Towards a Companion System Incorporating Human Planning Behavior

A Qualitative Analysis of Human Strategies

Benedikt Leichtmann¹, Pascal Bercher², Daniel Höller², Gregor Behnke², Prof. Dr. Susanne Biundo², Prof. Dr.-Ing. Verena Nitsch¹, Prof. Dr. Martin Baumann³

¹Institute of Industrial Engineering and Ergonomics, RWTH Aachen University ²Institute of Artificial Intelligence, Ulm University ³Human Factors Department, Ulm University

Companion Technology

Building up a home theater

PANDA, can you help me build up a home theater?

Challenges...

Which planning decisions should be made by the user and which ones by the AI planning component?

In which order should a plan be presented?

How to react to the user?

Building up a home theater

Ill-defined real-world tasks

Undefined Problem Space

- Initial State?
- Goal State?
- What moves can be made?

Dynamic and Uncertain Environment

Human Problem Solving

 \cap

Environmental cues trigger opportunities for plan refinement

before, I know that it fits in

one port of the television...

Let's see...

 \rightarrow Human problem solving is rather opportunistic than systematic

Mixed-Initiative AI Planning

Mixed-Initiative AI Planning

Qualitative Pilot Study

Difference in strategy use with varying knowledge

Home Theater Setup Task

Dependent variable: Observation of Actions

Control variable: Domain knowledge

Qualitative Pilot Study

The task: Setting up a home theater

- Different Devices
- Different Cables / Adapters
- Different Ports
- Different Signal Types (Audio / Video)

Varying availability of cables to solve the tasks (Scenario A, B, C)

Follow the signal flow beginning from the source devices to output devices.

Example...

Results: Descriptives

Table 1: Percentage of correctly solved tasks for each group and scenario

Croup	Scenario		
Group	Α	В	С
Instruction Group	.61	.48	.78
Control Group	.31	.25	.50
Sum	.49	.38	.67

Results: Strategy Use

Did participants in the **instruction group** follow the strategy being proposed?

Yes, participants in the instruction group started with a source device

Results: Strategy Use

What about the **control group**?

Participants in the control group seem to start randomly...

State diagram of cable usage in scenario C.

Higher values for reusing the same cable again than using another one for most cables


```
Results: Strategy Use
```

The role of knowledge

Overall, the HDMI cable was used most directly after the start state in scenarios A & B (q > .25 VS. q < .15)

In scenario C, S/PDIF was used after the start state with q = .35 / q = .44. (It was known from scenario B by then)

Summary

- People tend to reuse the same cable with a higher probability than using another cable
- Parameter of decomposition: People decompose problems cable-wise instead of device-wise
- Influence of instruction: Higher strategy use in instruction group
- Influence of knowledge: People use cables they already know first
- Behavior is rather opportunistic

Limitations

- Homogeneous sample
- Small sample size (*N* = 39; low statistical power)
- Scenarios in fixed order, not randomized (possible order effects)
- Exploratory study: data-driven interpretations & post-hoc explanations
- Limited generalizability

Implications for AI Planner

If there are many possibilities to modify a given plan and the user needs to choose: How to present the options?

- rank them according to how well certain options are known to the user
- group options together according to how well the options are known and only show a representative of a group

Implications for AI Planner

If the planner solves a certain sub problem automatically: which solution should it preferably generate?

A solution that uses concepts (like the involved hardware) that is known to the user (Gives raise to new plan metrics).

Further Implications...

- plan explanations: why was a certain action chosen by the planner?
- plan linearization: in which order should the required actions be presented to the user?

For the details please take a look in the paper! :)

