
AI Communications 32 (19) 31–57 31
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Alice in DIY wonderland
or: Instructing novice users on how to use
tools in DIY projects

Gregor Behnke a,∗, Marvin Schiller a,c, Matthias Kraus b, Pascal Bercher a, Mario Schmautz a,
Michael Dorna c, Michael Dambier c, Wolfgang Minker b, Birte Glimm a, and Susanne Biundo a

a Institute of Artificial Intelligence, Ulm University, Germany
E-mails: gregor.behnke@uni-ulm.de, marvin.schiller@alumni.uni-ulm.de, pascal.bercher@uni-ulm.de,
mario.schmautz@uni-ulm.de, birte.glimm@uni-ulm.de, susanne.biundo@uni-ulm.de
b Institute of Communications Engineering, Ulm University, Germany
E-mails: matthias.kraus@uni-ulm.de, wolfgang.minker@uni-ulm.de
c Corporate Research Sector, Robert Bosch GmbH, Renningen, Germany
E-mails: marvin.schiller@de.bosch.com, michael.dorna@de.bosch.com, michael.dambier@de.bosch.com

Abstract. We present the interactive assistant ROBERT that provides situation-adaptive support in the realisation of do-it-yourself
(DIY) home improvement projects. ROBERT assists its users by providing comprehensive step-by-step instructions for completing
the DIY project. Each instruction is illustrated with detailed graphics, written and spoken text, as well as with videos. They
explain how the steps of the project have to be prepared and assembled and give precise instructions on how to operate the
required electric devices. The step-by-step instructions are generated by a hierarchical planner, which enables ROBERT to adapt
to a multitude of environments easily. Parts of the underlying model are derived from an ontology storing information about
the available devices and resources. A dialogue manager capable of natural language interaction is responsible for hands-free
interaction. We explain the required background technology and present preliminary results of an empirical evaluation.

Keywords: Companion-technology, Digital assistant, Planning-based assistance, Knowledge representation

1. Introduction

Imagine a novice user who has never used electric
tools in her life before. Let’s call her Alice. She has, so
far, relied either on pre-built furniture or on craftsmen
or friends doing constructions for her. Alice, however,
wants to become more self-reliant and wants to learn
how to perform small household constructions and re-
pairs, or simply hobby projects like a key rack or a
bird nest box by herself. Such activities are commonly
called do-it-yourself (DIY) projects.

Even the realisation of simple DIY projects often
requires the usage of electric tools of different kinds:
drills, saws, or sanders are just some of the very com-
monly used tools, in particular when working with
wood – an important material in DIY projects. With-
out proper instruction on how to use such devices, they

*Corresponding author. E-mail: gregor.behnke@uni-ulm.de.

may be difficult to use or even dangerous for novice
users. Alice might spend a long time to figure out how
to handle and configure these tools for the current task
at hand. Possible dangers, like accidents with an elec-
tric saw, might prevent novice users from starting to
use them in the first place.

We developed the interactive assistant ROBERT

(named after Robert Bosch GmbH) that provides
appropriate instructions for the realisation of DIY
projects. Alice is walked through the steps required for
completing a DIY project, which are illustrated with
detailed graphics, text, and videos. The provided expla-
nations include both project-specific as well as project-
independent aspects: That is, they explain how parts
of the given project are to be assembled or prepared,
but they also give detailed instructions on how the re-
quired electric devices are to be handled. This enables
Alice to complete her project successfully while si-
multaneously learning how to use the employed tools

0921-7126/0-1881/$35.00 c© 19 – IOS Press and the authors. All rights reserved

mailto:gregor.behnke@uni-ulm.de
mailto:marvin.schiller@alumni.uni-ulm.de
mailto:pascal.bercher@uni-ulm.de
mailto:mario.schmautz@uni-ulm.de
mailto:birte.glimm@uni-ulm.de
mailto:susanne.biundo@uni-ulm.de
mailto:matthias.kraus@uni-ulm.de
mailto:wolfgang.minker@uni-ulm.de
mailto:marvin.schiller@de.bosch.com
mailto:michael.dorna@de.bosch.com
mailto:michael.dambier@de.bosch.com
mailto:gregor.behnke@uni-ulm.de

32 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. A real key rack and its conceptual drawing [1].

safely, enabling her to complete DIY projects indepen-
dently in the future. ROBERT is designed to be generic
such that additional DIY project descriptions can be
added solely via additions to the underlying knowl-
edge models. Those parts of the model describing gen-
eral, project-independent information (e.g. specifica-
tions on how to use the electric devices, how to connect
two wooden boards, or information about the proper-
ties of materials) and media content are (re-)used for
new projects. To exemplify our methodology, we have
instantiated our assistant ROBERT with a project real-
ising the construction of a key rack (an assembled key
rack can be seen in Fig. 1).

In this article, we demonstrate ROBERT (illustrated
using the key rack project) and its underlying tech-
nology. ROBERT smoothly combines and integrates
three core capabilities: hierarchical planning, ontolog-
ical reasoning, and dialogue management. Each of
these capabilities is based upon a formal model of the
DIY domain. A focus of our work lies on providing ap-
propriate integration techniques between these models.
By clearly and cleanly dividing the required knowl-
edge between the models we achieve both an efficient
knowledge integration as well as avoid redundancy
among the models. In this article we will especially de-
scribe the means by which we transfer required infor-
mation between the individual components. The under-
lying architecture is independent of the deployed ap-
plication scenario, so that assistants for various other
application scenarios can be realised by suitably ex-
tending the required models and media data. Based on
ROBERT’s formal models a plan is computed, i.e. a se-
quence of actions. The user is instructed to follow these
actions to achieve the given task such as, in our exam-
ple, building a key rack. We pursue a hierarchical plan-
ning approach [2–4], where the given task is refined
step-wise into more primitive courses of action until
a completely primitive, i.e. directly executable, plan is
generated. This way, instructions can be presented at
different levels of abstraction.

The technology behind ROBERT is based on our ex-
perience with an earlier research prototype assistant,
providing support for setting up a complex home the-
atre [5–9]. Both assistants – our novel DIY assistant
as well as our former assembly assistant – base upon

a generic system architecture that allows for realising
assistants for a broad variety of tasks. Due to our ex-
perience with the earlier prototype, the requirements
for an industrial application of ROBERT, and the re-
quirements imposed by the DIY domain, we have de-
veloped several new techniques for ROBERT. ROBERT
uses an ontology to store and retrieve factual domain
knowledge, instead of a database-like knowledge man-
agement. Further, ROBERT handles the task hierarchy
fully inside the planner – again in contrast to the pre-
vious assistant – and communicates the hierarchical
structure of a plan to the dialogue manager. This al-
lows the hierarchy to express actual choices between
alternative courses of action. This allows us, e.g. to
present instructions corresponding to abstract tasks in
the planning model. Further, we can now use the hier-
archy to enhance the dialogue, e.g. by structuring the
shown steps visually and by providing feedback to the
user once a section of the instructions has been com-
pleted.

ROBERT utilises an ontology and its reasoning ca-
pabilities for knowledge representation [10] instead of
relying on a purely database-like system. This enables
easy scalability and knowledge maintenance. That way
we can exploit existing ontologies storing information
relevant to the application domain. In our application
scenario, this information pertains to electric devices
and DIY resources. Reasoning further allows for in-
ferring certain properties automatically. For example,
under the assumption that every drill bit for metal can
also be used for drilling in wood, it is inferred that any
particular metal drill bit (e.g. one of 3 mm diameter)
can be used in place of a wood drill bit of the corre-
sponding size.

Another benefit from integrating an ontology and its
reasoning capabilities are improved explanation capa-
bilities. Inferences made by the system are made avail-
able to the user in the form of natural language text. For
example, in ROBERT’s ontology it is formalised that
if a screw is small enough, it can be driven into soft-
wood without pre-drilling (otherwise, the existence of
a pre-drilled hole is a precondition for the screwing ac-
tion). Based on this, the system can infer in what situa-
tions pre-drilling is necessary, and can deliver a verbal-
isation of the reasoning steps that were applied. Con-
sider, for instance, the activity of driving a screw of 3
mm diameter into a plank made of spruce. Using the
system’s taxonomy of materials and formalised prop-
erties, it can be inferred that pre-drilling is not neces-
sary. Furthermore, the reasons (an explanation) can be
made explicit on request why “screwing a 3 mm screw

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

into spruce does not require pre-drilling”:

Spruce is softwood, thus screwing a 3 mm screw into
spruce applies to softwood. Since a 3 mm screw is a
screw that has a diameter of 3 mm, by definition it is a
small screw. Hence screwing a 3 mm screw into spruce
is done with a small screw. Screwing a small screw
into softwood does not require pre-drilling. Therefore,
screwing a 3 mm screw into spruce does not require
pre-drilling.

Such explanations are not pre-formulated, but gener-
ated at runtime from the available facts in the ontology
from a formal proof for the relationship in question.
Explanations enable Alice to understand the system’s
reasoning and its behaviour and to learn about the ap-
plication domain, i.e. DIY and electric tools, while us-
ing the system. A challenge with automated explana-
tions, however, are technical details that may seem too
obvious to Alice but which are logically necessary for
the system.

The paper is structured as follows. We first intro-
duce relevant theoretical and technological concepts in
Sec. 2 and then review related systems and technology
in Sec. 3. In Sec. 4, we give a high-level overview of
our system by explaining it from Alice’s view. In Sec. 5
we explain the system architecture, i.e. its components
and how they interact. In Sec. 6 we explain how we
maintain the different kinds of knowledge required by
the system and how it is conveyed to the user. Sec. 7
explains the underlying planning model and how its
hierarchy is exploited for illustration purposes. Sec. 8
is about the dialogue management, whose primary re-
sponsibility is handling user input and output. Finally,
we present preliminary results of a user study with our
prototype system in Sec. 9 before concluding the paper
in Sec. 10.

2. Preliminaries

We next introduce the basics of the employed plan-
ning and knowledge modelling formalisms.

2.1. Planning

ROBERT uses planning to determine the instructions
presented to its user Alice. Its planning domain is for-
mulated using Hierarchical Task Network (HTN) plan-
ning [2, 4]. It distinguishes two types of actions: prim-
itive actions A and abstract tasks T . Primitive actions

a ∈ A can be executed directly, i.e. by the user Alice,
without the need to separate them into even more ba-
sic steps, e.g. pushing a button of an electric drill. Ab-
stract tasks on the other hand describe more complex
courses of action, e.g. connecting two pieces of wood
with screws, which must be refined into more concrete
actions and usually also offer variability in the ways
they can be executed.

Each action a is described in terms of a pair of
preconditions and effects 〈p, e〉. The precondition is a
function-free first order formula, which must be true
in the state prior to the action being executed. States
are expressed using lifted state predicates. Each state
s is a set of instantiations of these predicates which
are considered true. An effect is a list of function-
free literals (i.e. a positive or negative predicate with
parameter variables), which are divided into positive
(adding) effects p+ and negative (deleting) effects p−.
If an instantiation of a, i.e. a grounding of a with con-
stants as its arguments, is executed in a state s in which
its precondition holds, the resulting state is defined as
(s \ p−) ∪ p+. Technically, the planner uses a for-
mat based on PDDL [11, 12] extended for hierarchi-
cal planning domains. We show in Fig. 7 an exam-
ple of a primitive action that is part of ROBERT’s do-
main model. In PDDL we declare with the statement
o - T that the object o belongs to the type T. PDDL
uses the syntax (p o1 ...on) to declare that the
fact p(o1,...,on) is true.

The connection between primitive actions and ab-
stract tasks is made in HTN planning via decomposi-
tion methods. They specify a grammar-like refinement
structure for abstract tasks. This structure is given in
terms of decomposition methods (t, tn), consisting of
a task t to be refined and a task network tn specifying
the result of the refinement, i.e. an allowed means for
achieving t. Task networks are the central element of
HTN planning. A task network tn is a partially ordered
set of instances of primitive actions and abstract tasks.
Formally, a task network is a tuple (L,≺, α), where L
is a set of labels, ≺ ⊆ L× L is a strict partial order1 on
L, and α : L→ A∪ T is a function that assigns to each
label its primitive action or abstract task. The introduc-
tion of labels is necessary to be able to represent task
networks containing the same task more than once. If a
decomposition method (t, tn) is applied to an abstract
task t in a task network tn′, we replace t by the contents
of tn [4]. If there exists any sequence of decomposi-

1A strict partial order is an irreflexive, antisymmetric, and transi-
tive relation.

34 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tions transforming a task network tn into another tn′,
we write tn→∗D tn′.

The goal in HTN planning is described in terms of
both a state-based goal formula g and a task network
tnI , called the initial abstract plan. A solution of the
planning problem is a sequence of primitive actions π,
which is executable in the initial state and must reach
a state in which g is true. The individual actions of
such a sequence π are called plan steps. As a further
requirement, this sequence of actions π must be a re-
finement of the initial abstract plan tnI [4]. This allows
for specifying high-level activities that are to be per-
formed in the initial abstract plan, e.g. building a key
rack. Formally, there must be a refinement tn′ of tnI ,
i.e. tnI →∗D tn′, such that π is a linearisation of tn′ (a
linearisation of tn′ is any topological ordering of its
tasks that is compatible with the ordering constraints
in tn′).

