many details of the modeled system. When executing plans
in the actual system, the model might be inaccurate in a crit-
ical point, and plan execution may fail. There are two op-
tions to handle this case: the previous solution can be modi-
fied to address the failure (plan repair), or the planning pro-
cess can be re-started from the new situation (re-planning). In
HTN planning, discarding the plan and generating a new one
from the novel situation is not easily possible, because the
HTN solution criteria make it necessary to take already exe-
cuted actions into account. Therefore all approaches to repair
plans in the literature are based on specialized algorithms. In
this paper, we discuss the problem in detail and introduce a
novel approach that makes it possible to use unchanged, off-
the-shelf HTN planning systems to repair broken HTN plans.
That way, no specialized solvers are needed.

1 Introduction
When generating plans that are executed in a real-world sys-
tem, the planning system needs to be able to deal with exe-
cution failures, i.e. with situations during plan execution that
are not consistent with the predicted state. Such situations
may arise for several reasons. Planning models used for de-
terministic planning have to abstract from many details of
the modeled system and the model might be inaccurate in a
critical point. Up to a certain amount of non-determinism in
the modeled system, it might also be beneficial to use deter-
ministic planners and deal with execution errors.

Two mechanisms have been developed to deal with such
failures: Systems that use re-planning discard the original
plan and generate a new one from the novel situation. Sys-
tems using plan repair adapt the original plan so that it can
deal with the unforeseen change. In classical planning, the
sequence of already executed actions implies no changes
other than state transition. The motivation for plan repair in
this setting has been efficiency (Gerevini and Serina 2000) or
plan stability (Fox et al. 2006), i.e. finding a new plan that is
as similar as possible to the original one.

In hierarchical task network (HTN) planning (Erol,
Hendler, and Nau 1996), the hierarchy has wide influence
on the set of valid solutions and it makes the formalism also
more expressive than classical planning (Höller et al. 2014;
2016). The hierarchy can e.g. enforce that certain actions

might only be executed in combination. By simply re-
starting the planning process from the new state, those im-
plications are discarded, thus simple re-planning is no option
and plans have to be repaired, i.e., the implications have to
be taken into account. Several approaches have been pro-
posed in the literature, all of them use special repair algo-
rithms to find the repaired plans.
• In this paper we give an elaborate discussion on the issues

that arise when using a re-planning approach that re-starts
the planning process from the new state in HTN planning.

• We introduce a novel transformation-based approach that
makes it possible to use unchanged, off-the-shelf HTN
planning systems to repair broken HTN plans. That way,
no specialized solvers are needed.
Next, we introduce HTN planning, specify the formal

problem, discuss issues arising when repairing HTN plans,
summarize related work, and give our transformation.

2 Formal Framework
This section first introduces HTN planning and specifies the
repair problem afterwards.

2.1 HTN Planning
In HTN planning, there are two types of tasks: primitive
tasks equal classical planning actions, which cause state
transitions. Abstract tasks describe more abstract behavior.
They can not be applied to states directly, but are iteratively
split into sub-tasks until all tasks are primitive.

We use the formalism by Höller et al. (2016). Here,
a classical planning domain is defined as a tuple Pc =
(L,A, s0, g, δ), where L is a set of propositional state fea-
tures, A a set of action names, and s0, g ∈ 2L are the initial
state and the goal definition. A state s ∈ 2L is a goal state if
s ⊇ g. The tuple δ = (prec, add , del) defines the precondi-
tions prec as well as the add and delete effects (add , del ) of
actions, all are functions f : A → 2L. An action a is appli-
cable in a state s if and only if τ : A × 2L → {true, false}
with τ(a, s) ⇔ prec(a) ⊆ s holds. When an (applicable)
action a is applied to a state s, the resulting state is defined
as γ : A× 2L → 2L with γ(a, s) = (s \ del(a)) ∪ add(a).
A sequence of actions (a0a1 . . . al) is applicable in a state
s0 if and only if for each ai it holds that τ(ai, si), where
si is for i > 0 defined as si = γ(ai−1, si−1). We will call



the state sl+1 the resulting state from the application. A se-
quence of actions (a0a1 . . . al) is a solution if and only if it
is applicable in the initial state s0 and results in a goal state.

