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Abstract—Hierarchical Task Networks were proposed as a
method to describe plans by decomposition of tasks to sub-
tasks until primitive tasks, actions, are obtained. Valid plans –
sequences of actions – must adhere both to causal dependencies
between the actions and to the structure given by the decompo-
sition of the goal task. Plan verification aims at finding if a given
plan is valid, that is, if it is causally consistent and it can be
obtained by decomposition of some task. The paper describes a
novel parsing-based approach for hierarchical plan verification
that is orders of magnitude faster than existing methods.

Index Terms—hierarchical task networks, plan verification,
parsing, attribute grammars

I. INTRODUCTION

Hierarchical planning is a practically important approach to
automated planning based on encoding abstract plans as hier-
archical task networks (HTNs) [1], [2]. The network describes
how compound tasks are decomposed, via decomposition
methods, to sub-tasks and eventually to actions forming a plan.
Depending on the chosen HTN formalization, the decompo-
sition methods may specify additional constraints among the
sub-tasks such as partial ordering, state constraints, or causal
links. The obtained sequence of actions must be executable in
the classical sense, but also adhere to the constraints specified
by the decomposition methods.

Plan verification deals with the problem of determining
whether a given plan is valid with respect to a given model.
In other words, the question to answer is if the given plan
can be generated from some task using the decomposition
methods defined in the domain model. Automated plan verifi-
cation is important for various reasons. First, it is required
for planning competitions to ensure that plans returned by
competing planners are indeed correct (there might be many
valid plans to achieve a given goal and not all these plans may
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be known in advance). Next, when designing a new planner,
one may need to independently check whether the planner
returns correct plans before the planner is deployed (obviously,
verifying several plans does not guarantee correctness of the
planner but it gives some trust to the planner). Last but not
least, when designing a new domain model while having a set
of existing plans, plan verification can be used to check if the
model complies with the given set of plans.

While verifying classical plans is not a computationally
hard task and there exists a widely-used classical plan ver-
ifier [3], the situation is very different with hierarchical plan
verification. It is known that the hierarchical plan verification
problem is computationally expensive, as it belongs to the NP-
complete problems [4], [5]. As of this writing, there exist only
two systems for verifying if a given plan complies with the
HTN model, that is, if a given sequence of actions can be
obtained by decomposing some task. One system is based on
transforming the verification problem to SAT [6] and the other
system is using parsing of attribute grammars [7].

Parsing became popular in solving the plan recognition
problem [8] as researchers realized soon the similarity between
hierarchical plans and formal grammars [9]–[11], specifi-
cally context-free grammars with parsing trees being close
to decomposition trees from HTN planning. The HTN plan
recognition problem can be formulated as the problem of
adding a sequence of actions after some observed partial plan
such that the joint sequence of actions forms a complete plan
generated from some task (more general formulations also
exist). Hence plan recognition can be seen as a generalization
of plan verification. There exist numerous approaches to plan
recognition using parsing or string rewriting [12]–[16], but
they use hierarchical models that are weaker than the full
expressive power of HTN planning. In particular, grammar-
based models are frequently exploiting context-free grammars
(as parse trees are somehow similar to decomposition trees,
as mentioned above). Notably, these models assume that the
order of the action symbols in the rules of the grammar is
the same as in the final plan. Consequently, these grammar-
based approaches do not support task interleaving [11] and



various more elaborate HTN constraints, such as state con-
straints. The (formal) languages defined by HTN planning
problems (with partial-order, recursion, and simple STRIPS
preconditions and effects, but even without state constraints)
lie somewhere between context-free (CF) and context-sensitive
(CS) languages [9]. So to model even the most expressive
HTN problems with formal grammars, one needs to go beyond
the CF grammars. Currently, the only grammar-based model
that fully covers HTNs uses attribute grammars [11] – which
differentiate between the order of symbols in rules and the
order implied on the final plan.