2.2. Ontology-based knowledge modelling and
verbalisation

Declarative (factual) domain knowledge employed
by ROBERT is stored in an ontology. The ontology is
used to formalise DIY concepts (e.g. classes of tools
and their properties) and to store associated informa-
tion such as instruction texts and references to images
and videos. This knowledge is formulated in the on-
tology language OWL22, whose main constructs rele-
vant for the remainder of the paper are introduced in
the following. In this paper, we employ the notation of
description logic (cf. [13]), which provides a seman-
tics for OWL2. We denote concepts by capital letters
A,B,C,... and use camel case for specific concept names
(e.g. DrillDriver). The universal concept is denoted by
> and the unsatisfiable (empty) concept by⊥. Individ-
uals are denoted by small letters a,b,.... Membership
of an individual a in a concept A is stated in the form
of a concept assertion A(a) and we say that a is an in-
stance of A. So-called (object) properties or (abstract)
roles are denoted by small letters r,s,... and express re-
lationships between pairs of individuals, e.g. the prop-
erty assertions r(a, b) expresses that the individual a is
r-related to the individual b. The semantics of descrip-
tion logics is defined model-theoretically; concepts are
interpreted as subsets of a domain, properties as binary
relations, and individuals as elements of the domain.
Constructors can be used to form complex concept ex-
pressions: conjunction and disjunction are written as u

2https://www.w3.org/TR/owl2-overview/

and t, respectively, and negation is written as ¬. The
so-called existential restriction ∃r.C specifies the con-
cept whose instances are related by the property r to
some instance of the concept C. For example, the con-
cept description ∃hasVisualFeature.CrossShape speci-
fies all instances of the domain that are related to some
CrossShape. The universal restriction ∀r.C denotes the
concept whose instances are only related by r to in-
stances of C, if at all. The statement that a concept A
is a taxonomical sub-concept of another concept B is
referred to as a subsumption axiom, written as A v B.
Equivalence is mutual subsumption between concepts
and denoted by ≡. Among further constructors (which
we do not detail here), OWL2 provides the specifica-
tion of attribute/value pairs in the form of data proper-
ties (also referred to as concrete roles), for which we
use the syntax ∃p =“value”.

Traditionally, ontologies are split into a terminolog-
ical (conceptual) part called TBox, and an assertional
part (ABox) where concept assertions and property as-
sertions are specified for individuals. An interpretation
I is called a model of an ontology O, iff it satisfies
all axioms in O. An axiom is entailed by an ontology
O if all models of O also satisfy this axiom. Ontol-
ogy reasoners offer reasoning services for ontologies,
for instance they can be used to determine the entailed
axioms of an ontology. The discipline of ontology ver-
balisation is concerned with the production of natural
language text from knowledge contained in and/or in-
ferred from ontologies.

3. Related work

Planning-based assistance systems have been devel-
oped in the past. However most of them focus on users
that are experts in the domain for which the assistant
is designed. The PASSAT system is a mixed-initiative
planning system designed for collaboratively creating
plans with a human user [14]. Its objective is to cre-
ate plans for military operations in cooperation with
the commanding officer which are executed by military
personnel. Like our system, the basis of PASSAT is
completely domain-independent, and the authors rely
solely on a model of the specific application domain for
the domain in question. PASSAT uses a hierarchically
modelled domain, though only primitive plans are vi-
sualised after successful plan generation in a step-by-
step fashion. Notably it lacks the combination with an
ontology to store and manage its background knowl-
edge – which is instead hard-coded into the planning

https://www.w3.org/TR/owl2-overview/

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

model – nor does PASSAT use advanced dialogue ca-
pabilities to mediate the interaction with the user.

MAPGEN [15] is a planning-based assistant devel-
oped by NASA to assist scientists and spacecraft op-
erators in scheduling activities for the Mars rovers. It
is capable of changing the plan to include specified ac-
tivities and resolves resulting conflicts between activ-
ities. However, its UI is designed for efficiency (it is
essentially a complex Gantt chart) with expert users in
mind.

Two assistants exist addressing the emergency &
firefighting domain. RADAR [16] develops a fire-
fighting and rescue plan together with its expert user,
e.g. a fire-brigade chief. RADAR uses a classical, i.e.
non-hierarchical, domain and does not combine its ca-
pabilities with an ontology. Actions are presented only
by their names, while emphasis in the UI is laid on
geographical information and the availability of vehi-
cles and materials. As such, the system heavily relies
on an expert user being able to understand what the
actions mean. The SIADEX system provides decision
support for crisis management in a forest-fire fighting
domain [17]. They also employ a hierarchical plan-
ning framework and exploit ontologies in which the re-
quired knowledge is stored. Solution plans may also
be displayed to non-experts, but rather than showing
them in a step-by-step fashion, they use Microsoft Ex-
cel chronograms and Microsoft Project Gantt charts.

In contrast, only a few systems assist “novice” users
and try to teach them on their application domain. One
of them is an assistant for elderly people and people
with cognitive impairments [18]. It helps these people
to remember and execute routines of their daily lives in
order to allow them to retain their independence for a
longer time. Routines include, among others, using the
bathroom, taking medicine, eating and drinking, and
housekeeping. In contrast to our system, it employs
a model of time (which is particularly important for
maintaining routines of daily life), but it does neither
feature a task hierarchy nor explanations. The SHIP-
tool [19] is designed to assist in planning and prepar-
ing meals. It uses description logic directly to describe
states. This highly expressive language prohibits SHIP
from using modern domain-independent planning sys-
tems and instead requires a specialised planner that can
handle such states. In contrast, ROBERT translates the
knowledge stored in its ontology into a purely proposi-
tional representation enabling it to use highly efficient
search-based planners.

Further, Steinberger et al. [20] propose a cogni-
tive assistance architecture incorporating a “semantic”

manual (using an ontology) to model instruction steps.
However, these steps are neither hierarchical, nor is a
planning system being used.

There are several related works in the area of on-
tology verbalisation and the explanation of inferences.
Several approaches have been proposed to generate de-
scriptions of concepts and individuals contained in an
ontology (e.g. [21–23]) and to make inference steps
explicit (cf. [24–27]). This is done for the benefit of
users who are not familiar with OWL or description
logic syntax, and the explanation text presented in the
introduction provides an example of such a generated
text. The automated verbalisation of ontology content
begs the question how well these synthetic texts are
understood by untrained readers. Therefore, the devel-
opment of these approaches has been accompanied by
empirical studies focusing on different aspects of the
generated explanations. The text quality of generated
descriptions has been studied by Androutsopolous et
al. [23], who present a comparison of their own Nat-
uralOWL system with the more generic SWAT ver-
baliser [21]. The experiments were carried out with
computer science students who had to rate the texts
for fluency, referring expressions, text structure, clarity
and interest. The experiments confirmed the authors’
hypothesis that the use of text planning, together with
domain-dependent generation resources for sentence
planning, aggregation and referring expressions has a
measurably positive effect on perceived text quality.

The verbalisation of inference steps has been em-
pirically studied by Nguyen et al. [26, 28] in online
experiments. They found that depending on the kind
of employed inference rule, the generated explana-
tions were more or less likely to be accepted or re-
jected by the participants. Whereas rules that straight-
forwardly connect subsumptions, exploit equivalence,
or split or combine conjunctions (an example is shown
in Sec. 6.4) were generally accepted by participants,
the application of some inference rules appeared less
understandable to participants (e.g. some rules involv-
ing contradiction/unsatisfiability). Using these results
for single inference rules, the authors were able to pre-
dict the understandability of derivations using two in-
ference steps (cf. [28]).

The understandability of longer explanations gen-
erated from derivations was also examined empiri-
cally. Schiller et al. [27] provide some first empirical
evidence that the shortening of explanations by hid-
ing and combining inference steps considered obvi-
ous does not negatively affect understandability. In an-
other study [29], explanations generated by the mech-

36 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

anism employed in this paper were tested by apply-
ing a psychological model of text comprehension to it.
This helped to identify and rectify cases in which tex-
tual coherence was found to be deficient. The under-
standability and quality of the resulting texts was stud-
ied in an online study reported in [29]. The two above-
mentioned experiments have not used the DIY domain
(as in the experiment reported in Sec. 9), but had a
more general focus (in case of [27], the TONES3 col-
lection of ontologies). Therefore, the experiment pre-
sented here can be considered a first exploratory step
towards further experiments focusing specifically on
the kind of descriptions and explanations employed by
ROBERT.

4. Alice’s view on ROBERT

Before we describe the techniques used in ROBERT
and how its components interact with each other
to provide assistance, we describe how a user of
ROBERT, i.e. Alice, would interact with it. Interac-
tion with ROBERT starts whenever a user decides that
she wants to implement a do-it-yourself project. Ini-
tially, ROBERT presents Alice with a list of available
projects (e.g. building a key rack, a bird house, a ta-
ble, refurbishing an old door, or a chair). After select-
ing a project, Alice informs ROBERT about the tools
and materials she possesses. Based on this information,
ROBERT uses its planner to generate a sequence of ac-
tions – a plan – that can be performed with the avail-
able tools and materials and that serves to complete the
project requested by the user. Here the strength of plan-
ning comes into play. ROBERT does not simply churn
out a hard-coded list of instructions for each project,
but automatically decides which action can and has to
be performed using the actually available tools and ma-
terials in order to successfully finish the project Al-
ice wants to complete. In order to generate the plan,
ROBERT uses both its planning model as well as factual
knowledge about tools and their configurations stored
in ROBERT’s ontology.

Once the planner has generated a plan, it is trans-
ferred to the dialogue manager for presentation. The
plan is shown in the form of step-by-step instructions,
where each action corresponds to one instruction. Each
action is explained to the user by showing her a slide
consisting of a textual description, an image, and a
video of what to do (cf. Fig. 2). We use the knowl-

3https://zenodo.org/record/32717

edge in ROBERT’s ontology to find appropriate me-
dia content (cf. Sec. 6). It stores both textual descrip-
tions of individual actions as well as images and videos
of how to perform actions. However, as ROBERT can
adapt to a large variety of situations it might not posses
perfectly fitting media material for the action at hand.
For example, ROBERT might instruct Alice to use the
PSR18Li24 to drill a 15 mm Torx screw into softwood,
as ROBERT knows Alice owns this drill, but only has a
video of drilling a generic screw using a generic drill
into softwood. The available video is still a more ap-
propriate instruction than presenting no media content
at all. ROBERT finds the best fitting instructional mate-
rial via ontology reasoning using the actions and their
parameters (i.e. constants). This enables easy scalabil-
ity when new tools or materials are added and allows
for a modular creation of media content.

Alice might also inquire about additional informa-
tion for every action-based instruction given to her. For
example, she might be instructed to insert a clean-for-
wood sawing blade into a saw, while not knowing how
to recognise this specific type of blade. Here, ROBERT
can provide descriptions of objects – including their
visual features, solely based on the information stored
inside the ontology.

In addition to the detailed step-by-step instructions,
ROBERT also generates an abstraction of the presented
plan by using the underlying task hierarchy. Since the
generated abstraction also contains tasks, we can use
ROBERT’s ontology to retrieve a textual description
and media content for them. While the user is pre-
sented the full plan, we show the abstraction as an
overview bar at the top of the screen. Here we mark the
position of the currently shown action in the abstract
sequence. This way Alice knows roughly at which
point she is in executing the project and how much of
the project is left to do, i.e. she can keep track of her
progress. The bar also serves as an instant feedback
and reward for the user leading to increased motivation
when performing the project.

5. System architecture

ROBERT consists of four major software compo-
nents: the UI, the planner, the ontology manager, and
the dialogue manager. Each of these components is de-
scribed in detail in the following sections. In this sec-
tion, we describe which component of ROBERT serves

4A PSR18Li2 is a model of drill driver aimed at the DIY hobbyist.

https://zenodo.org/record/32717

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Instructions for inserting a metal drill bit.

UI

Planner

Ontology

Dialogue

1

2

3

4

5

6

7

1 display instructions
2 user input
3 initial state
4 planning request, chosen project

5 plan
6 media
7 tasks, available tools, and materials

Fig. 3. ROBERT’s system architecture. Each arrow describes data or
instructions passed between the individual components. It is roughly
based on the work by Bercher et al. [5, 7].

which function, which component stores which infor-
mation and how these components interact to deliver
ROBERT’s assistance. Fig. 3 depicts ROBERT’s gen-
eral architecture and shows which information is ex-
changed between the components. It is roughly based
on the architecture employed in our previous assistant
for setting up a HiFi system [5, 7]. All components are
implemented as web-services exchanging information
and instructions as JSON-formatted data [30].

ROBERT’s abilities are systematically separated and
delivered by the component best suited for them. The

planner handles procedural knowledge and generates
goal-directed instructions, i.e. plans. The model is for-
malised as an HTN planning domain [2]. The planner
PANDA [31] is employed for generating plans while
interaction with other components and further neces-
sary computations, e.g. for computing an abstract plan,
are done by a specialised software component. Details
on the planner are described in Sec. 7.

Factual knowledge is stored in the ontology, as are
references to all media contents. The ontology is writ-
ten in OWL2 (cf. Sec. 2.2) and reasoning is done by
the reasoner HermiT [32]. The ontology manager also
handles requests for factual explanations and uses rea-
soning to retrieve stored media contents. How the on-
tology manager stores and processes its information is
detailed in Sec. 6.