An HTN planning problem P = (L, C, A, M, s0, tnI ,
g, δ) extends a classical planning problem by a set of ab-
stract (also called compound) task names C, a set of de-
composition methods M , and the tasks that need to be ac-
complished which are given in the so-called initial task net-
work tnI . The other elements are equivalent to the classical
case. The tasks that need to be done as well as their order-
ing relation are organized in task networks. A task network
tn = (T ,≺, α) consists of a set of identifiers T . An identi-
fier is just a unique element that is mapped to an actual task
by a function α : T → A∪C. This way, a single task can be
in a network more than once. ≺ : T ×T is a set of ordering
constraints between the task identifiers. Two task networks
are called to be isomorphic if they differ solely in their task
identifiers. An abstract task can by decomposed by using a
decomposition method. A method is a pair (c, tn) of an ab-
stract task c ∈ C that specifies to which task the method is
applicable and a task network tn , the method’s subnetwork.
When decomposing a task network tn1 = (T1,≺1, α1) that
includes a task t ∈ T1 with α1(t) = c using a method
(c, tn), we need an isomorphic copy of the method’s sub-
network tn ′ = (T ′,≺′, α′) with T1∩T ′ = ∅. The resulting
task network tn2 is then defined as follows.

tn2 =((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn →∗ tn ′ to denote that a task network tn
can be decomposed into a task network tn ′ by applying an
arbitrary number of methods in sequence.

A task network tn = (T ,≺, α) is a solution to a plan-
ning problem P if and only if (1) all tasks are primi-
tive, ∀t ∈ T : α(t) ∈ A, (2) it was obtained via de-
composing the initial task network, tnI →∗ tn , (3) there
is a sequence (t1t2 . . . tn) of the task identifiers in T in
line with the ordering constraints ≺, and the application of
(α(t1)α(t2) . . . α(tn)) in s0 results in a goal state.

2.2 Plan Repair Problem in HTN Planning
Next we specify the plan repair problem, i.e., the problem
occurring when plan execution fails (that could be solved by
plan repair or re-planning), please be aware the ambiguity
of this term. A plan repair problem consists of three core el-
ements: The original HTN planning problem P , its original
solution plus its already executed prefix, and the execution
error, i.e., the state deviation that occurred during executing
the prefix of the original solution.

Most HTN approaches that can cope with execution er-
rors do not just rely on the original solution, but also re-
quire the modifications that transformed the initial task net-
work into the failed solution. How these modifications look
like may depend on the underlying planning system, e.g.,
whether it is a progression-based system (Nau et al. 2003;
Höller et al. 2018a) or a plan-space planner (Bercher, Keen,

con(A,C )

con(A,B) con(B ,C )

(using intermediate device/s)

con(A,B)

plug(A,B ,PA,PB )

(direct)

Figure 1: Core methods of an entertainment domain (exam-
ple from Höller et al. 2018a).

and Biundo 2014; Dvor̆ák et al. 2014). To have a general
definition, we include the so-called decomposition tree (DT)
of a given solution tn . A DT is a tree-like representation of
performed decompositions. It forms a witness for a decom-
position leading to the solution (Geier and Bercher 2011). Its
nodes represent tasks; each abstract task is labeled with the
method used for decomposing it, the children in the tree cor-
respond to the subtasks of that specific method. All ordering
constraints are also represented, such that a DT dt yields the
solution tn it represents by restricting the elements of dt to
dt’s leaf nodes.

Definition 1 (Plan Repair Problem). A plan repair problem
can now be defined as a tuple Pr = (P , tns, dt , exe, F

+,
F−) with the following elements. P is the original planning
problem. tns = (T ,≺, α) is the failed solution for it, dt
the DT as a witness that tns is actually a refinement of the
original initial task network, and exe = (t0, t1, . . . tn) is
the sequence of already executed task identifiers, ti ∈ T .
Finally, the execution failure is represented by the two sets
F+ ⊆ L and F− ⊆ L indicating the state features that were
(not) holding contrary to the expected state after execution
the solution prefix exe .