In this paper, we focus on verification of HTN plans
using parsing. The uniqueness of the proposed method is
that it covers the full expressive power of HTN planning,
including task interleaving (i.e., partial order of sub-tasks),
empty and recursive methods, and state constraints. Regarding
the expressive power, we extended the previous parsing-based
approach [7] by support of empty tasks and due to a more
simplistic, yet elaborate algorithm design, we are several
orders of magnitude faster. The major novelty lies in the
way when and how the decomposition constraints are verified.
In particular, all the decomposition constraints are verified
immediately when a new task is added, so the algorithm only
derives tasks that decompose to a set of actions in the verified
plan. The new technique also uses simpler and more efficient
data structures (Boolean arrays instead of complex timelines),
which makes it easier to implement and, as we shall show
experimentally, also practically more efficient.

The paper is organized as follows. We will first formally
introduce necessary notions from planning and hierarchical
task networks and formally define the verification problem.
Then we will describe the verification algorithm and prove
its properties such as soundness, completeness and worst-case
time and space complexities. Finally, we will empirically com-
pare this novel approach with existing HTN plan verification
techniques and justify the theoretical expectation that the novel
technique is indeed dominating all previous ones in terms of
efficiency.

II. BACKGROUND ON PLANNING

Hierarchical planning combines information about states,
i.e., the causal precondition/effect relations between actions
with specific plan structures expressed via task decomposition
methods. In this section we shall formally introduce these
models, namely classical STRIPS planning and hierarchical
task networks.

A. Classical Planning

Classical STRIPS planning [17] deals with sequences of
actions transferring the world from a given initial state to
a state satisfying certain goal conditions. World states are
modelled as sets of propositions that are true in those states,
and actions are modelled to change the validity of certain
propositions. Formally, let P be a set of all propositions
modelling properties of world states. Then a state S ⊆ P
is a set of propositions that are true in that state (every other

proposition is false). Later, we will use the notation S+ = S
to describe explicitly the valid propositions in the state S and
S− = P \ S to describe explicitly the propositions not valid
in the state S.

Each action a is described by three sets of propositions
(B+

a , A
+
a , A

−
a ), where B+

a , A
+
a , A

−
a ⊆ P,A+

a ∩ A−a = ∅. The
set B+

a describes positive preconditions of action a, that is,
propositions that must be true right before the action a. Some
modeling approaches allow also negative preconditions, but
these preconditions can be compiled away [18]. For simplicity
reasons we assume positive preconditions only (the techniques
presented in this paper can also be extended to cover nega-
tive preconditions directly, but the compilation technique for
STRIPS works in the HTN setting as well [19]). Action a is
applicable to state S iff B+

a ⊆ S. Sets A+
a and A−a describe

positive and negative effects of action a, that is, propositions
that will become true and false in the state right after executing
the action a. If an action a is applicable to state S then the
state right after the action a is:

γ(S, a) = (S \A−a ) ∪A+
a . (1)

γ(S, a) is undefined if an action a is not applicable to state
S.

The classical planning problem, also called a STRIPS
problem, consists of a set of actions A, a set of propositions
S0 called an initial state, and a set of goal propositions
G+ describing the propositions required to be true in the
goal state (again, negative goal is not assumed as it can
be compiled away). A solution to the planning problem
is a sequence of actions a1, a2, . . . , an such that S =
γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S. This sequence of
actions is called a plan.

The plan verification problem is formulated as follows:
given an initial state S0, a sequence of actions a1, a2, . . . , an,
and goal propositions G+, does the sequence of actions form
a valid plan leading from S0 to a goal state? This problem is
addressed for example by the VAL system [3] and our method
does this classical plan verification during pre-processing,
where we calculate all the intermediate states.

B. Hierarchical Task Networks

To simplify and speed up the planning process, several
extensions of the basic STRIPS model were proposed to
include some control knowledge. Hierarchical Task Network
Planning [1] was proposed as a planning framework that
includes control knowledge in the form of recipes on how to
solve specific tasks. Our formalization is loosely based on the
formalization by Erol et al. [1]. The recipe is represented as a
task network, which is a set of sub-tasks to solve a given task
together with the set of constraints between the sub-tasks. Let
T be a compound task and ({T1, ..., Tk}, C) be a task network,
where C are its constraints (see later). We can describe the
decomposition method as a derivation (rewriting) rule saying
that T decomposes to sub-tasks T1, ..., Tk:

T → T1, ..., Tk [C]



Note that the order of tasks on the right side of the rule does
not matter (opposite to rewriting rules in grammars) as the
order is explicitly described by the precedence constraints in
C.