The dialogue manager (Sec. 8) is tasked with en-
riching the generated plan with media provided by the
ontology and transferring it to the user interface. It
also handles the user’s inputs and decides which com-
ponent should perform which task as a reaction to
the input. The dialogue manager is specifically writ-
ten for ROBERT, but uses Microsoft Window’s built-
in speech recognition and Microsoft’s LUIS [33] for
intent recognition. This enables hands-free natural-
language interactions with ROBERT, which is espe-
cially important in a DIY-environment, where users
often have dirty hands or wear protective gloves and
speech-based interaction is the most convenient.

38 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

This separation of knowledge leads to an increased
need for communication between the components, es-
pecially between planner and ontology. It, however,
eliminates the need to store information in two com-
ponents redundantly, making ROBERT easy to main-
tain and to adapt to new types of projects, new mate-
rials, and new devices. For example, static knowledge
about materials and tools, e.g. how hard a specific type
of wood is or which switches a specific drill has, is
not stored inside the planning model, but in the ontol-
ogy. The planner has to take this information into ac-
count when planning. It requests this information from
the ontology manager when needed, i.e. when it re-
ceives a planning request from the dialogue compo-
nent. It transforms the received information into a list
of objects and facts concerning them. These facts form
the initial state of the planning process. The ontol-
ogy is also responsible for storing the current state of
the world. This distribution is systematic, as the cur-
rent state of the world is not procedural, but a time-
dependent and otherwise static information. The media
contents themselves are stored in a directory structure
which is neither part of the dialogue manager nor the
UI. Whenever media is needed, the dialogue manager
initiates a query to the ontology, which responds with
the path to fitting content.

6. Knowledge management

An instruction, solely based on an action sequence
and its abstraction (“How is something done?”) is not
adequate, as novice users require further information
about tools and materials (“How can I identify this
drill?”). To provide coherent assistance, the knowledge
used by the planner and conveyed in explanations must
be in sync [34, 35]. We achieve this by separating fac-
tual knowledge and procedural knowledge. Procedural
knowledge is stored in the planning model (which is
further discussed in Sec. 7), while factual knowledge
is stored in a separate ontology. When one of the sys-
tem’s components needs information, it is passed on in
an appropriate format. For example, when the planner
is searching for a plan involving drilling, the planner’s
work includes checking if the combination of materi-
als used, the drill’s configuration (battery and inserted
drill bit) and settings (e.g. suitable rotation speed per
type of wood) is appropriate for instantiating the corre-
sponding task. Such factual knowledge is stored in the
system’s ontology and made available for planning.

The ontology models the following aspects of the
DIY domain:

• A taxonomy of DIY concepts is modelled in
the TBox. This includes the formalisation of
power tools and their properties, together with
attachments (e.g. screw bits) and other mate-
rials (e.g. screws, types of wood, etc.). The
concepts are used in subsumption axioms, e.g.
PSR18Li2vDrill-Driver (as in line 1 in Fig. 4a)
states that any instance of the concept PSR18Li2
is also an instance of the concept DrillDriver.
Properties of concepts are assigned using (object
and data) properties. For example, line 4 in Fig. 4a
states that Philips screw bits have a cross shape
as a visual feature and line 6 describes a concept
defined by the value of a data property.

• Concrete objects (instances of their respective
concepts) that are available. These instances are
modelled using the ontology’s (assertional) ABox.
For instance (cf. Fig. 4b), if the ABox speci-
fies that there exists an instance drill-1 of the
class DrillDriver (expressed as DrillDriver(drill-
1)), this instance can be used in planning (and the
respective information is passed on to the planner
as part of the initial state). The state of individual
objects prior to planning is also represented, for
instance whether a battery is loaded.

• Relationships that represent valid combinations
of tools, materials and settings in line with DIY
know-how. These combinations are treated as fac-
tual – for instance, consider that for establishing a
screw connection in softwood with a 4 mm screw,
pre-drilling with 3 mm diameter and a moderate
speed setting is appropriate. This information is
passed on to the planner, where the existence of
such valid combinations is used as a condition for
executing the corresponding tasks. These n-ary
relationships are stored in the ABox, using con-
cepts from the TBox.

• Instructional texts and references to image and
video materials. Each potential task is assigned a
text (in English and German), a reference to an
image, and a reference to a video where the execu-
tion is demonstrated. Like DIY concepts, instruc-
tions are arranged in a hierarchy (in the TBox).

This information provides a common basis both for
the plans generated by the planning component and
the information passed on to the user through dialogue
management and user interface. Reasoning is used to
establish all facts that are implicit in the formalisation
(e.g. that an instance of a particular type of drill driver
is also a drill).

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 PSR18Li2vDrillDriver
2 DrillDrivervDrill
3 PhilipsScrewBitvScrewBit
4 PhilipsScrewBitv∃hasVisualFeature.CrossShape
5 PhilipsScrewvScrew
6 WoodScrew4mm≡WoodScrew

u∃hasDiameterInMM =“4”
7 WoodScrew4mmvWoodScrewBetween4And6mm

(a) TBox excerpt.

1 PSR18Li2(drill−1)
2 Softwood(back)
3 Softwood(tray)
4 HoleShape(round−hole−3mm)
5 PhilipsWoodScrew(screw−1)
6 hasDiameterInMM(screw−1,“3”)

(b) ABox excerpt.

Fig. 4. Excerpt of ontological facts in the TBox (a) and the ABox (b)
for the running example.

1 ScrewConnectionConfig(config1)
2 (∃ScrewConnectionConfig_materialType1.Softwood)
3 (config1)
4 (∃ScrewConnectionConfig_materialType2.Softwood)
5 (config1)
6 (∃ScrewConnectionConfig_screwType.

WoodScrewBetween4And6mm)(config1)
7 (∃ScrewConnectionConfig_holeShape1.RoundHole3mm)
8 (config1)
9 ScrewConnectionConfig_rotarySpeed(config1 ,1800)

Fig. 5. Example for a configuration stored in the ontology.

6.1. Factual knowledge for planning

The generation of a suitable plan depends on avail-
able tools and materials and their properties. A de-
scription of what objects are available and their gen-
eral properties is passed on to the planner to become
part of the initial state of the planning problem. For ex-
ample, if the ontology specifies in its ABox that an in-
stance of a DrillDriver is available, all inferable prop-
erties with respect to the TBox (e.g. that a DrillDriver
can be used as a Drill, and therefore also this particu-
lar machine) are also available to the planner. Concepts
in the ontology correspond to types in the planning
domain and individual objects are modelled as con-
stants in the planning domain. For example, the asser-

tion DrillDriver(drill-1) is represented as drill-1
- DrillDriver in PDDL syntax, which declares
that the object drill-1 exists and is a member of the
type DrillDriver. When requested, the ontology
manager transfers a list of all known instances in this
format to the planner.

The information modelled in the ontology includes
n-ary relationships in the ABox that represent valid
combinations of tools, materials and settings (hence-
forth referred to as “configurations” [10]). For in-
stance, one might stipulate that a valid combination of
parameters for connecting two pieces of softwood us-
ing a wood screw of 4 to 6 mm diameter involves pre-
drilling a hole of 3 mm diameter with moderate ro-
tary speed. In first-order logic, one could, for example,
write:

∀x; y; z; q : Softwood(x) ∧ Softwood(y)
∧WoodScrewBetween4And6mm(z)
∧ RoundHole3mm(q)
→ screwConnectionConfig(x, y, z, q, 1800)

This statement refers to a so-called concept prod-
uct (cf. [36]); a property is defined (in this case
screwConnectionConfig) that connects together the in-
stances of several concepts (Softwood, WoodScrewBe-
tween4And6mm, RoundHole3mm), thus corresponding
to the Cartesian product of the concepts’ set-theoretic
interpretation. However, concept products are not na-
tively supported by typical description logics and on-
tology reasoners. Since ontology languages are usu-
ally restricted to binary relations (properties), we use
reification to express such n-ary relationships. For each
combination of parameters, we introduce an individual
to represent the combination and link it to its elements
using several binary (concrete or abstract) properties.
As an example, consider the set of ABox assertions in
Fig. 5. The individual config1 is introduced to link to-
gether several attributes (material type, screw type, ro-
tary speed), where attributes are either specified using
the form (∃r.A)(c), where c is the introduced individ-
ual and r the property representing the attribute, or they
are specified using data properties (to assign data val-
ues such as the number 1800 in the example). These
specifications are passed on to the planner in PDDL
format, in case of the example:

config1 - ScrewConnectionConfig

config1 - Config

(ScrewConnectionConfig_materialType1

config1 Softwood)

40 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(ScrewConnectionConfig_materialType2

config1 Softwood)

(ScrewConnectionConfig_screwType

config1 WoodScrewBetween4And6mm)

(ScrewConnectionConfig_holeShape1

config1 RoundHole3mm)

(ScrewConnectionConfig_rotarySpeed

config1 1800)

The first two assertions declare that the object config1
is a member of both the ScrewConnectionConfig
and the Config types. Note that config1 - Config
is obtained by inference (since the ontology entails
Config(config1)). The latter five assertions declare
facts that are true in the initial state. Normally, the ar-
guments of such facts must be objects (while num-
bers like 1800 are treated as objects) and not types,
as is the case when configurations are translated. How
the planner handles these kinds of facts is described
in Sec. 7. In planning, these configurations serve as a
kind of forall-statement (as motivated above). That is,
these configurations are used to specify which com-
binations of parameters are allowed for instantiating
a task (for instance, all instances of WoodScrewBe-
tween4And6mm are candidates according to the exam-
ple configuration), as illustrated in Sec. 7.

6.2. Instructions

Whereas planning ensures that the proposed actions
are executable and lead to the goal, the concrete in-
structions provided to users of an assistance system
need to convey how a task is actually carried out. This
is particularly true if Alice is about to perform an el-
ementary operation for the first time. For each task,
we provide a text in English/German (authored by fol-
lowing manuals and textbooks), an image showing the
operation being carried out, and a video. These col-
lections of texts and links to the associated media are
maintained in the ontology. Planning instantiates the
generally available tasks with parameters, for instance,
when a particular drill is selected for instantiating a
drilling task. For any combination of parameters (e.g.
a drill driver PSR18Li2 together with a 15 mm Torx
screw, to pick up the example from Sec. 4), the best
fitting instructional material needs to be retrieved from
the ontology (e.g. an image showing the specific type
of drill with a specific attachment, if possible). For this,
we use classification: A taxonomy represents classes
of actions, which are characterised by properties such
as “uses a drill of type A”.

When a plan is generated, its tasks and actions are
instantiated with parameters. For instance, assume that
planning instantiates the Connect_Screw method with
the following arguments (specifying that drill-1 and
screw-1 are to be used to connect two objects):

ConnectScrew(drill-1, object-1, object-2,

screw-1)

Using classification in the ontology, the most specific
instruction is determined that fits the description of an
instantiated task, and the relevant materials are pro-
vided to be shown in the user interface. To enable clas-
sification, an instance i representing this task is cre-
ated in the ABox together with its (reified) arguments
(where the auxiliary properties instr_arg1–n connect
the task with its arguments):

instr_name(i,Connect_Screw)
instr_arg1(i,drill-1)
instr_arg2(i,object-1)
instr_arg3(i,object-2)
instr_arg4(i,screw-1)

In the ontology’s TBox, concepts define classes of
tasks and actions. Subsumption is used to define a tax-
onomy of (increasingly specific) instructions. For in-
stance, the axiom

Instr_Connect_Screw_PSR18Li2 ≡ Instr_Connect_Screw
u ∃ instr_arg1.PSR18Li2

defines that the concept Instr_Connect_Screw_PSR-
18Li2 is a refinement of Instr_Connect_Screw. Further
axioms specify the associated properties and data (ref-
erences to image and video content) for the defined in-
struction concepts.

Classification establishes that:

Instr_Connect_Screw_PSR18Li2(i),
Instr_Connect_Screw(i),
Instr_Connect_Screw_PSR18Li2 v Instr_Connect_Screw,

so Instr_Connect_Screw_PSR18Li2 is the most spe-
cific Instruction concept that fits the task under consid-
eration. The associated video, image and text are re-
trieved for presentation.

6.3. Generated textual descriptions

As briefly mentioned in Sec. 4, the user may query
the system for the available information pertaining

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 41

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. The system’s reply to “What does a Philips screw bit look
like?”.

to a particular object or category of objects. For in-
stance, the user might ask “What is a PSR18Li2?” or
“What does a Philips screw bit look like?”. A tex-
tual description is then generated using the informa-
tion formalised in the ontology. For a general descrip-
tion (“What is a PSR18Li2?”), the ontology axioms
relating to the concept (or to an instance of a con-
cept) are collected, including inferred axioms. The ax-
ioms are ordered heuristically; first simple subsump-
tions (e.g. PSR18Li2vDrillDriver; “A PSR18Li2 is a
drill driver”) are output, then axioms specifying the use
of the object (identified by a property isSuitedFor), and
lastly the remaining properties. For the generation of
text from axioms, we use the verbalisation tool pre-
sented by Schiller et al. [27]. The visual appearance as-
sociated with a concept is formulated using a dedicated
property hasVisualFeature, such that these axioms are
retrieved for questions such as “What does a Philips
screw bit look like?”, yielding, for example: “A Philips
screw bit has the shape of a cross”. These answers are
further supplied with an image, as shown in Fig. 6.