Though they have been introduced before, we want to
make the terms re-planning and plan repair more precise.

Definition 2 (Re-Planning). The old plan is discarded, a
new plan is generated starting from the current state of the
system that caused the execution failure.

Definition 3 (Plan Repair). The system modifies the non-
executed part of the original solution such that it can cope
with the unforeseen state change.

3 About Re-Planning in HTN Planning
In classical planning, a prefix of a plan that has already been
executed does not imply any changes to the environment
apart from the actions’ effects. It is therefore fine to discard
the current plan and generate a new one from scratch from
the (updated) state of the system. HTN planning provides the
domain designer a second means of modeling: the hierarchy.
Like preconditions and effects, it can be used to model both
physics or advice. Figure 1 shows (core parts of) a domain
that models the task of assembling an entertainment system.
The signal flow is thereby modeled via the hierarchy without
using any state features. This can be done by the two given
methods. When two devices A and C have to be connected
(represented by the task con(A,C )), this can be done by us-
ing a third intermediate device B, or directly by performing
a plug action. That way, devices like a TV or DVD player



someTask(safe, . . . )

doWork(. . . )open(safe) close(safe)

Figure 2: A sketch of a domain containing a pair of actions
that have to be executed either both or none.

can be treated equal to cables or adapters and the hierarchy
enforces the signal flow. Other things, like which plug fits
into which port, or which port is free, can be represented in
state. Clearly, this hierarchy represents physics, not advice.

Now imagine a situation where two devices shall be con-
nected and re-planning is performed after half of the connec-
tions. Some cables have already been connected to ports and
thus both are occupied. When re-planning does not include
these circumstances, these cables are just treated as non-free
and new cables are used. That way, resources are wasted and
in worst case, no solution can be found.

Such situations might be considered during domain de-
sign. The domain might include an unplug action, or the re-
cursive connection model can consider plugged cables be-
tween devices. However, it has to be addressed somehow.

Consider another domain where, for a certain action that
causes a safety threat, a second action has to be performed
to make the situation safe again, e.g. an action for opening
a safe. Every safe that is opened must also be closed even-
tually. This can easily be modeled as an HTN domain. A
sketch for such a domain is given in Figure 2. Though the
given domain could also be modeled using some features in
classical planning (e.g. by introducing a closed state feature
and include it in the goal definition for every safe), please
be aware that this is not always the case: Consider e.g. that
one action needs to be done as many times as a second one.
Then, there is no way to ensure it via state, since the state in
planning is usually finite. It can, however, be modeled in the
more expressive HTN formalism (Höller et al. 2016).

As we have seen in our examples, the hierarchy assures
that certain properties hold in every plan and the domain
designer might rely on these properties. There are different
ways to ensure them:
• The responsibility can be shifted to the domain designer,

i.e., the domain must be created in a way that the planning
process can be started from any state of the real-world
system. This leads to a higher effort for the domain ex-
pert and it might also be more error-prone, because the
designer has to consider possible re-planning in every in-
termediate state of the real-world system.

• The reasoning system that triggers planning and provides
the planning problem is responsible to incorporate addi-
tional tasks to make the system safe again. This shifts the
problem to the creator of the execution system. This is
even worse, since this might not even be a domain expert,
and the execution system has to be domain-specific, i.e.,
the domain knowledge is split.

• The repair system generates a solution that has the prop-
erties assured by the hierarchy. This solution leads to a
single model containing the knowledge, the planning do-

main; and the domain designer does not need to consider
every intermediate state of the real system.

Since it represents a fully domain-independent approach, we
consider the last solution to be the best. This leads us to
a core requirement of a system that solves the plan repair
problem: regardless of whether it technically uses plan re-
pair or re-planning, it needs to generate solutions that start
with the same prefix of actions that have already been exe-
cuted. Otherwise, the system potentially discards “physics”
that have been modeled via the hierarchy. Therefore we de-
fine a solution to the plan repair problem as follows.