HTN planning problems are specified by an initial state
(the set of propositions that hold at the beginning) and by an
initial task representing the goal. This goal task needs to be
decomposed via decomposition methods until a set of primitive
tasks – actions – is obtained. Moreover, these actions need to
be linearly ordered to satisfy all the constraints obtained during
decompositions and the obtained plan – a linear sequence of
actions – must be applicable to the initial state in the same
sense as in classical planning. We denote an action as ai, where
the index i means the order number of the action in the plan
(ai is the i-th action in the plan). The state right after the action
ai is denoted Si, while S0 is the initial state. We denote the
set of actions to which a task T decomposes as act(T ). If U is
a set of tasks, we define act(U) = ∪T∈Uact(T ). The index of
the first action in the decomposition of T is denoted start(T ),
that is, start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T )
means the index of the last action in the decomposition of T ,
that is, end(T ) = max{i|ai ∈ act(T )}.

We can now define formally the constraints C used in the
decomposition methods. They are the ones available in the
HTN formalization by Erol et al. [1]. The constraints can be
of the following three types, where the first is also known as
an ordering constraint and the latter two are essentially state
constraints:

• t1 ≺ t2: a precedence constraint meaning that in every
plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(U, p): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, V, p): a prevailing constraint meaning that
in every plan the proposition p holds in all the states
between the last action obtained from tasks U and the
first action obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.

The precedence constraints are used to define a specific order
of sub-tasks. As an example consider the deliver task. A
decomposition method for it is depicted in Fig. 1. The task
deliver may decompose to four sub-tasks: we first move the
robot to a location, where we load the item to a robot, then
the robot moves to the destination, where we unload the item.
The precondition constraints are used in the same way as for
actions. For example, before the robot starts moving to the
place where the item is located, we may require the robot to
be empty (note that this is not a precondition of task move, but
it may be required for the move task used in the context of item
delivery). The prevailing constraint is used to maintain some
property between sub-tasks. For example, we may require the
item to be loaded in the robot all the time between load and
unload sub-tasks. Though the prevailing constraint was part of
the original definition of HTN planning [1], we are not aware

deliver → t1:unload, t2:move, t3:move, t4:load
[
t2 ≺ t4, t4 ≺ t3, t3 ≺ t1,
before({t2},robot empty),
between({t4},{t1}, package loaded)

]

move load move unload

robot empty package loaded

Fig. 1. A decomposition method for deliver. First we depict the method as
written in terms of an Attribute Grammar rule. Note that the order of the
tasks one the right hand side of the formula is irrelevant – and in this case
completely different from the actually imposed order. This order is always
and solely determined by the constraints shown in the square brackets below
the rule. At the bottom we depict the method’s task network (i.e. the rules
right-hand side) in terms of a DAG. Tasks are names without boxes, while the
state constraints are depicted by boxes. The tasks they refer to are indicated
with arrows.

about any HTN system that supports this constraint. Still, we
see this constraint practically very useful as demonstrated in
the example above. Task interleaving, as mentioned before,
allows the robot to do other tasks when doing the delivery
task. For example, when going to the destination of the item,
the robot may visit another location, take a sample there, and
then deliver the sample after delivering the item. Hence actions
for the delivery task and for the take-sample task interleave in
the final plan.

Let us now look at how the move task can be realized.
If the robot is not at the required location, the move task
may decompose to a drive action, which moves the robot
to some neighboring location, followed by a move sub-task
describing the movement from that neighboring location to the
destination. This shows that the decomposition methods can
be recursive. On the other hand, if the robot is already at the
required location, the move task is accomplished without using
any action. This can be described by an empty decomposition
method (empty task):

Te → ε [C]

For such methods, the only useful decomposition constraint
C is a special form of the before constraint – before(p) –
that requires some property p to be true at the world state,
where the task Te is supposed to be applied. As act(Te) = ∅,
we define values of start(Te) and end(Te) as follows. Let
Si be the state such that p ∈ Si (the before constraint holds
there), then start(Te) = end(Te) = i + 0.5. This places the
empty task Te between actions ai and ai+1 and allows Te
to participate in other decomposition constraints in its parent
task.