6.4. Generated explanations

As briefly mentioned in the introduction, facts in-
ferred from the ontology can be justified by the facts
from which they were derived and the inference steps
by which they were obtained. To take up the example
from the introduction, consider the statements in the
ontology shown in Table 1. Together these facts en-
tail the statement Screwing3MMScrewIntoSprucev ∃
doesNotRequire.Predrilling. We use a rule-based rea-
soner together with a template-based mechanism to

translate the generated proofs to natural language text
(cf. [27]). We exemplify this process with the first
statement of the generated text presented in the intro-
duction:

Spruce is softwood, thus screwing a 3 mm screw into
spruce applies to softwood.

The statement “screwing a 3 mm screw into spruce ap-
plies to softwood” is a logical consequence of the first
and the last axiom in Table 1. This is the result of the
application of two inference rules. First the conjunc-
tion of the equivalence (the last axiom in Table 1) is
eliminated, yielding:

Screwing3MMScrewIntoSpruce v ∃ materialType. Spruce

Then a second inference step applies:

Screwing3MMScrewIntoSpruce v ∃materialType. Spruce
Spruce v Softwood

Screwing3MMScrewIntoSprucev∃materialType.Softwood

A straightforward approach to verbalisation would
now for every step first turn all of the premises into
text, and then the conclusion. This results in long,
repetitive output. To make the texts shorter, we em-
ploy some heuristics (which are discussed in more de-
tail by Schiller et al. [27]). Firstly, we distinguish be-
tween those inference rules that are to be verbalised,
and a set of inference rules that are considered too triv-
ial for verbalisation. This applies, for instance, to con-
junction elimination as employed above. So the inter-
mediate conclusion that “screwing a 3 mm screw into
spruce applies to spruce” is not output. Secondly, we
keep track of those statements that we assume Alice
to be already aware of, including those statements that
are implied by unverbalised inference rule applications
as above. So when the second inference rule is applied,
only one of the premises (“spruce is softwood”) is be-
ing output together with the conclusion. A more de-
tailed discussion of the employed techniques aimed at
shortening the generated explanations is provided by
Schiller et al. [27].

7. Planning

The instructions presented to Alice by ROBERT are
based on an automatically generated plan. This ensures
that the instructions achieve the user’s objective. It also

42 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Ontological facts from which Screwing3MMScrewIntoSprucev ∃doesNotRequire.Predrilling can be derived. Note that labels in the ontology are
used to replace concept and property names in the verbalisation with names that are deemed more natural to users, e.g. “applies to” instead of
“materialType”.

Axiom Verbalisation

Spruce v Softwood “Spruce is softwood.”
Screw3MM ≡ Screw u ∃ hasDiameterInMM =“3” “A 3 mm screw is a screw that has a diameter of 3 mm.”
Screw u∃hasDiameterInMM =“3” v SmallScrew “A screw that has a diameter of 3 mm is a small screw.”
ScrewingSmallScrewIntoSoftwood ≡ ∃ materialType.
Softwood u ∃ screwType. SmallScrew

“Screwing a 3 mm screw into softwood is something that ap-
plies to softwood and that is done with a small screw.”

ScrewingSmallScrewIntoSoftwood v ∃ doesNotRequire.
Predrilling

“Screwing a small screw into softwood does not require pre-
drilling.”

Screwing3MMScrewIntoSpruce v ∃ materialType.
Spruce u ∃ screwType. Screw3MM

“Screwing a 3mm screw into spruce is something that applies
to spruce and that is done with a 3 mm screw.”

provides a suitable mechanism for adapting ROBERT’s
assistance to different environments, e.g. to the tools
and materials available to the user. Without planning,
we would have to manually specify instructions for
every imaginable situation, which is, due to the vari-
ability in the DIY setting, simply impossible in prac-
tice. Planning allows ROBERT to find instructions even
in previously unknown situations, simply by providing
the planner with a description of the current state, and
thus to find best-fitting instructions for the given cir-
cumstances. This is especially important as the avail-
able tools and materials are expected to differ widely
from user to user and situation to situation. Before the
assistant has been started by Alice for building a key
rack, ROBERT does not know the type of wood Al-
ice has (e.g. hard or soft, which kind of tree) or the
sizes and types of screws, if she even has screws – she
might just have a set of nails. ROBERT is only informed
about these circumstances once it is activated by the
user and thus has to flexibly adapt to the new situation
without the possibility of prior knowledge. ROBERT
can deal with a wide variety of tools, each differing in
their capabilities and possible configurations. For ex-
ample, a Bosch IXO does not have a gear switch, while
a PSR18Li2 does. If ROBERT is to assist Alice in us-
ing the latter drill, it should instruct her to configure
the gear switch according to the material she is drilling
into, but not do so if she has a Bosch IXO. ROBERT’s
planner adapts the given instructions to these condi-
tions at run-time, based on the procedural planning
model and the information about these devices stored
in ROBERT’s ontology. This allows ROBERT to provide
instructions that are fitting exactly to the situation at
hand – in contrast to, e.g. a generic instructional video.

ROBERT’s lifted model-driven approach allows for
easy scalability to both new tools and materials as well

as to new types of projects. For example, whenever a
new model of electric drills is released, it suffices to
add a description of its abilities and configuration op-
tions to the ontology. Based on our coupling between
planning model and ontology, this information will au-
tomatically be taken into account by the planner and
instantly enable instructions using this new device to
the best of its capabilities.

We start by introducing the primitive action the-
ory used by ROBERT and describe its connection
with ROBERT’s ontology. Thereafter, we show how
ROBERT uses hierarchical planning to formulate its
goals and detail on the advantages we draw from
ROBERT’s hierarchical planning model.

7.1. Action model and connection to the ontology

ROBERT’s planning domain contains lifted descrip-
tions of a wide variety of possible actions in the DIY
environment. This includes (but is not limited to):
adding and removing batteries, adding/removing drill
bits and saw blades, drilling holes, putting screws in
them, inserting pegs into holds, sanding surfaces, fix-
ing objects together, etc. These lifted descriptions pro-
vide a factorised representation of a multitude of ac-
tions with structurally similar preconditions and ef-
fects. For example, there is only one action to attach a
battery to a device in the model. Its action description
defines two parameters – the battery and the device.
Every assignment of these two parameters to objects in
the model constitutes a valid instantiation of the action
for attaching a battery. Based on the lifted model and
all available objects, we can compute all valid instanti-
ations (called groundings) of all actions.

The actions in ROBERT’s planning model are spec-
ified in a fairly general fashion. This generality al-

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 (:action Drill_Screw
2 :parameters (?drill - Drill
3 ?o1 - Connectable ?o2 - Connectable
4 ?screw - Screw)
5 :precondition (and
6 (usable ?screw) (usable ?o1) (usable ?o2)
7 (imply (typeOf ?o1 HomObj) (fixated ?o1))
8 (imply (typeOf ?o2 HomObj) (fixated ?o2))
9 (exists (?b - Battery) (and (AttachedBattery ?drill ?b) (hasEnergy ?b)))

10
11 (exists (
12 ?sb - ScrewBit
13 ?sbh - ScrewBitHolder
14 ?screwType ?screwBitType - Type
15 ?rpm - Number
16 ?ds - DrillSettings
17) (and
18 (AttachedShank ?drill ?sbh) (AttachedShank ?sbh ?sb)
19 (typeOf ?sb ?screwBitType)
20 (typeOf ?screw ?screwType)
21 (Drill_settings ?drill ?ds)
22 (DrillSettings_direction ?ds right)
23 (DrillSettings_rotarySpeed ?ds ?rpm)
24 (exists (?sc - ScrewingConfig) (and
25 (ScrewingConfig_screwType ?sc ?screwType)
26 (ScrewingConfig_screwBitType ?sc ?screwBitType)
27))
28 (exists (?scc - ScrewConnectionConfig ?ot1 ?ot2 - Type) (and
29 (typeOf ?o1 ?ot1)
30 (typeOf ?o2 ?ot2)
31
32 (ScrewConnectionConfig_screwType ?scc ?screwType2)
33 (ScrewConnectionConfig_materialType1 ?scc ?ot1)
34 (ScrewConnectionConfig_materialType2 ?scc ?ot2)
35 (ScrewConnectionConfig_rotarySpeed ?scc ?rpm)
36
37 (forall (?hs1 - HoleShape) (and
38 (imply (ScrewConnectionConfig_holeShape1 ?scc ?hs1) (holeShape ?o1 ?hs1))
39))
40 (forall (?hs2 - HoleShape) (and
41 (imply (ScrewConnectionConfig_holeShape2 ?scc ?hs2) (holeShape ?o2 ?hs2))
42))
43))
44))
45)
46 :effect (and
47 (not (usable ?screw))
48 (connected ?o1 ?o2 ?screw)
49)
50)

Fig. 7. Declaration of the action Drill_Screw in ROBERT’s planning model.

lows for automatic adaptation to, e.g, new tools, with-
out the need to alter the planning model. For example,
the action Drill_Screw represents driving a screw
?screw5 through two objects ?o1 and ?o2 using any
kind of electric drill ?drill in order to connect them
with each other. Each of the involved objects is repre-
sented by a parameter of the action Drill_Screw.
Fig. 7 contains a simplified version of the action that
is contained in our model. ROBERT’s model contains
further preconditions that pertain to further configura-
tion options of drills. Clearly, it is not possible in the

5Names of variables in PDDL start with a question mark.

real world to execute Drill_Screwwith an arbitrary
combination of materials, drills, and screws, i.e. an ar-
bitrary combination of parameters. For example, one
cannot use a Bosch IXO drill and a wood screw to con-
nect a metal plate to a concrete wall. Drill_Screw’s
preconditions first check the procedural requirements
of driving a screw: that the screw and the objects we
want to connect are usable (e.g. the screw is not already
connected to something else), and fixated if necessary,
and that a charged battery is connected with the drill.
This information is purely procedural and as such fully
modelled in the planning domain.

The second part of Drill_Screw’s preconditions

44 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

asserts that the configuration in which we are using
the drill is actually allowed. These rules are not mod-
elled inside the action’s preconditions, but are stored
in ROBERT’s ontology, since they constitute factual
knowledge. Drill_Screw references this informa-
tion and checks whether the state we are currently
in complies with it. First, Drill_Screw checks
whether the bit inserted into the drill matches the screw
we want to use (line 24-27). Second, Drill_Screw
checks whether the drill’s settings (e.g. rotation speed)
are compatible with the material we are driving the
screw into and that connecting the objects ?o1 and
?o2 using the selected screw and drill is possible
(line 28-43). Both of these checks use our configura-
tion mechanism [10], which is based on storing al-
lowed configurations inside the ontology and refer-
encing them in the planning model. As described in
Sec. 6.1, configurations are stored in the ontology as
reified n-ary connections between concepts, numbers,
truth values, and individuals. An example can be found
in Fig. 5. Each individual axiom of such a configura-
tion is transferred to the planner in form of a triple (r
i X), where r is the role, i.e. a property of the config-
uration and i is the instance representing the config-
uration. X can either be an individual in the ontology,
a number, a truth-value, or a concept. Individuals cor-
respond to objects in the planning model and we simi-
larly interpret numbers and truth values as ordinary ob-
jects. These triples express that a specific object X is
part of the configuration.

In case X is a concept C, the situation is slightly
more complicated. Consider a given configuration in-
stance iconf with corresponding triples (r1 iconf
C1), . . . , (rn iconf Cn). They denote a valid con-
figuration for any combination of objects o1∈C1, . . . ,
on∈Cn. Such a configuration thus specifies a restric-
tion based on sets of objects (which correspond to indi-
viduals) and not on individual objects. In the planning
model, we could interpret any such triple as a fact (r
i C). Unfortunately, PDDL lacks support for such ex-
pressions, as the arguments of facts are restricted to
be objects and not types (which mirror concepts in
the ontology). We have therefore extended the allowed
expressions of PDDL to also allow for such expres-
sions and we introduced a typeOf keyword, which
determines for an object ?o its type ?ot [10].6 This

6Technically, we introduce a new object s_C for each type C and
thereafter treat s_C as an ordinary object, while adding all necessary
instances of the typeOf predicate to the initial state. The typeOf
predicate can be handled as an ordinary predicate on the constants
s_C representing types.

way, the configuration shown in Fig. 5 as stored in
the ontology is transformed into five facts contained
in the initial state of the planning problem, shown in
Fig. 8. This enables us to refer to these configurations
in Drill_Screw’s preconditions. There we check
whether a configuration exists that allows for execut-
ing Drill_Screw in the state in which we are cur-
rently in. As such, we qualify in line 28 of Fig. 7
the reified configuration ?scc, which allows driving
a screw in the current state. Since the configuration
relates concepts to each other, we first have to deter-
mine the types of all relevant objects (see lines 19–20
and 29–30). Based on these types, we check whether
the selected configuration allows for relating constants
of these types (lines 32-35). Further, there are cases
where configurations are not necessarily complete. For
example, the configuration shown in Fig. 8 specifies
a holeShape1 but not a holeShape2, indicating
that the top object through which the screw is driven
must be pre-drilled, but not the bottom object. This is
expressed in the Drill_Screw action in lines 37–42.

We use the same pattern of checking configura-
tions in all primitive actions inside the planning model.
As such, the planner requests, at the beginning of
each planning process, all known configurations from
the ontology and adds all returned facts to the initial
state. This modularity is central for the scalability of
ROBERT: whenever a new tool is added, it suffices to
add new configurations for it to the ontology (if this
is even necessary, as configurations can also refer to
high-level concepts). The planner will automatically
load them from the ontology and will be able to apply,
e.g. Drill_Screw with a newly added tool and will
be able to configure it appropriately.