Definition 4 (Repaired Plan). Given a plan repair problem
Pr = (P , tns, dt , exe, F

+, F−) with P = (L, C, A, M,
s0, tnI , g, δ), tns = (T ,≺, α) and exe = (t0, t1, . . . tn), a
repaired plan is a plan that (1) can be executed in s0, (2) is
a refinement of tnI , and (3) has a linearization with a pre-
fix equal to (α(t0), α(t1), . . . α(tn)) followed by tasks exe-
cutable despite the unforeseen state change.

4 HTN Plan Repair: Related Work
Before we survey practical approaches on plan repair in
HTN planning, we recap the theoretical properties of the
task. Modifying existing HTN solutions (in a way so that the
resulting solution lies still in the decomposition hierarchy) is
undecidable even for quite simple modifications (Behnke et
al. 2016) and even deciding the question whether a given se-
quence of actions can be generated in a given HTN prob-
lem is NP-complete (Behnke, Höller, and Biundo 2015;
2017). Unsurprisingly, the task given here – finding a so-
lution that starts with a given sequence of actions – is indeed
undecidable (Behnke, Höller, and Biundo 2015).

We now summarize work concerned with plan repair or
re-planning in hierarchical planning in chronological order.

One of the first approaches dealing with execution er-
rors in hierarchical planning is given by Kambhampati and
Hendler (1992). It can be characterized as plan repair, since
they repair the already-found solution with the least num-
ber of changes. Though they assume a hierarchical model,
the task hierarchy is just advice, i.e., the planning goals are
not defined in terms of an initial task network, but as state-
based goal. Abstract tasks use preconditions and effects so
that they can be inserted as well. They do not base their work
upon an execution error, such as an unexpected change of a
current situation, but instead assume that the problem de-
scription changes, i.e., the initial state and goal description.

Drabble, Dalton, and Tate (1997) introduced algorithms
to repair plans in case of action execution failure as well as
unexpected world events by modifying the existing plan.

Boella and Damiano (2002) propose a technique that they
refer to as re-planning, but the work can be seen as plan
repair according to our classification. They propose a re-
pair algorithm for a reactive agent architecture. The original
problem is given in terms of an initial plan that needs to
be refined. Repair starts with a given primitive plan. They
take back performed refinements until finding a more ab-
stract plan that can be refined into a new primitive one with
an optimal expected utility.

Warfield et al. (2007) propose the RepairSHOP system,



which extends the progression-based HTN planner SHOP
(Nau et al. 2001) to cope with unexpected changes to the
current state. Their plan repair approach shows some simi-
larities with the previous one, as they backtrack decomposi-
tions up to a point where different options are available that
allow a refinement in which the unexpected change does not
violate executability. To do this, the authors propose the goal
graph, which is a representation of the commitments that the
planner has already made to find the executed solution.

Bidot, Schattenberg, and Biundo (2008) propose a plan
repair algorithm to cope with execution errors. The same
basic idea has later been described in a more dense way re-
lying on a simplified formalism (Biundo et al. 2011). Their
approach also shows similarities to the previous two, as they
also start with the failed plan and take planning decisions
back, starting with those that introduced failure-associated
plan elements, thereby re-using much of the planning effort
already done. The already executed plan elements (steps and
orderings) are marked with so-called obligations, a new flaw
class in the underlying flaw-based planning system.

The previous plan repair approach has later been simpli-
fied further by Bercher et al. (2014; 2017). Their approach
uses obligations to state which plan elements must be part
of any solution due to the already-executed prefix. In con-
trast to the approaches given before, it starts with the initial
plan and searches for refinements that achieve the obliga-
tions. Technically, it can be regarded re-planning, because
it starts planning from scratch and from the original initial
state while ensuring that new solutions start with the already
executed prefix. The approach was implemented in the plan-
space-based planning system PANDA (Bercher, Keen, and
Biundo 2014) and practically in use in the described assem-
bly scenario, but never systematically evaluated empirically.

The most recent approach for HTN plan repair that we
are aware of is by Barták and Vlk (2017). It focuses on
scheduling, i.e., the task of allocating resources to actions
and scheduling their execution time. In case of an execution
error (a changed problem specification), they find another
feasible schedule. They perform backjumping (i.e., conflict-
directed backtracking) to find repaired solutions.