Note finally that a task may have several decomposition
methods describing alternative ways how to fulfill the task.

The HTN plan verification problem is formulated as follows:
Given a sequence of actions a1, a2, . . . , an and an initial state
S0, is the sequence of actions a valid classical plan applicable



to S0 and obtained from some compound task? Hence the
HTN plan verification problem includes the classical plan
verification problem. Additionally, the sequence of actions
must be obtained by decomposing some task and all its sub-
tasks (no extra action is allowed) and the action sequence
must satisfy all the constraints C from methods used in the
decomposition.

As mentioned above, there exist only two systems for HTN
plan verification. The pioneering PANDA system [6] does not
support the before and between constraints and requires the
goal task to be given at input as well (the before constraints
can be compiled away). The parsing-based system [7] supports
fully the above definition of HTN except the empty methods
(they can be compiled away in the domain model). We shall
now describe a novel parsing-based approach for HTN plan
verification that significantly improves efficiency over the
existing techniques.

III. THE PLAN VERIFICATION ALGORITHM

The existing parsing-based HTN verification algorithm [7]
uses a complex structure of a timeline. This structure main-
tains the decomposition constraints C so that they can be
checked when composing sub-tasks to a compound task. As
a consequence, these constraint checks are done repeatedly
(anytime when two timelines are merged) and, moreover,
possible conflicts are discovered later.

We propose a novel verification method that does not require
the complex structure of a timeline, as the method checks all
the constraints directly in the input plan. We first calculate all
the intermediate states so the before and between constraints
can be checked directly in these states rather than in the
timeline. This makes the algorithm much easier to implement
and also much faster (see evaluation).

The novel hierarchical plan verification algorithm is shown
in Algorithm 1. It first calculates all intermediate states
(lines 2-6) by propagating information from the initial state
through the actions. At this stage, we actually solve the
classical plan validation problem as the algorithm verifies
that the given plan is causally consistent (action preconditions
are provided by previous actions or by the initial state). The
original verification algorithm did this calculation repeatedly
each time it composed a compound task.

When the states are calculated, we apply a parsing algorithm
to compose tasks. Parsing starts with the set of primitive tasks
(line 7), each corresponding to an action from the input plan.
Among the initial tasks we also include all empty tasks (line
8), that is, the tasks with an empty decomposition method,
whose before constraint is satisfied at some state. For each
task T , we keep a data structure describing the set act(T ),
that is, the set of actions to which the task decomposes. We
use a Boolean vector I of the same size as the plan to describe
this set; ai ∈ act(T ) ⇔ I(i) = 1. To simplify checks of
decomposition constraints, we also keep information about the
index of first and last actions from act(T ). Together, the task is
represented using a quadruple (T, b, e, I) in which T is a task,
b is the index in the plan of the first action (begin) generated by

Data: a plan P = (a1, ..., an), an InitialState, and a
set of decomposition methods (domain model)

Result: a Boolean equal to true if the plan can be derived
from some compound task, false otherwise

1 Function VERIFYPLAN
2 S0 = InitialState
3 for i = 1 to n do
4 if ¬(pre(ai) ⊆ Si−1) then
5 return false

6 Si = (Si−1 \ eff−(ai)) ∪ eff+(ai)

7 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to action

ai, Ii is a Boolean vector of size n, such that
∀i ∈ 1..n, Ii(i) = 1, ∀j 6= i, Ii(j) = 0

8 new← new∪{(Te, i+ 0.5, i+ 0.5, Ie) |Te →
ε[before(p)], p ∈ Si}

Data: Te is an empty task, Ie is a Boolean vector of
size n, such that ∀i ∈ 1..n, Ie(i) = 0

9 while new 6= ∅ do
10 sp← sp∪new; new← ∅
11 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,pre,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