We also use ROBERT’s primitive action model to
ensure that we never provide instructions to the user
that might lead her to a dangerous situation. For exam-
ple, some devices are in general considered dangerous
if a battery is connected to them – most notably this
holds for electric saws. For those devices one should
not change attachments if the battery is still attached,
which we can check in the action that adds and re-
moves sawing blades for the saw and other similarly
dangerous devices. Further we can use preconditions
to, e.g. check that Alice wears gloves and safety glasses
when performing potentially dangerous actions.

7.2. Abstraction hierarchy and HTN planning

As stated in Sec. 2, ROBERT uses HTN planning to
formalise its planning domain. HTN planning domains

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 45

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 (ScrewConnectionConfig_materialType1 config1 Softwood)
2 (ScrewConnectionConfig_materialType2 config1 Softwood)
3 (ScrewConnectionConfig_rotarySpeed config1 1800)
4 (ScrewConnectionConfig_screwType config1 WoodScrewBetween4And6mm)
5 (ScrewConnectionConfig_holeShape1 config1 RoundHole3mm)

Fig. 8. Example for a configuration converted into facts for the initial state.

distinguish two types of tasks: primitive actions and
abstract tasks. Drill_Screw is an example for an
action in ROBERT’s domain. From the planner’s point
of view, there is no need to refine Drill_Screw into
more basic steps as all (potential) variability in exe-
cuting it can be handled by the dialogue manager. Ab-
stract tasks t ∈ T , on the other hand, model more
complex, high-level activities. Consider as an exam-
ple Connect, which represents the act of connecting
two objects. It is abstract as (a) it can consist of several
primitive actions, e.g. fixating the two objects, (poten-
tially) pre-drilling holes for the screw, configuring the
drill for screwing, driving the screw, and loosening the
fixation again, and as (b) there is multitude of options
to conduct Connect, e.g. by using screws, nails, or
pegs.

Fig. 9 specifies the method Connect_Screw as
an example. It is expressed using an extension of
PDDL for expressing HTN domains. The method
Connect_Screw provides a means to decompose
the abstract task (Connect ?o1 ?o2) (line 3). The
high-level semantics of Connect is that if executed,
it ensures that its two arguments ?o1 and ?o2 are
connected. This abstract task however does not specify
how this connection is to be made nor does it specify
any tools used to connect ?o1 and ?o2. The method
Connect_Screw specifies one possible means to
achieve the goal represented by Connect: driving a
screw through both objects. To this end, it specifies a
sequence of (both primitive and abstract) tasks (lines
5-11), that, if executed, will establish the connection.
Here, each line specifies an individual subtask of the
method, i.e. a task in the method’s task network. The
method also specifies the order of the task network in
saying that it is a total order of the subtasks (line 4).
First, holes are (potentially) made into ?o1 and ?o2
(lines 5 and 6), a process called pre-drilling. These
tasks are again abstract and offer two options for de-
composition: either drill a hole or do nothing. This gen-
erality is necessary as there are materials and screws
where pre-drilling none, one, or both objects is neces-
sary. The determination which of the two objects is to
be pre-drilled is made by the planner by choice of suit-

able decompositions. Here, configurations again come
into play. Connecting ?o1 and ?o2 will only be pos-
sible if both objects are appropriately pre-drilled. The
method itself does not take this information into ac-
count with the aim of keeping the planning domain as
general as possible. This generality again enables us to
integrate new tools and materials without the need to
alter the planning model at all.

After these two abstract tasks are completed, the
method Connect_Screw ensures that a battery and
some shank object (e.g. a screw bit) are inserted into
the drill ?drill, i.e. that the drill is properly pre-
pared. Again these two tasks might do nothing, as, e.g.
a battery may already be present in the drill. Similarly,
the configuration checked in Drill_Screw ensures
that the correct bit has been inserted into the drill. Next,
the two objects to be connected may have to be fix-
ated, then the screw is driven using the selected drill
?drill. Lastly, the two objects can be un-fixated. Af-
ter these tasks have been completed, ?o1 and ?o2 are
connected.

The goal formula used in ROBERT enforces that the
work area is cleaned up after the project and that all de-
vices are stored properly. The initial abstract plan spec-
ifies the project itself, i.e. it consists of abstract tasks
that, if executed, ensure that the project is completed.
Since we cannot expect users to specify these plans,
we provide a library of possible initial plans, i.e. DIY
projects. Users can simply select the project they want
to build. Afterwards, the planner generates a plan for
this project, which adapts the project to the users’ in-
dividual circumstances.

To generate the plan based on the domain, the ini-
tial state, and the goal description, we use the HTN
planning system PANDA [37]. It offers a wide variety
of algorithms for solving HTN planning problems. In
ROBERT we use a configuration which translates the
HTN planning problem into a propositional formula
and then passes it on to a SAT solver [31, 38, 39]. From
the resulting valuation, we can extract both the primi-
tive actions necessary to complete the project, as well
as the decomposition hierarchy that led to this particu-
lar plan.

46 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 (:method Connect_Screw
2 :parameters (?drill - Drill ?o1 - Connectable ?o2 - Connectable ?screw - Screw)
3 :task (Connect ?o1 ?o2)
4 :ordered-subtasks (and
5 (MaybeMakeHole ?o1)
6 (MaybeMakeHole ?o2)
7 (EnsureBattery ?drill)
8 (EnsureShank ?drill)
9 (MaybeFixateTwo ?o1 ?o2)

10 (Drill_Screw ?drill ?o1 ?o2 ?screw)
11 (MaybeUnFixateTwo ?o1 ?o2)
12)
13)

Fig. 9. Example of a method for connecting two objects ?o1 and ?o2 using a single screw ?screw.

7.3. Exploiting the task hierarchy

In addition to flexibility when it comes to the def-
inition of the goal, HTN planning also allows us to
significantly enhance ROBERT’s abilities to communi-
cate the contents of the individualised project to the
user. We use the decomposition hierarchy returned by
the planner to create an abstract version of the found
primitive plan tnSol. Technically, this plan is a task net-
work tn∗ containing abstract tasks that can be reached
from the initial plan via decomposition and from which
the solution tnSol can be reached via decomposition.
In essence, this task network is an intermediate refine-
ment step on the way to the solution tnSol. We com-
pute tn∗ by applying the decomposition methods used
to obtain tnSol from tnI backwards, i.e. by replacing the
tasks contained in a method by the method’s abstract
task. This process starts with the solution tnSol and is
repeated until a task network of the desired level of
abstraction has been reached. We further apply meth-
ods such that we achieve uniform decomposition depth
for all tasks in tn∗. The depth of a task t is the num-
ber of consecutively applied decompositions needed to
reach t from the initial plan. This depth corresponds
to the level of abstraction a task has. For backwards
application of methods, we always consider tasks with
the highest decomposition depth. This ensures that the
tasks in the determined task network tn∗ are roughly at
the same level of abstraction.

At the moment, we create only one abstract plan tn∗

by reducing the size of the task network until it has
less than seven tasks (cf. capacity of the human short-
term memory [40]). In our key-rack example, this ab-
stract plan consists of four abstract tasks (see Fig. 10).
These correspond to the four basic tasks in building a
key rack:

(1) sawing a plank into two boards,

1 Cut(board,back,tray)
2 Connect(back,tray)
3 Attach(hanger,2)
4 Attach(hook,4)

Fig. 10. Abstract plan found in the key-rack example.

(2) connecting the boards,
(3) attaching two hangers to the back, and
(4) adding four hooks to the tray.

ROBERT uses the abstract plan tn∗ in two ways.
First, ROBERT shows Alice a progress bar for her

project based on tn∗ at the top of the user interface (see,
e.g. Fig. 2). Every primitive action in the solution tnSol
is derived via decomposition from exactly one task t in
tn∗. Whenever we present a primitive action to the user,
we highlight the abstract task t in the progress bar. This
display serves both as an orientation to the user, as well
as provides instant positive feedback. Thus, Alice can
keep track of her progress in completing the project.
The advantage of using an abstraction for this purpose
is that the completion of a step shown in the progress
bar corresponds to completing a logical activity within
Alice’s current project.

In addition to showing the user an automatically
generated progress bar, we use the abstraction to deter-
mine the numbering of instructions. Instead of globally
numbering steps (“step 12 of 42”), we assign a chapter-
like numbering to primitive actions (“2.5 of 2.10”, i.e.
5 of 10 in part 2). This leads to a smaller number of
steps-to-be-performed shown to the user, which again
serve as a motivational factor.

Second, we are able to provide Alice not only with
instructions based on the detailed sequence of primi-
tive actions, but also on a more abstract level. As such,
we present the steps of tn∗ in the same way as we
present primitive actions. This is especially useful for

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 47

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the user to get an overview of the project and to only
then perform the detailed instructions of the plan. It
is also more suitable for users who might be able to
perform individual steps on their own using their prior
knowledge, but lack the required skills for other tasks.
Alice can choose on a task-per-task basis whether ab-
stract instructions suffice or whether more detailed in-
struction is necessary. See the following Sec. 8 for fur-
ther details.

8. Dialogue management

Traditionally, the task of a dialogue manager of
a user interface is to receive a semantic representa-
tion of the user input, spoken or expressed through
other modalities, and, depending on the application as
well as on the dialogue state, to select an appropri-
ate system reaction. In ROBERT, the dialogue man-
agement controls the communication between the user
and the components providing assistance, i.e. ontol-
ogy manager and planner. Furthermore, it is respon-
sible for the system’s robustness by compensating for
low speech recognition performance (e.g. confidence
measures) and by establishing common ground with
the user (confirmation strategies). A detailed descrip-
tion of the implementation and functionality of our di-
alogue manager is provided in the following. We pro-
vide insight into the concepts of our approach before
we focus on the implementation.

8.1. Concepts

For rendering our system ubiquitously accessible
and to allow for a modular extensible architecture, we
follow a distributed client/server-based approach. The
client is formed by a browser interface, which is able
to process multimodal user input and to present mul-
timedia content. On the server side a HTTP web ser-
vice handles requests from the interface and conveys
the user input to the dialogue component. The web
service is designed following the REST (REpresenta-
tional State Transfer) paradigm [41]. The main advan-
tages of this paradigm are architectural constraints in-
tended to reduce latency and network communication,
while optimising the independence and scalability of
server components. However, our web service is not
RESTful to a full extent, as we cannot render the server
stateless due to the fact that tracking of dialogue state
and history are essential for dialogue management de-
velopment.

Another main concept of our approach is to make
use of cloud-based cognitive services for automatic
speech recognition, language understanding, and text-
to-speech synthesis. Relocating these services into the
“cloud” holds several advantages, but also some dis-
advantages, which we discuss as well. As these oper-
ations require considerable processing power, a major
advantage lies in the saving of computing capacity al-
lowing for a more efficient implementation of the user
interface and lower latency.

Furthermore, cloud-services guarantee a high degree
of modularity. As a vast number of individual services
can easily be added by using endpoint queries, the
overall architecture is extensible, flexible, and offers
great maintainability.

A typical disadvantage of cloud-based approaches
is the need for a steady internet connection in order
to function properly. Even nowadays, there exist sit-
uations (e.g. a user is working in the basement) in
which internet connectivity cannot be guaranteed. In
such cases restrictions have to be made regarding a nat-
ural language interaction, as speech and intent recogni-
tion requires server connection. Therefore, the system
needs to be adaptive and provide a "graceful degrada-
tion", i.e. maintain basic system functionality, even in
case of a missing internet connection. This topic is cur-
rently work in progress, and hence not handled in this
paper.

For the development of our dialogue manager , we
chose an agent-based approach. Characteristically for
this approach, the dialogue is controlled by multiple
agents that are capable of reasoning about their actions
[42, 43]. Moreover, the dialogue is not statically prede-
fined and evolves dynamically, whereby the dialogue
flow is determined at runtime dependent on the current
world state and the agent’s context. This makes the ap-
proach especially useful in dynamically changing ap-
plication domains, e.g. assisting a user in the execution
of a complex task. As each agent can be modelled in-
dividually, the benefits from several different dialogue
control models and management strategies can be com-
bined. Our approach utilises agents for interacting with
the planning and knowledge module as well as an agent
handling meta-dialogues, such as information ground-
ing. The implementation of the concepts is described
in the following section.

8.2. Implementation

The multimodal dialogue system of ROBERT con-
sists of a user client interface and of server-based dia-

48 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

logue agents [44]. While the interface receives user in-
put and presents system output, the dialogue agents are
responsible for deciding on appropriate system actions,
e.g. to provide explanations on according user request.

8.2.1. User client interface
As front-end to our system a multimodal graphi-

cal interface is implemented using the Vue.js7 frame-
work. The JavaScript-based framework allows for cre-
ating incrementally scalable web pages, which are easy
to maintain and offer a high reactivity using dynamic
data binding. Those features are deemed best for devel-
oping a sophisticated multimodal web interface which
provides methods for handling dialogue input as well
as output. Our interface supports three different input
modalities: Speech, text, and touch/click input.

