Eliminating Redundant Actions in Partially Ordered Plans A Complexity Analysis

Conny Olz and Pascal Bercher

Ulm University, Institute of Artificial Intelligence

July 2019

Motivation •	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0000	
Motivatio					

Try to remove redundant actions in partially ordered plans.

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
•	00		00	0000	0
Motivatic	on				

Find some solution fast and post-optimize afterwards

Try to remove redundant actions in partially ordered plans.

Motivation •	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0000	Summary O
Motivatio	on				

Find some solution fast and post-optimize afterwards

Mixed-initiative planning

Try to remove redundant actions in partially ordered plans.

Motivation •	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs 0000	Summary O
Motivatio	n				

Find some solution fast and post-optimize afterwards

Mixed-initiative planning

Try to remove redundant actions in partially ordered plans.

Preprocessing may improve explanation of necessity of actions

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
•	00		00	0000	O
Motivatic	on				

	Formal Framework ●○	The Problem Remove & Repair 000	Cycle Dissolving Pairs 00	Proofs 0000	
Partial Pl	an				

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	●○		00	0000	O
Partial PI	an				

A partial plan is a tuple $P = (PS, \prec, CL)$, where

- PS is a finite set of plan steps ps = (1, a) with I being a label unique in PS and a ∈ A an action,
- \prec is a partial order on *PS*, and
- CL is a finite set of causal links.

Motivation 0	Formal Framework ○●	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs 0000	Summary O
POCL Pla	an				

 $P = (PS,\prec,\mathit{CL})$ is a partial-order causal link (POCL) solution plan iff

- all preconditions are supported by causal links and
- there are no causal threats.
- \Rightarrow All linearizations are classical solution plans.

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00	●00	00	0000	0
The Prot	olem Remove & F	Penair			

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00	●00	00	0000	0
The Prot	olem Remove & F	Penair			

The Froblem Remove & Repair

C. Olz, P. Bercher

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00	●00	00	0000	0
The Prot	olem Remove & F	Penair			

The Froblem Remove & Repair

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00	●00	00	0000	O
The Pro	hlem Remove & F	Renair			

 \rightarrow Not every linearization is still a solution but some are!

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00	○●○	00	0000	O
The Prob	lem Remove & R	epair			

Definition (REMOVE & REPAIR (R&R))

Given

- a POCL plan P for some problem Π and
- one plan step that will be removed.

Decision problem:

 Is there an ordering-refinement of P (only adding causal links and ordering constraints is allowed) without this plan step that is still a solution for Π?

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00	00●	00	0000	O
The Prob	lem Remove & R	epair			

Theorem

 ${\rm R\&R}$ is NP-complete.

	Formal Framework	The Problem Remove & Repair 00●	Cycle Dissolving Pairs	Proofs 0000	
The Prob	lem Remove & R	Repair			

Theorem

 ${\rm R\&R}$ is NP-complete.

Proof.

- 1 Membership \checkmark
- **2** CYCLE DISSOLVING PAIRS (CDP) is NP-complete.
- \blacksquare Reduction from CDP

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		●0	0000	O
Cycle d	ISSOLVING PAIRS	(CDP)			

Definition (CYCLE DISSOLVING PAIRS (CDP))

Given

- a directed graph G and
- a partition of a subset of its vertex set, such that each element has size two.

Decision problem:

• Is it possible to make *G* acyclic by deleting at most one vertex of each partition element?

	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs ○●	Proofs 0000	
Example :	1				

	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs ○●	Proofs 0000	
Example :	1				

	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs ○●	Proofs 0000	
Example :	1				

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00	000	○●	0000	O
Example	1				

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		○●	0000	O
Example	2				

	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs ○●	Proofs 0000	
Example	2				

	Formal Framework 00	The Problem Remove & Repair	Cycle Dissolving Pairs ○●	Proofs 0000	
Example	2				

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	●000	O
Proof Ide	a: CDP is NP-co	omplete			

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	●000	O
Proof Ide	a: CDP is NP-co	omplete			

 $x_i = true$

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	●000	O
Proof Ide	a: CDP is NP-co	omplete			

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	●000	O
Proof Ide	a: CDP is NP-cc	omplete			

 $x_i = true$

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00	000	00	0●00	O
Proof Ide	a: $R\&R$ is NP-c	omplete			

Reduction from $\mathrm{C}\mathrm{D}\mathrm{P}$

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs o●oo	Summary O
Proof Ide	a: R&R is NP-c	omplete			

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0●00	Summary O
Proof Ide	ea: R&R is NP-c	omplete			

