Evaluating Knowledge-Based Assistance for DIY*

<u>M. Schiller</u>¹, G. Behnke¹, P. Bercher¹, M. Kraus², M. Dorna², F. Richter¹, S. Biundo¹, B. Glimm¹ and W. Minker¹

*Special thanks to: M. Dambier², J. Rose², M. Schmautz¹ and C. Zhu¹

¹Faculty of Engineering, Computer Science and Psychology Ulm University, Ulm, Germany

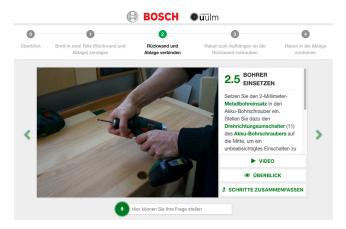
> ²Corporate Research Robert Bosch GmbH, Renningen, Germany

MCI-Workshop 19: Digital Companion 4th September 2018

Deutsche Forschungsgemeinschaft DFG

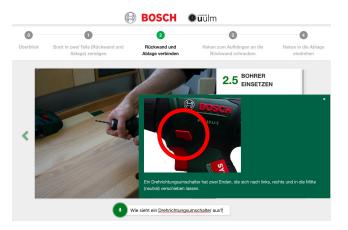
A digital companion for DIY

- Support novice users with setting up DIY tools and completing DIY projects
- The DIY domain
 - requires proficiency with electric and manual tools, attachments and different materials
 - different possible courses of action towards a goal
 - unforeseen events during task execution (e.g. mistake, tool breaks, etc.)
- We combine
 - (hierarchical) AI planning
 - ontology-based knowledge modeling
 - multimodal human-computer interaction

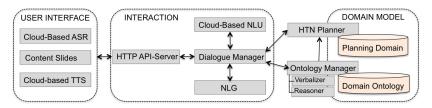

Application scenario

Step-by-step instructions to enable users to achieve different tasks

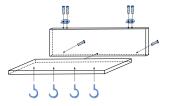
Planning \rightarrow adapt to individual situation & preferences


- Enable users to learn about device(s) while using them
 - What device can be used for what task?
 - What settings, what equipment, etc. are needed to perform a task?
- Enable users to learn about the application domain:
 - How are devices and objects in the domain distinguished?
 - What characterizes them?

Step-by-step assistance

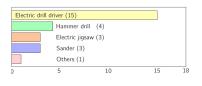

- Each step illustrated by text, image and video
- Speech, text and touch commands for navigation and information requests
- Questions about concepts, appearance of objects, etc. supported

Step-by-step assistance


- Each step illustrated by text, image and video
- Speech, text and touch commands for navigation and information requests
- Questions about concepts, appearance of objects, etc. supported

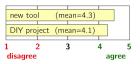
System outline

- Integration of procedural knowledge (planning domain) and declarative knowledge (domain ontology)
- Ontology as (unified) underlying knowledge source for planning and dialogue
- Interaction realized using dialog manager (Information State Update approach) and:
 - annyang speech recognition
 - Microsoft LUIS NLU
 - Vue.js multimodal GUI

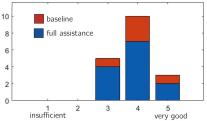

User testing

- Participants: 18 DIY novices (10f/8m)
- Experimental task: construct wooden key rack while using assistant
- Power tools: electric drill driver, electric jigsaw, optionally: sander
- Two experimental groups
 - full assistance (n=13)
 - baseline assistance (n=5): only one level of instruction, no interaction, no videos
- Assessment: pre- & post-test questionnaire, observation + video

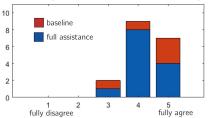
Participant characteristics


- Project experience mostly limited to assembling furniture ('Ikea'), attaching pictures
- Prior experience with electric tools

DIY help-seeking



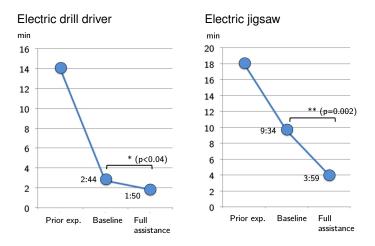
• Would participants like to receive digital assistance for a new tool/a DIY project?



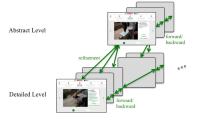
Main post-test questionnaire results

• How would you judge the app overall?

I have learned something about DIY while interacting with the app.



Users' comments (full assistance condition)


- problems with speech interaction (5)
- videos were silent (3)
- instructions not precise enough (4)
- instructions too obvious (3)
- explanations not helpful/too obvious (4)
- intermediate steps not detailed enough (2)
- too much jargon (2)

Tool setup with/without assistance

• Time to operation: time users spent setting up the electric tool (insert attachments, battery, adjust settings) until operable

Challenges/observations

- Conveying the hierarchical structure of instructions to users
 - First tests: users stayed on top level, rarely navigated to detailed level
 - Remedies/parameters: tutorial video, adjusting default presentation sequence (e.g. starting the instruction at the lower level vs. top level), clear wording of buttons
- Animating users to interact and discover system's abilities
 - Small inconveniences (misunderstanding, latency) discourage users
- Some users had difficulties with even the simplest tasks (e.g. marking plank to be cut in half)

Conclusion

- User testing highlighted remaining challenges: making system's capabilities transparent to users (e.g. hierarchical organization of instructions)
- Importance of user modeling becomes apparent (different kinds of help required)
- Future work: incorporate more pro-activity