Due to the need for hands-free communication dur-
ing the execution of a DIY project, speech input serves
as the primary modality. We use the Google Chrome
web browser’s own speech-to-text service in combina-
tion with the annyang.js8 JavaScript library. The an-
nyang.js library provides a keyword-spotting ability,
enabling ROBERT to separate between requests of Al-
ice directed at the user interface and those involving
the reasoning capabilities of ROBERT.

When Alice solely wants to control elements of
the user interface, e.g. navigate through the presented
slides, an interaction with the backend of ROBERT is
not required. As such, simple commands like ‘next’
or ‘go back’ are spotted by annyang.js and processed
without informing the dialogue manager.

For addressing the cognitive modules of ROBERT a
certain keyword is necessary. After saying that key-
word, subsequent speech input is converted into text
and forwarded to the system for further processing.
The purpose of this approach is to avoid that ROBERT
reacts to off-topic talk as, per default, speech recogni-
tion is permanently activated, unless the user disables
speech input by pushing a button. Instead of speech
input, it is also possible to communicate directly to
the system via text input and to navigate through the
slides showing plan steps by touching direction arrows
or swiping gestures on the tablet’s screen.

To provide visual queues to Alice, whenever an in-
structional text is displayed on the user interface, we
automatically highlight those words corresponding to
concepts in the ontology. This tells Alice for which
words more detailed descriptions and explanations are
available (see Fig. 11). Moreover, these highlighted

7https://vuejs.org/
8https://www.talater.com/annyang/

words can also be used as links, i.e. Alice can request
an explanation for them via touch.

Dialogue output is presented depending on the
user’s request. If Alice has requested ROBERT to as-
sist her in a DIY project, i.e. has uttered a request for
planning, the resulting plan is shown as a sequence of
slides using the vue-slick.js library, where each indi-
vidual slide corresponds to one plan step of the plan π
found by the planner. If Alice has requested an expla-
nation or background information, the respective con-
tent is conveyed in the form of text and synthesised
speech, also using Chrome’s speech service. Fig. 11
shows a slide instructing the user to perform an action
(here inserting the saw blade) that has been generated
based on the plan step passed on by the planner.

8.2.2. Server-based dialogue agent
User input from the client interface is sent to an

HTTP API server used as the platform for dialogue
management. The service can be accessed by using
standard HTTP methods. For manipulating the re-
source, we make use of create, read, update, and delete
(CRUD) messages:

create is used to add new users via the HTTP POST
method. New users have to register for the ser-
vice by setting up a user profile including login
data for later authentication. Upon registration, a
new user is assigned to the resource /users, creat-
ing a subordinate instance /users/{id}. For han-
dling multiple, parallel user dialogues, each user
instance obtains its individual dialogue manager
and can be accessed by sending requests to the
resource /users/{id}.

read is used for authentication and retrieving individ-
ual user profiles. In order to use ROBERT, a reg-
istration and login is required. Via the HTTP
GET method, authentication information from
all users is gathered from the resource /users and
used for individual user validation. Furthermore,
the method retrieves a specific user profile when
called on an ID resource. This can be applied,
for example, for individualisation of the user in-
terface depending on the current user profile.

update is used to forward user input to the dia-
logue manager via the HTTP PUT method on
the resource /users/{id}. The arriving input is
processed by the individual dialogue manager
instance of the respective user and the result
passed back to the user interface.

delete is used to delete an individual user profile or all
user information at once via the HTTP DELETE
method.

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 49

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 11. A representation of a task step as depicted on the user interface. On the upper screen the user obtains information about the current
state of project progress in the form of an overview bar. The user receives a description of the current task in the form of an instruction text in
combination with an illustration visualising the instruction. The instruction text contains links (green highlighted words) on specific concepts
that should prime the user to ask for further information. For this purpose, a user may either use speech, touch the links or use text input (see
text field at the bottom). Furthermore, the user can ask for a video, scheme drawing of the project, or for a more abstract plan by either speech
or clicking the appropriate button. In order to navigate through all plan steps the user may use voice commands or click on the respective arrow
icons left or right.

For controlling the interaction flow, we implement
separate dialogue agents, each responsible for com-
munication with one specific module of ROBERT, i.e.
one agent for handling requests related to the planner
(e.g. requesting a step-by-step instruction for a specific
project), another agent responsible for requests regard-
ing factual knowledge and explanations, and another
for handling dialogue-related user input, such as con-
firmations.

A dialogue agent consists of an individual cloud-
based model for natural language understanding (NLU)
as well as a dialogue handler, which is able to process
module-specific requests. Furthermore, dialogue hand-
lers are also used for keeping track of the dialogue’s
state as they are aware of each other and obtain knowl-
edge of the interaction’s history. The interplay between
user interface, dialogue management and the cognitive
modules is depicted in Fig. 12.

Dialogue input is forwarded to all dialogue agents
by the HTTP API Server in the form of a JSON ob-
ject containing the converted input text and, if already
available, the currently shown task step in the UI.
While the currently displayed plan step is used to link
input to plan- and dialogue-related context informa-
tion (e.g. position in the plan, previous user input), the
current input text is analysed by the respective NLU

module. For NLU we use Microsoft’s cloud-based lan-
guage understanding intelligent service (LUIS) [33].
The framework allows creating highly sophisticated
and easily extensible NLU models. The statistical-
driven approach of LUIS relies on the two trainable
concepts Intent and Entity.

Intent refers to the intention of a user, i.e. the
purpose of an utterance, whereas an Entity contains
meaningful parts of an utterance. For example, when
Alice states the following planning request: “I want
to build a key rack.”, then, the Intent would be
startPlanning, while “key rack” would be recog-
nised as value for the Entity named project.

In Tab. 2, the developed intents and entities of each
model are listed. Intents of each model are designed
to be task-independent as they represent genuine ele-
ments of ROBERT’s dialogue with Alice. The list of
all known entities is requested from the ontology man-
ager. This is necessary in order to allow Alice to re-
fer to every concept and individual in the ontology.
The dialogue manager itself is developed to be task-
independent. After the individual LUIS models have
analysed the user input, the response from the model
with the highest confidence is selected and transformed
into an abstract user act by the respective dialogue
agent’s handler.

50 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 12. Modular architecture of ROBERT. The user interacts with the system through a multimodal interface. A dialogue manager consisting of an
HTTP API Server and three dialogue agents is used for controlling the interaction flow. While doing so, two agents control the dialogue between
user and cognitive modules (HTN Planner and Ontology Manager). Dialogue-related input, e.g. confirmation of information, is processed by an
individual agent.

Table 2
The developed intents and entities of each NLU model. Plan-Related LU handles planning requests (start planning, abstract or refine the generated
plan). In order to request encyclopedic background information (describe) and media content (describeVisual) of a specific ontological concept
(saw, battery, etc.) the Ontology-Related LU is used. This model is also able to handle availability requests. The Dialogue-Related LU handles
the affirmation (affirm) or rejection (deny) of previously provided uncertain information.

Plan-Related LU Ontology-Related LU Dialogue-Related LU

Intents startPlanning describe affirm

abstractPlan describeVisual deny

refinePlan doesExist

Entities project saw saw

battery battery

... ...

Dialogue handlers utilise a version of the Informa-
tion State approach [45]. This approach relies on the
three concepts dialogue move (user input), information
state (dialogue state) and dialogue action (system out-
put).

Depending on the confidence of the agent, a user act
is either forwarded to and processed by the appropriate
cognitive component (planner, ontology management)
or in case of dialogue-related user input, e.g. affirma-

tion of information, directly handled by the intended
agent. Affirmation of information is necessary in order
to deal with uncertain user input, which may have re-
sulted from poor speech recognition performance. As
LUIS classifies intents and entities with a certain prob-
ability, there exists the possibility that the classification
probability is too low for the system to act in a robust
manner.

When the uncertainty about the intent detection is

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 51

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

too high, the system runs a confirmation/grounding
strategy. In the current implementation we use an ex-
plicit confirmation strategy. For example, if ROBERT

recognises that Alice wants to have a description of
a concept (“What is a metal drill bit?”), but is un-
sure about the concept (metal drill bit) itself, it would
ask the user to confirm the recognized concept (“Do
you want to have a description of metal drill bit?”), to
which the user can respond with “yes” (affirm) or “no”
(deny). Furthermore, the respective agent updates the
dialogue state (plan- and dialogue-related context in-
formation, e.g. sequence of plan actions, previous user
input). The result is then transformed into an abstract
system act and returned to the client, where the inter-
face interprets the message and presents the content in
visual and/or spoken form.

9. Experimental evaluation

The interaction of users with ROBERT was studied
empirically (cf. [46]) with 18 DIY novices (10 females
and 8 males, mean age 33.4 years). The task provided
to the participants was to construct a key rack from a
wooden plank (as shown in Fig. 1) using an electric
drill driver and an electric jigsaw while being assisted
by ROBERT. To test the potential effect of interactive
assistance – as opposed to a more static instruction,
such as a pre-fabricated step-by-step guide – the assis-
tant system was provided in two versions:

• Full assistance: the system as described in this pa-
per, with one restriction: verbalisation was only
used in the form of automatically generated de-
scriptions (cf. Sec. 6.3), generated explanations
(cf. Sec. 6.4) were not offered.

• Baseline: Slides presented instructions at the low-
est level of granularity only, using texts (without
links for further descriptions, see Sec. 8.2) and
images (no videos). Voice commands and ques-
tion answering were not supported. And no help
for tool preparation and operation is provided.

Since our main interest was in studying the inter-
action with the full assistant, 13 participants were as-
signed to the full assistance group (six females and
seven males) and five to the baseline group (four fe-
males and one male).

9.1. Procedure

Demographic data was collected in a pre-test ques-
tionnaire together with participants’ prior experience
with dialogue systems and with DIY. Furthermore, we
inquired about participants’ help-seeking behaviour in
the DIY context and their attitude towards being as-
sisted with DIY projects by an app. Participants in the
full assistance condition were shown a short tutorial
video introducing how the assistance system can be
navigated using speech and touch commands. The DIY
task consisted of cutting the wooden plank into two
pieces of equal length using the jigsaw, connecting the
two parts using screws (and pre-drilling with the elec-
tric drill driver), and attaching hangers and hooks. Par-
ticipants were filmed during the session, and had to fill
out a comprehensive post-test questionnaire assessing
how they perceived the interaction with the system (as
shown in the appendix).

9.2. Results

Pre-test replies indicate that most participants can
indeed be considered DIY novices; whereas 15 in-
dicated prior experience with using an electric drill
driver, only three had used a jigsaw before, and three
had used an electric sander. Two participants indi-
cated no prior experience with any electric DIY tool.
The main practical experience reported by the partici-
pants was the assembly of pre-fabricated furniture. The
main sources of DIY-related help and information were
friends/relatives (18), the DIY store (11), youtube (9)
and web search (7), but not specialised resources such
as literature or DIY forums. Participants indicated that
they would welcome being helped by a digital assis-
tance system, as a guide for getting acquainted with a
new power tool (average score 4.3 on a five-point Lik-
ert scale,9 1: disagree – 5: agree) and as a guide to com-
pleting a DIY project (average score 4.1). When being
asked how difficult the participants judged the task of
constructing a key rack, prior to the experiment a mean
of 3.1 was obtained (standard deviation 0.85), and after
the actual experiment a mean of 3.0 (standard deviation
1.1), indicating a mixed perception of the difficulty of
the experimental task.

Within the allocated timeframe of the experiment
(105 minutes including introduction, tutorial video in
the full assistance condition, and questionnaires), 15
of the 18 participants completed the construction task.

9Cf. e.g. Allen and Seaman [47]

52 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Mean scores with standard deviations in brackets on a five point Lik-
ert scale ranging from 1 (low) to 5 (high).

Full assistance Baseline Total

Navigation & 3.75 (0.52) 3.77 (0.93) 3.76 (0.63)
Design

Trustworthiness 4.13 (0.58) 3.80 (0.93) 4.04 (0.68)

Reliability 3.46 (0.78) 3.40 (1.23) 3.44 (0.89)

Predictability & 3.85 (0.61) 4.25 (1.12) 3.96 (0.77)
Transparency

Competence 3.74 (0.77) 4.07 (0.68) 3.83 (0.74)

Acceptance 3.69 (0.64) 3.96 (0.74) 3.77 (0.66)

Usefulness & 3.59 (0.62) 3.47 (1.04) 3.56 (0.73)
Understandability

Overall 3.85 (0.69) 4.00 (0.71) 3.89 (0.68)
evaluation

Three of the 13 participants in the full assistance con-
dition had not finished their work in time and had to
be cut short whereas all five participants in the base-
line condition completed the task in time. However,
this difference between the groups cannot be consid-
ered significant. To determine whether this difference
is statistically significant (in view of the very small
sample size), a nonparametric test such as Barnard’s
exact test [48] can be used, which is considered more
powerful than the popular Fisher’s test (cf. [49]). The
assumed null hypothesis is that the assignment of the
participants to the full assistance vs. baseline condition
has no effect on the outcome (i.e. whether participants
finish on time). Barnard’s exact test yields p = 0.282
(two-sided), which means that based on the (admit-
tedly few) data, the null hypothesis should not be re-
jected (the p-value is larger than any typical signifi-
cance level to reject the null hypothesis, such as 0.1 or
0.05).