12 if ∃(i, j) ∈≺: ¬(ei < bj) then
13 continue with the next method
14 b0 ← min{bj |j ∈ 1..k}
15 e0 ← max{ej |j ∈ 1..k}
16 for i = 1 to n do
17 I0(i)←

∑k
j=1 Ij(i);

18 if I0(i) > 1 then
19 continue with the next method

20 if ∃(U, p) ∈ pre : p 6∈ Smin{bj |j∈U}−1 then
21 continue with the next method
22 if ∃(U, V, p) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
23 continue with the next method
24 new← new∪{(T0, b0, e0, I0)}
25 if ∀k, I0(k) = 1 then
26 return true

27 return false
Algorithm 1: Parsing-based HTN plan verification

T , e is the index in the plan of the last action (end) generated
by T (we say that [b, e] represents the interval of actions over
which T spans), and I is a Boolean vector as described above.

The algorithm applies each decomposition rule to compose
a new task from the already known sub-tasks (line 11). Note
that we do grounding (all attributes of tasks are instantiated by
some constant from the initial state), so from the same abstract
rule we may get several tasks T0 with different attributes
that span over different sets of actions. The composition



consists of merging the sub-tasks, when we check that every
action in the decomposition is obtained from a single sub-
task (line 16), that is, act(T0) =

⋃k
j=1 act(Tj) and ∀i 6= j :

act(Ti) ∩ act(Tj) = ∅. We also check all the decomposition
constraints; the pseudo-code is a direct rewriting of constraint
definitions (actually, their negations). If all tests pass, the new
task is added to a set of tasks (line 24). Then we know that
the task decomposes to actions, which form a sub-sequence
(not necessarily continuous) of the plan to be verified. If
any constraint check is violated, the algorithm continues with
another instance of the decomposition method (or another
decomposition method). Hence, the algorithm greedily finds
all the (ground) tasks that decompose to some already known
sub-tasks. The process is repeated until a task that decomposes
to all actions is obtained (line 26) or no new task can be
composed (line 9).

Proposition 1 (Soundness and completeness). The Algo-
rithm 1 is a sound and complete technique for HTN plan
verification.

Proof. The algorithm is sound as if it finishes with success
then there exists a task that decomposes to all actions in
the input plan and that plan is causally consistent. If the
algorithm finishes with the value false then the input plan
is either causally inconsistent (line 5) or no other task can
be derived (line 27). As the input plan is of a finite length,
therefore there is a finite number of possible tasks (even if
recursive rules exist) that decompose to a subset of actions in
the original plan. Hence, all these tasks are eventually found
and the algorithm stops (lines 9 and 27), so the method is
complete.

Proposition 2 (Time and space complexity). The worst-case
time and space complexity of Algorithm 1 is O(m ·2n), where
the m is a number of grounded tasks and n is a number of
actions in the input plan.

Proof. In the worst case, the algorithm generates all grounded
tasks that decompose to some subset of actions in the input
plan. As the number of actions is n there is as many as
2n subsets of actions. The same subset of actions might be
generated by different tasks. So in the worst case, the set sp
will store as many as m · 2n elements.

Recall that the problem of verifying HTN plans is NP-
complete [4], [5] so the exponential time complexity is in-
evitable in the worst-case (unless P=NP). In comparison with
the original parsing method, if the new algorithm generates
some task then the original algorithm generates that task as
well. However, as the new algorithm checks the decomposi-
tion constraints immediately when it introduces the task, the
original algorithm checks these constraints when merging the
timelines, so the original algorithm may introduce more tasks
that are proved later to be inconsistent with some constraint.

IV. EXAMPLE

In this section, we will present an example of parsing-
based HTN plan verification. The example also demonstrates

task interleaving – actions generated from different tasks may
interleave to form a plan. This is the property that parsing
techniques based on CF grammars cannot handle.