All these approaches address execution errors by a spe-
cialized algorithm. In the next section, we propose a novel
approach that solves the problem without relying on special-
ized algorithms. Instead, it encodes the executed plan steps
and the execution error into a standard HTN problem, which
allows to use standard HTN solvers instead.

5 Plan Repair via Domain Transformation
Technically, the task is similar to our work on Plan Recogni-
tion as Planning (Höller et al. 2018b). The approach is based
on two transformations, one of them enforces HTN plans to
start with a prefix of observations.

Let Pr = (P , tns, dt , exe, F+, F−) be the plan
repair problem and P = (L,C,A,M, s0, tnI , g, δ) with
δ = (prec, add , del) the original HTN planning prob-
lem, exe = (a1, a2, . . . , am) the sequence of already ex-
ecuted actions, and F+ ∈ 2L and F− ∈ 2L the set
of the unforeseen positive and negative facts, respectively.
Then we define the following HTN planning problem P ′ =

a → ta
a

ta

a′ta

Figure 3: The original method (left) contains the action a
that is part of the already executed prefix. This task is re-
placed by a new abstract task ta (middle) and two new meth-
ods are added that decompose ta either in a or in a′ (right).

(L′, C ′, A′,M ′, s′0, tn
′
I , g
′, δ′) with δ′ = (prec′, add ′, del ′)

that solves the plan repair problem.
First, a sequence of new propositional symbols is intro-

duced that indicate the position of some action in the en-
forced plan prefix. We denote these facts by li with 0 ≤ i ≤
m and li 6∈ L and define the new set of propositional state
features as L′ = L ∪ {li | 0 ≤ i ≤ m}.

For each task ai with 1 ≤ i < m − 1 in the prefix of
executed actions, a new task name a′i is introduced with
prec′(a′i) 7→ prec(ai)∪{li−1}, add ′(a′i) 7→ add(ai)∪{li}
and del ′(a′i) 7→ del(ai)∪ {li−1}. The last action in the exe-
cuted prefix am needs to have additional effects, it performs
the unforeseen state change. prec′(a′m) 7→ prec(am) ∪
{lm−1}, add ′(a′m) 7→ (add(am) \ F−) ∪ F+ ∪ {lm} and
del ′(a′m) 7→ del(am) ∪ F− ∪ {lm−1}. The original prob-
lem is placed after the prefix, i.e., ∀a ∈ A holds that
prec′(a) 7→ prec(a) ∪ {lm}. And the new set of actions
is defined as A′ = A ∪ {a′i | 1 ≤ i ≤ m}. To make the first
action of the prefix applicable in the initial state, the sym-
bol l0 is added, i.e., s′0 = s0 ∪ {l0}. To reuse the already
executed actions, ensure that every solution starts with the
entire prefix, i.e. g′ = g ∪ {lm}.

The newly introduced actions now need to be made reach-
able via the hierarchy. Since they simulate their duplicates
from the prefix of the original plan, the planner should be al-
lowed to place them at the same positions. This can be done
by introducing a new abstract task for each action appearing
in the prefix, replacing the original action at each position it
appears, and adding methods such that this new task may be
decomposed into the original or the new action. A schema
of the transformation is given in Figure 3. Formally, it is de-
fined in the following way.
C ′ = C ∪ {c′a | a ∈ A}, c′a 6∈ C ∪A,
M c = {(c, (T ,≺, α′)) | (c, (T ,≺, α)) ∈M}, where

∀t ∈ T with α(t) = n and α′(t) =
{
n, if n ∈ C
c′n, else.

Ma = {(c′a, ({t}, ∅, {t 7→ a})) | ∀a ∈ A},
So far the new abstract tasks can only be decomposed into
the original action. Now we allow the planner to place the
new actions at the respective positions by introducing a new
method for every action in exe = (a1, a2, . . . , am), decom-
posing a new abstract task c′ai

into the executed action ai:
Mexe = {(c′ai

, ({t}, ∅, {t 7→ a′i})) | ai ∈ exe}. The set
of methods is defined as M ′ = M c ∪Ma ∪Mexe and all
elements of P ′ have been specified.