Table 3 shows participants’ scores on the dimen-
sions assessed by the post-questionnaire. Since the
scores are based on the 5-point Likert scale, five rep-
resents the maximal and one the minimal score, with
three representing the neutral position. As can be seen,
participants mildly leaned towards a positive assess-
ment (on average) when rating the system’s navigation
and design, its perceived trustworthiness and reliabil-
ity, its predicatability & transparency, its competence,
aspects related to acceptance (cf. appendix), and its
perceived usefulness & understandability. When being
asked for their overall assessment of ROBERT, the par-
ticipants’ average score fell into the positive sector of
the provided scale (3.89). Among the questions in the
“Usefulness & Understandability” category, we con-

sider the question whether the participants indicated
that they learned something while using ROBERT of
particular importance. The participants largely agreed
with a mean score of 4.3.

Even though the baseline group is very small, and
therefore a comparison of scores warrants caution, it
appears that participants in the baseline condition were
more favourable of the system’s predictability and per-
ceived competence. A possible explanation is offered
by the participants’ free-text comments on their expe-
rience with the system. Five participants in the full as-
sistance condition (out of 13) reported that speech in-
teraction did not work as they expected. Participants
were also critical of the assistance offered in the full as-
sistance condition. For instance, some participants in-
dicated that some of the instructions and explanations
offered to them appeared too obvious. Some partici-
pants were also critical of what they considered tech-
nical jargon. Three participants pointed out that they
would have expected the shown video clips to be ac-
companied by an audio commentary (all videos were
mute). By contrast, participants in the baseline condi-
tion were more critical about the quality of the shown
images (not crisp enough) and a lack of detail in the
instructions.

Besides the answers provided directly by the par-
ticipants, we further analysed a more objective perfor-
mance indicator; the time participants spent to prepare
the electric tools for operation. This comprises insert-
ing a battery, an attachment (drill bit, saw blade) and
effectuating the settings of the device. Fig. 13 shows
the comparison for the two experimental groups (full
assistance/baseline). The graph shows a trend of the
participants in the full assistance condition of being
faster at setting up the drill driver and the electric jig-
saw than in the baseline condition. Even though the
sample is small, a significant difference in the setup
time of the electric jigsaw is observed (a one-way anal-
ysis of variance, ANOVA, yields p = 0.002). In the
case of the drill driver, the difference between full as-
sistance and baseline is less clear. This is not unex-
pected, however; even novice DIYers can be assumed
to be more proficient at using a drill driver (cf. pre-
test), and are expected to profit less from assistance
than in the case of the jigsaw. The overall difference
in the time taken for the experiment in the two condi-
tions failed to reach significance. While speed-up itself
might not be an important factor for hobbyist DIYers,
it can be considered an indicator of learning related to
tool handling. Furthermore, in the baseline condition,
part of the time spent was observed to result from mis-
handling of the tools (e.g. inserting the sawblade the
wrong way round at first).

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 53

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

drill driver electric saw

Fig. 13. Scatterplot of time to operation (in minutes) for electric
drill driver and jigsaw; left sub-columns: full assistance, right sub–
columns: baseline, horizontal bars: mean times.

10. Conclusion and future work

We presented the digital assistant ROBERT, which
supports DIY beginners conducting their DIY projects.
Assistance is based on the interplay of planning, onto-
logical reasoning, and dialogue management. The DIY

projects as well as the involved electric devices are for-
mally represented by means of a planning model and
an ontology. Based on these models, a plan is devel-
oped fully automatically that will, if followed by the
user, complete the user’s project. This model-based ap-
proach allows ROBERT to automatically adapt to pre-
viously unknown situations and still provide the best-
fitting instructions and explanations in these circum-
stances. This is especially important in the DIY setting,
where the tools and materials available to each individ-
ual user differ widely. Furthermore, the model-based
approach enables easy maintainability and scalability
of ROBERT.

The instructions generated by the planner in the
form of a plan are presented to the user in a step-by-
step fashion, conveying what to do with the help of
images, text, and videos. Suitable media content is re-
trieved via ontology reasoning, allowing ROBERT to
present instructions and media content, even if per-
fectly suiting material is not available. By exploiting
a hierarchical planning model, we offer users several
levels of abstraction among which they can choose.
This way, a user can either be instructed in a very de-
tailed way, showing every single required step, or he or
she can be shown abstractions of various steps.

We have conducted a user study to investigate the
usefulness of ROBERT. It revealed that the participants
were favourable towards the assistance it provides. It
also showed that by using ROBERT participants were
faster in using electric tools, hinting at an increased
proficiency enabled by using ROBERT.

One limitation of the presented user study is that
the current incarnation of ROBERT was evaluated as
a whole, whereas it would also be informative to test
different aspects of the approach separately. On the
one hand, the presented evaluation is useful to estab-
lish that the integration of the different functionali-
ties serves it purpose. But ideally, separate experiments
should be conducted for more closely assessing the
impact and/or usefulness of individual functionalities
(which, however, generally presuppose a basis func-
tionality on the part of the other components, so that
these functionalities can not be considered in isola-
tion). Among the aspects that warrant more focused in-
vestigation is that it is not immediately clear to users
how they should interact with the system, and to fur-
ther establish how ROBERT can offer its functionali-
ties in an intuitive way. This also concerns navigation,
for instance how to best convey the available hierarchi-
cal structure of the generated plans (and correspond-
ing instructions) and how to adjust the presented level
accordingly.

54 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Secondly, the presented user study used a small sam-
ple of participants (in particular, in the baseline con-
dition). Therefore, the presented empirical results are
to be understood in an explorative sense, and the pre-
sented statistics should be interpreted only as first evi-
dence.

In spite of the above mentioned limitations, the
study provided valuable indications for the future de-
velopment of ROBERT. There are several lines of fu-
ture work, most of them are concerned with flexibil-
ity of the system and individualisation: At the moment,
the system acts in the same way for each user, though
there is potential for individualisation. As far as plan-
ning is concerned, we will make the level of abstrac-
tion shown to the user dependent on the current exper-
tise of the user. That is, a novice user may be instructed
on the lowest level of abstraction, whereas a more ex-
perienced user may be presented the same plan on a
more abstract level. Individualisation can also come
into play when choosing the execution order of a plan.
A generated plan usually allows for some degree of
flexibility when it comes to the order of its actions. For
instance, one user could first want to use an electric
device with all parts of the project, whereas another
might want to use the device only shortly before the
respective part of the project is used. So far, we do not
take the individual user into account, but plan to do so
in the future. We also want to enable users to actively
request changes to the plan generated for the project
at hand. For instance, in our key rack example, there
are many possibilities how to connect the two wooden
boards of the key rack. So far, we only offer one, but
we could simply add many variants among which the
user may choose one (or even combine them). Other
preferences could involve the tools, e.g. using screws
(and an electric drill) versus nails (and a hammer). All
these directions are currently pursued and further em-
pirical evaluations are planned, too.

As far as knowledge modelling is concerned, user
modelling can be used to adjust the instructions and
explanations for different kinds of users. The need for
doing this is also illustrated by the comments of the ex-
periment’s participants. Whereas some indicated that
they struggled with technical jargon and need more de-
tailed explanations, some considered the information
provided by the system as too obvious.

ROBERT currently assumes that whenever an action
is performed by the user, it will be completed success-
fully. This is a suitable assumption for controlled envi-
ronments, but if ROBERT is used by real-world users,
they might fail to perform certain steps. Even simple

errors, like inserting a drilling bit wrongly, can have an
adverse effect on the success of the overall project. It is
also difficult to diagnose the error, as ROBERT has no
direct access to the world state after the error has oc-
curred. To be able to assist in these situations we plan
to integrate plan repair into ROBERT, which is a capa-
bility already included in our previous assistant for set-
ting up home theatres [7]. Using plan repair, ROBERT
would then be able to adapt the plan if a failure has
occurred so that it still achieves the user’s goal.

Acknowledgments

This work is done within the technology transfer
project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the Transregional Col-
laborative Research Centre SFB/TRR 62 “Companion-
Technology for Cognitive Technical Systems” funded
by the German Research Foundation (DFG). The in-
dustrial project partner is the Corporate Research Sec-
tor of the Robert Bosch GmbH. We thank Juliette Rose
and Chunhui Zhu for their assistance with the experi-
mental evaluation.

Appendix. Questionnaires

Navigation and Design

Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree) except first and second
item (1 = very negative; 5 = very good). Cronbach’s
α = 0.70 (in our experimental evaluation)

Table 4
Items of the Navigation and Design Scale (self-developed).

Item
1 Wie beurteilen Sie die Navigation innerhalb der App auf

dem Tabletcomputer (grafische Bedienelemente)?
2 Wie beurteilen Sie die Navigation innerhalb der App auf

dem Tabletcomputer (Bedienung per Sprache)?
3 Die Bedienung der App war einfach zu erlernen.
4 Die Gestaltung der App ist ansprechend.
5 Die Gestaltung der App ist Ãijbersichtlich.

Trustworthiness

Translated to German and modified from [50]
Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree). Cronbach’s α = 0.72 (in
our experimental evaluation)

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 55

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Items of the Trust in Automated Systems Scale [50].

Item
1 Ich vertraue der App.
2 Die Nutzung der App wird zu gefÃd’hrlichen oder

schÃd’dlichen Konsequenzen fÃijhren.
3 Ich misstraue den VorschlÃd’gen der App.
4 Ich bin skeptisch gegenÃijber der App.

Reliability

Translated to German and modified from [51]
Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree). Cronbach’s α = 0.81 (in
our experimental evaluation)

Table 6
Items of the Perceived Reliability Scale [51].

Item
1 Die App bietet mir immer die Hilfe, die ich benÃűtige.
2 Die App reagiert wie erwartet.
3 Ich kann mich auf eine korrekte Funktion der App ver-

lassen.
4 Die erstellte Anleitung ist stets auf die aktuelle Situation

zugeschnitten.

Predictability and Transparency

Translated to German and modified from [51]
Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree). Cronbach’s α = 0.77 (in
our experimental evaluation)

Table 7
Items of the Predictability and Transparency Scale [51].

Item
1 Ich habe verstanden, wie die App funktioniert.
2 Ich weiÃ§, wie die App auf meine Eingaben reagieren

wird.
3 Ich denke, dass mir die App beim Heimwerken behil-

flich ist.
4 Es ist einfach nachzuvollziehen, was die App tut.

Competence

Translated to German and modified from [52]
Response format: 5-point Likert-scale (1 = - -, agree
with left statement; 5 = + +, agree with right state-
ment). Cronbach’s α = 0.66 (in our experimental eval-
uation)

Table 8
Items of the Competence Scale [52].

Item
1 Inkompetent - Kompetent
2 Primitiv - Intelligent
3 Laienhaft - Fachkundig

Acceptance

Translated to German and modified from [52]

Response format: 5-point Likert-scale (1 = - -, agree

with left statement; 5 = + +, agree with right state-

ment). Cronbach’s α = 0.87 (in our experimental eval-

uation)

Table 9
Items of the Acceptance Scale [52].

Item
1 Unangenehm - Angenehm
2 Nutzlos - NÃijtzlich
3 Schlecht - Gut
4 LÃd’stig - Nicht lÃd’stig
5 Unpraktisch - Praktisch
6 ÃĎrgerlich - Erfreulich
7 Starr - Flexibel
8 Nicht individualisierbar - Individualisierbar
9 Passiv - Aktiv

56 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Usefulness and Understandability

Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree). Cronbach’s α = 0.71 (in
our experimental evaluation)

Table 10
Items of the Usefulness and Understandability Scale (self-
developed).

Item
1 Es war einfach, den Anleitungen zu folgen.
2 Die Handlungsanweisungen waren fÃijr die Durch-

fÃijhrung des Heimwerkerprojekts hinreichend.
3 Es konnte stets vermittelt werden, welchem Zweck die

einzelnen Handlungsanweisungen dienten.
4 Die App hat sich an meine BedÃijrfnisse und meinen

Kenntnisstand angepasst.
5 Die durch die App vermittelten Information zu

GerÃd’ten, Arbeitsmitteln und Materialien waren ver-
stÃd’ndlich.

6 Durch die Interaktion mit der App habe ich etwas Ãijber
das Heimwerken hinzugelernt.

Overall evaluation

Response format: 5-point Likert-scale (1 = strongly
disagree; 5 = strongly agree)

Table 11
Items of overall evaluation.

Item
1 Wie beurteilen Sie die App insgesamt.

References

[1] G. Behnke, M. Schiller, M. Kraus, P. Bercher, M. Schmautz,
M. Dorna, W. Minker, B. Glimm and S. Biundo, Instructing
Novice Users on How to Use Tools in DIY Projects, in: Pro-
ceedings of the 27th International Joint Conference on Artifi-
cial Intelligence and the 23rd European Conference on Artifi-
cial Intelligence (IJCAI-ECAI 2018), IJCAI, 2018, pp. 5805–
5807.

[2] K. Erol, J. Hendler and D. Nau, Complexity results for HTN
planning, Annals of Mathematics and AI 18(1) (1996), 69–93.

[3] M. Ghallab, D.S. Nau and P. Traverso, Automated Planning
and Acting, Cambridge University Press, 2016.

[4] T. Geier and P. Bercher, On the Decidability of HTN Plan-
ning with Task Insertion, in: Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2011),
AAAI Press, 2011, pp. 1955–1961.

[5] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft,
F. Richter and B. Schattenberg, Plan, Repair, Execute, Explain
- How Planning Helps to Assemble your Home Theater, in:
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2014), AAAI Press,
2014, pp. 386–394.