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs o●oo	Summary O
Proof Ide	a: R&R is NP-c	omplete			

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0●00	Summary O
Proof Ide	ea: R&R is NP-c	omplete			

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0●00	Summary O
Proof Ide	ea: R&R is NP-c	omplete			

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 0●00	Summary O
Proof Ide	ea: R&R is NP-c	omplete			

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	00●0	O
Paramete	rized Complexity				

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs 00	Proofs 00●0	Summary O
Paramete	rized Complexity				

• They are ordered behind the removed plan step,

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	oo●o	O
Paramete	rized Complexity				

- They are ordered behind the removed plan step,
- can be ordered before plan steps with unsupported preconditions,

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	00●0	O
Paramete	rized Complexity				

- They are ordered behind the removed plan step,
- can be ordered before plan steps with unsupported preconditions,
- and can support any of these open preconditions.

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	00●0	O
Paramete	rized Complexity				

- They are ordered behind the removed plan step,
- can be ordered before plan steps with unsupported preconditions,
- and can support any of these open preconditions.

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	000●	O
Paramete	rized Complexity				

Theorem

 $\#_{\textit{Atweens}}$ - R&R is fixed-parameter tractable

Motivation 0	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs 0000	Summary •
Summary	of Main Results				

سامی	actions to be removed				
pian	one <i>given</i>	\exists one	k given	$\exists k$	

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	0000	•
Summary	of Main Results				

plan	actions to be removed one given \exists one k given $\exists k$					
t.o. POCL						

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	0000	•
Summary	of Main Results				

plan	actions to be removed					
	one <i>given</i>	∃ one	k given	$\exists k$		
t.o. POCL	Р					

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
0	00		00	0000	•
Summary	of Main Results				

plan	one <i>given</i>	actions to b ∃ one	e removed <i>k</i> given	∃k
t.o. POCL	Р	Р		

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	0000	●
Summary	of Main Results				

plan	a one <i>given</i>	ictions to b ∃ one	e removed <i>k</i> given	∃k
t.o. POCL	Р	Р	Р	

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	0000	●
Summary	of Main Results				

nlan	ä	actions to b	e removed	
ріан	one <i>given</i>	∃ one	k given	$\exists k$
t.o. POCL	Р	Ρ	Р	NP-c. ¹

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	0000	●
Summary	of Main Results				

.1	ā	actions to b	e removed	
pian	one <i>given</i>	\exists one	k given	$\exists k$
t.o.	Р	Р	Р	$NP-c.^1$
POCL	NP-c.			

Motivation	Formal Framework	The Problem Remove & Repair	Cycle Dissolving Pairs	Proofs	Summary
O	00		00	0000	●
Summary	of Main Results				

nlan	a	octions to b	e removed	
pian	one <i>given</i>	\exists one	k given	$\exists k$
t.o.	Р	Р	Р	$NP-c.^1$
POCL	NP-c.	NP-c.	NP-c.	NP-c.

The decision problem $\mathrm{CYCLE}\ \mathrm{DISSOLVING}\ \mathrm{PAIRS}\ (\mathrm{CDP})$ is defined as follows:

Definition (CDP)

Let G = (V, E) be a directed graph and $\hat{V} = \{V_1, V_2, \dots, V_m\}$ a partition of a subset of V such that $|V_i| = 2$ for all $1 \le i, j \le m$, $i \ne j$. Is there a $U \subseteq V$ such that

•
$$U \subseteq \bigcup_{V_i \in \widehat{V}} V_i$$
,

- $|U \cap V_i| \le 1$ for all $i = 1 \dots m$ and
- $G \setminus U$ is acyclic?

Proof CdP NP-complete	Parameterized Complexity	References
ວ●੦	o	0
Proof CdP NP-complete		

Proof CdP NP-complete	Parameterized Complexity	References
oo●	o	0
Proof CdP NP-complete		

Proof CdP NP-complete 000	Parameterized Complexity ●	References 0
Parameterized Complexity		

Parameter of the R&R instance: $\#_{Atweens}$ The number of plan steps satisfying all of the following three properties:

- They are ordered (not necessarily directly) behind the removed plan step,
- can be ordered before plan steps with unsupported preconditions,
- and can support any of these open preconditions.

References

 Fink, E. and Yang, Q. (1992).
Formalizing plan justifications.
In Proc. of the 9th Conf. of the Canadian Society for Computational Studies of Intelligence, pages 9–14.

Nakhost, H. and Müller, M. (2010). Action elimination and plan neighborhood graph search: Two algorithms for plan improvement. In *Proc. of ICAPS'10*, pages 137–144. AAAI Press.