Like the approach given by Bercher et al. (2014), our
transformation is technically a hybrid between re-planning



(the planning process is started from scratch), but the sys-
tem generates a solution that starts with the executed prefix
and incorporates constraints induced by the hierarchy. Since
it enforces the properties by using a transformation, the sys-
tem that generates the actual solution can be a standard HTN
planning system. For future work, it might be interesting to
adapt the applied planning heuristic to increase plan stability
(though this would, again, lead to a specialized system).

6 Conclusion
In this paper we introduced a novel approach to repair
broken plans in HTN planning. We elaborated that sim-
ply re-starting the planning process is no option since this
would discard changes implied by the hierarchical part of
the model. Instead, systems need to come up with a new
plan that starts with the actions that have already been ex-
ecuted. All systems in the literature tackle the given prob-
lem by modifying the applied planning system. We provided
a compilation-based approach that enables the use of un-
changed HTN planning systems. In future work, we want
to empirically evaluate the feasibility of our approach.

Acknowledgments
This work was partly done within the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG).

References
Barták, R., and Vlk, M. 2017. Hierarchical task model forre-
source failure recovery inproduction scheduling. In Proc. of
the 15th Mexican Int. Conf. on AI (MICAI 2016), 362–378.
Springer.
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the plan – How hard can that be? In Proc. of ICAPS
2016, 38–46. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of ICAPS 2015, 25–33. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a
solution! (. . . but is it though?) – Verifying solutions of hier-
archical planning problems. In Proc. of ICAPS 2017, 20–28.
AAAI Press.
Bercher, P.; Biundo, S.; Geier, T.; Hörnle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain – How planning helps to assemble your home
theater. In Proc. of ICAPS 2014, 386–394. AAAI Press.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2017.
Companion Technology – A Paradigm Shift in Human-
Technology Interaction. Cognitive Technologies. Springer.
chapter 5: User-Centered Planning, 79–100.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
SoCS 2014, 35–43. AAAI Press.
Bidot, J.; Schattenberg, B.; and Biundo, S. 2008. Plan repair
in hybrid planning. In Proc. of the 31st German Conf. on AI
(KI 2008), 169–176. Springer.

Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236.
Boella, G., and Damiano, R. 2002. A replanning algo-
rithm for a reactive agent architecture. In Proc. of the 10th
Int. Conf. on AI: Methodology, Systems, and Applications
(AIMSA 2002), 183–192. Springer.
Drabble, B.; Dalton, J.; and Tate, A. 1997. Repairing plans
on-the-fly. In Proc. of the NASA workshop on Planning and
Scheduling for Space, 13–1–13–8.
Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and acting with temporal and hi-
erarchical decomposition models. In Proc. of the 26th IEEE
Int. Conf. on Tools with AI (ICTAI 2014), 115–121. IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: Replanning versus plan repair. In Proc. of ICAPS
2006, 212–221. AAAI Press.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of IJCAI 2011, 1955–
1961. AAAI Press.
Gerevini, A., and Serina, I. 2000. Fast plan adaptation
through planning graphs: Local and systematic search tech-
niques. In Proc. of the 5th Int. Conf. on AI Planning Systems
(AIPS 2000), 112–121. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proc. of ECAI 2014, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of ICAPS
2016, 158–165. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018a. A
generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of ICAPS 2018. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018b.
Plan and goal recognition as HTN planning. In Proc. of the
AAAI Workshop on Plan, Activity, and Intent Recognition
(PAIR 2018).
Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Arti-
ficial Intelligence 55:193–258.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 2001.
The SHOP planning system. AI Magazine 22(3):91–94.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: an HTN planning
system. JAIR 20:379–404.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Muñoz-Avila, H.
2007. Adaptation of hierarchical task network plans. In
Proc. of the 20th Int. Florida AI Research Society Conf.
(FLAIRS 2007), 429–434. AAAI Press.