[6] F. Honold, P. Bercher, F. Richter, F. Nothdurft, T. Geier,
R. Barth, T. Hörnle, F. Schüssel, S. Reuter, M. Rau,
G. Bertrand, B. Seegebarth, P. Kurzok, B. Schattenberg,
W. Minker, M. Weber and S. Biundo, Companion-Technology:
Towards User- and Situation-Adaptive Functionality of Tech-
nical Systems, in: Proceedings of the 10th International Con-
ference on Intelligent Environments (IE 2014), IEEE, 2014,
pp. 378–381. doi:10.1109/IE.2014.60.

[7] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller,
G. Behnke, F. Nothdurft, F. Honold, W. Minker, M. Weber and
S. Biundo, A Planning-based Assistance System for Setting Up
a Home Theater, in: Proceedings of the 29th AAAI Conference
on AI (AAAI 2015), AAAI Press, 2015, pp. 4264–4265.

[8] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller,
G. Behnke, F. Nielsen, F. Honold, F. Schüssel, S. Reuter,
W. Minker, M. Weber, K. Dietmayer and S. Biundo, Advanced
User Assistance for Setting Up a Home Theater, in: Compan-
ion Technology – A Paradigm Shift in Human-Technology In-
teraction, S. Biundo and A. Wendemuth, eds, Cognitive Tech-
nologies, Springer, 2017, pp. 485–491, Chap. 24.

[9] P. Bercher, F. Richter, F. Honold, F. Nielsen, F. SchÃijssel,
T. Geier, T. HÃűrnle, S. Reuter, D. HÃűller, G. Behnke,
K. Dietmayer, W. Minker, M. Weber and S. Biundo, A
Companion-System Architecture for Realizing Individualized
and Situation-Adaptive User Assistance, technical report, Ulm
University, 2018. doi:10.18725/OPARU-11023.

[10] M. Schiller, G. Behnke, M. Schmautz, P. Bercher, M. Kraus,
M. Dorna, W. Minker, B. Glimm and S. Biundo, A Paradigm
for Coupling Procedural and Conceptual Knowledge in Com-
panion Systems, in: Proceedings of the 2nd International Con-
ference on Companion Technology (ICCT 2017), IEEE, 2017.

[11] D. McDermott, The 1998 AI Planning Systems Competition,
AI Magazine 21(2) (2000), 35–55.

[12] M. Fox and D. Long, PDDL2.1 : An Extension to PDDL for
Expressing Temporal Planning Domains, Journal of Artificial
Intelligence Research (JAIR) 20 (2003), 61–124.

[13] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider
and D. Nardi, The description logic handbook: Theory, im-
plementation and applications, Cambridge university press,
2003.

[14] K. Myers, P. Jarvis, W. Tyson and M. Wolverton, A Mixed-
initiative Framework for Robust Plan Sketching, in: Pro-
ceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS 2003), AAAI Press, 2003,
pp. 256–265.

[15] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. Hsu, A. Jon-
sson, B. Kanefsky, P. Morris, K. Rajan, J. Yglesias, B. Chafin,
W. Dias and P. Maldague, MAPGEN: mixed-initiative plan-
ning and scheduling for the mars exploration rover mission,
Intelligent Systems, IEEE 19(1) (2004), 8–12.

[16] S. Sengupta, T. Chakraborti, S. Sreedharan, S.G. Vadlamudi
and S. Kambhampati, RADAR – A Proactive Decision Support
System for Human-in-the-Loop Planning, in: The 2017 AAAI
Fall Symposium Series: Technical Reports, AAAI Press, 2017,
pp. 269–276.

G. Behnke et al. / Instructing novice users on how to use tools in DIY projects 57

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[17] J. Fernandez-Olivares, L. Castillo, O. Garcia-Perez and
F. Palao, Bringing Users and Planning Technology Together.
Experiences in SIADEX, in: Proceedings of the 16th Inter-
national Conference on Automated Planning and Scheduling
(ICAPS 2006), 2006, pp. 11–20.

[18] M.E. Pollack, Planning Technology for Intelligent Cognitive
Orthotics, in: Proceedings of the 6th International Confer-
ence on Artificial Intelligence Planning Systems (AIPS), AAAI
Press, 2002, pp. 322–332.

[19] B. Krieg-Brückner, S. Autexier, M. Rink and S.G. Nokam, For-
mal modelling for cooking assistance, in: Software, Services,
and Systems, Springer, 2015, pp. 355–376.

[20] C. Steinberger and J. Michael, Towards Cognitive Assisted
Living 3.0, in: Proceedings of the SmarterAAL Workshop co-
located with PERCOM, IEEE, 2018.

[21] R. Stevens, J. Malone, S. Williams, R. Power and A. Third,
Automating generation of textual class definitions from OWL
to English, J. Biomedical Semantics 2(Suppl. 2) (2011), 5.

[22] S.F. Liang, D. Scott, R. Stevens and A. Rector, OntoVerbal: A
generic tool and practical application to SNOMED CT, Inter-
national Journal of Advanced Computer Science and Applica-
tions (IJACSA) 4 (2013), 227–239.

[23] I. Androutsopoulos, G. Lampouras and D. Galanis, Gener-
ating Natural Language Descriptions from OWL Ontologies:
The NaturalOWL System, Journal of Artificial Intelligence Re-
search 48 (2013), 671–715.

[24] D.L. McGuinness, Explaining Reasoning in Description Log-
ics, PhD thesis, Rutgers University, 1996.

[25] A. Borgida, E. Franconi and I. Horrocks, Explaining ALC sub-
sumption, in: Proceedings of the European Conference on Ar-
tificial Intelligence (ECAI 2000), IOS Press, 2000, pp. 209–
213.

[26] T. Nguyen, R. Power, P. Piwek and S. Williams, Measuring
the understandability of deduction rules for OWL, in: First In-
ternational Workshop on Debugging Ontologies and Ontology
Mappings (WoDOOM12), P. Lambrix, G. Qi and M. Horridge,
eds, Linköping University Electronic Press, 2012, pp. 1–12.

[27] M.R. Schiller, F. Schiller and B. Glimm, Testing the Adequacy
of Automated Explanations of EL Subsumptions., in: Proceed-
ings of the 30th International Workshop on Description Logics
(DL), CEUR workshop proceedings, Vol. 1879, 2017.

[28] T.A.T. Nguyen, R. Power, P. Piwek and S. Williams, Predict-
ing the understandability of OWL inferences, in: The Semantic
Web: Semantics and Big Data, P. Cimiano, O. Corcho, V. Pre-
sutti, L. Hollink and S. Rudolph, eds, Springer, 2013, pp. 109–
123.

[29] T. Perleth, M. Schiller and B. Glimm, Applying a Model
of Text Comprehension to Automated Verbalizations of EL
Derivations, in: Proceedings of the 31st International Work-
shop on Description Logics, Vol. 2211, M. Ortiz and T. Schnei-
der, eds, CEUR.

[30] D. Crockford, The application/json media type for javascript
object notation (json), Technical Report, 2006.

[31] G. Behnke, D. Höller and S. Biundo, Tracking Branches
in Trees – A Propositional Encoding for solving Partially-
Ordered HTN Planning Problems, in: Proceedings of the 10th
International Conference on Tools with Artificial Intelligence
(ICTAI 2018), IEEE Computer Society, 2018, pp. 73–80.

[32] B. Glimm, I. Horrocks, B. Motik, G. Stoilos and Z. Wang, Her-
miT: An OWL 2 Reasoner, Journal of Automated Reasoning
53(3) (2014), 245–269.

[33] J. Williams, E. Kamal, M. Ashour, H. Amr, J. Miller and
G. Zweig, Fast and easy language understanding for dialog sys-
tems with Microsoft Language Understanding Intelligent Ser-
vice (LUIS), in: Proceedings of the 16th Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIG-
DIAL 2015), Association for Computational Linguistics, 2015,
pp. 159–161.

[34] G. Behnke, D. Ponomaryov, M. Schiller, P. Bercher, F. Noth-
durft, B. Glimm and S. Biundo, Coherence Across Compo-
nents in Cognitive Systems – One Ontology to Rule Them
All, in: Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2015), AAAI Press, 2015,
pp. 1442–1449.

[35] G. Behnke, P. Bercher, S. Biundo, B. Glimm, D. Ponomaryov
and M. Schiller, Integrating Ontologies and Planning for Cog-
nitive Systems, in: Proceedings of the 28th International Work-
shop on Description Logics (DL 2015), CEUR Workshop Pro-
ceedings, 2015, pp. 338–360.

[36] S. Rudolph, M. Krötzsch and P. Hitzler, All Elephants are Big-
ger than All Mice, in: Proceedings of the 21st International
Workshop on Description Logics (DL), CEUR workshop pro-
ceedings, CEUR Workshop Proceedings, Vol. 353, 2008.

[37] P. Bercher, S. Keen and S. Biundo, Hybrid planning heuris-
tics based on task decomposition graphs, in: Proceedings of the
7th Annual Symposium on Combinatorial Search (SoCS 2014),
AAAI Press, 2014, pp. 35–43.

[38] G. Behnke, D. Höller and S. Biundo, totSAT – Totally-Ordered
Hierarchical Planning through SAT, in: Proceedings of the
32nd AAAI Conference on AI (AAAI 2018), AAAI Press, 2018,
pp. 6110–6118.

[39] G. Behnke, D. Höller and S. Biundo, Bringing Order to Chaos -
A Compact Representation of Partial Order in SAT-based HTN
Planning, in: Proceedings of the 33rd AAAI Conference on AI
(AAAI 2019), AAAI Press, 2019.

[40] G.A. Miller, The magical number seven, plus or minus two:
Some limits on our capacity for processing information., Psy-
chological review 63(2) (1956), 81–97.

[41] R.T. Fielding and R.N. Taylor, Principled design of the modern
Web architecture, ACM Transactions on Internet Technology
(TOIT) 2(2) (2002), 115–150.

[42] A.S. Rao and M.P. Georgeff, BDI agents: from theory to prac-
tice, in: ICMAS, Vol. 95, 1995, pp. 312–319.

[43] M.F. McTear, Spoken dialogue technology: enabling the con-
versational user interface, ACM Computing Surveys (CSUR)
34(1) (2002), 90–169.

[44] M. Kraus, G. Behnke, P. Bercher, M. Schiller, S. Biundo,
B. Glimm and W. Minker, A Multimodal Dialogue Framework
for Cloud-Based Companion Systems, in: Proceedings of the
10th International Workshop on Spoken Dialog Systems Tech-
nology (IWSDS 2018), 2018.

[45] S. Larsson and D.R. Traum, Information state and dialogue
management in the TRINDI dialogue move engine toolkit,
Natural language engineering 6(3–4) (2000), 323–340.

[46] M. Schiller, G. Behnke, P. Bercher, M. Kraus, M. Dorna,
F. Richter, S. Biundo, B. Glimm and W. Minker, Evaluating
Knowledge-Based Assistance for DIY, in: Mensch und Com-
puter 2018 – Workshopband, Gesellschaft für Informatik eV,
2018.

[47] I.E. Allen and C.A. Seaman, Likert scales and data analyses,
Quality progress 40(7) (2007), 64–65.

58 G. Behnke et al. / Instructing novice users on how to use tools in DIY projects

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[48] G. Barnard, Significance tests for 2×2 tables, Biometrika
34(1/2) (1947), 123–138.

[49] C.R. Mehta and P. Senchaudhuri, Conditional versus un-
conditional exact tests for comparing two binomials, Cy-
tel Software Corporation, 2003, Accessed on January 2nd,
2019 from http://www.nbi.dk/~petersen/Teaching/Stat2009/
Barnard_ExactTest_TwoBinomials.pdf.

[50] J.-Y. Jian, A.M. Bisantz and C.G. Drury, Foundations for an
empirically determined scale of trust in automated systems, In-
ternational Journal of Cognitive Ergonomics 4(1) (2000), 53–

71.
[51] M. Madsen and S. Gregor, Measuring human-computer trust,

in: 11th Australasian conference on information systems (ACIS
2000), G. Gable and M. Vitale, eds, Queensland University of
Technology, Brisbane, 2000.

[52] J.D. Van Der Laan, A. Heino and D. De Waard, A simple pro-
cedure for the assessment of acceptance of advanced transport
telematics, Transportation research. Part C, Emerging tech-
nologies 5(1) (1997), 1–10.

http://www.nbi.dk/~petersen/Teaching/Stat2009/Barnard_ExactTest_TwoBinomials.pdf
http://www.nbi.dk/~petersen/Teaching/Stat2009/Barnard_ExactTest_TwoBinomials.pdf

	Introduction
	Preliminaries
	Planning
	Ontology-based knowledge modelling and verbalisation

	Related work
	Alice's view on Robert
	System architecture
	Knowledge management
	Factual knowledge for planning
	Instructions
	Generated textual descriptions
	Generated explanations

	Planning
	Action model and connection to the ontology
	Abstraction hierarchy and HTN planning
	Exploiting the task hierarchy

	Dialogue management
	Concepts
	Implementation
	User client interface
	Server-based dialogue agent

	Experimental evaluation
	Procedure
	Results

	Conclusion and future work
	Acknowledgments
	Appendix. Questionnaires
	Navigation and Design
	Trustworthiness
	Reliability
	Predictability and Transparency
	Competence
	Acceptance
	Usefulness and Understandability
	Overall evaluation

	References