Assume that a complete plan consisting of actions
a1, a2, . . . , a7 is given together with a set of decomposition
methods (Figure 2). For simplicity, grounded tasks with no
attributes are used. In the first iteration, the parsing algorithm
composes tasks T2, T3, T4 (in some order) as these tasks
decompose to actions directly. One may see that actions from
these tasks interleave in the plan. For each task, Figure 2 shows
to which actions the task decomposes (roughly speaking, these
are the timelines from the original algorithm) as well as the
Boolean vector that is used to represent these actions in the
novel algorithm. In the second iteration, only the task T1 is
composed from already known tasks T3 and T4. Finally, in the
third iteration, tasks T1 and T2 are merged to a new task T0
and the algorithm stops there as the final task spans over the
whole plan.

Let us assume that there is a constraint
between({a1}, {a3}, p) in the decomposition method for
T3. For example, this constraint may model a causal link1

between a1 and a3. When composing the task T3, the novel
algorithm checks this constraint immediately in the states
of the original plan. The original algorithm [7] stores the
proposition p in the so-far empty second slot of task T3.
When T3 and T4 are merged, the algorithm checks that p
can still be in the slot, in particular, that p is not required
to be false at the same slot. The same check will be done
again when merging T1 and T2 (this is the time when the

1Causal links are used in some Hierarchical Planning formalizations [5]
and they encode that some action’s precondition is achieved by some other
(preceding) action’s effect. No other action with a negating effect may be
moved in between, so the link “protects” its condition.

a1 a2 a3 a4 a5 a6 a7T0

a1 a2 a3 a4 a5 a6 a7

plan

a4 a5 a6T4

a2 a3 a4 a5 a6 a7T2

T3

T1 a1 a2 a3 a4 a5 a6

T0 ⇢ T1 T2
T1 ⇢ T3 T4
T2 ⇢ a2 a7
T3 ⇢ a1 a3 a5
T4 ⇢ a4 a6

1 0 1 0 1 0 0

0 0 0 1 0 1 0

1 0 1 1 1 1 0

0 1 0 0 0 0 1

1 1 1 1 1 1 1

a1 a2 a3 a4 a5 a6 a7

plan

T3 T4 T2

T1

T0

Decomposition methods

a1 a3 a4 a5a2

Fig. 2. Example of parsing-based plan verification (the right side shows the
decomposition tree with the decomposition rules below it; the left side shows
the tasks with timelines and filled slots)



algorithm finally fills the slot with action a2). So the original
verification algorithm checks the constraints repeatedly, while
the novel algorithm does the check just once. Hence, it may
happen that the original algorithm introduces a task that the
new algorithm refuses as some decomposition constraint is
violated.

V. EMPIRICAL EVALUATION

We compared the proposed verification technique empir-
ically with the original parsing-based technique [7], which
achieved best so-far performance, and with the PANDA veri-
fier [6]. All the experiments run under 64-bit Windows 10 on
Intel Core i7 7700 processor and 16GB RAM.

The original parsing-based verification algorithm was im-
plemented in Ruby 2.5 and it uses syntax of the SHOP2 and
SHOP3 planners [20], [21] to specify the domain models,
problems, and plans. Our new verification algorithm2 is imple-
mented in C# 7 (from .NET 4.7) and it uses the new PDDL-
like representation HDDL [22] that is used by the PANDA
planners and verifier.

In the first experiment, we compared all three systems using
13 instances from two planning domains, namely Transport
and Satellite. The first ten of these instances were also used
in the paper proposing the original parsing-based verification
algorithm [7]. We added three larger instances to demonstrate
the efficiency gap between the methods. In the Transport
domain, the plan size increases from 2 up to 14 actions.

2The code is available at: https://github.com/siprog/HTNPlanValidation

Fig. 3. Comparison of runtimes (seconds, logarithmic scale) for the plan
verification task.

In the Satellite domain, the plan size increases from 2 up
to 19 actions. Invalid instances were created by removing a
decomposition method from the domain model. In total, we
evaluate the verification algorithms over 52 unique instances.
Figure 3 shows the comparison of runtimes of all existing
techniques. It confirms that the new verification technique
outperforms significantly (orders of magnitude) the original
technique (notice the logarithmic scale) as well as the PANDA
verifier. Though Ruby is known to be slower than C#, the
significant runtime improvement cannot be attributed to dif-
ference between programming languages only.

Next, we compared our new technique with the PANDA
verifier using six additional domains: PCP, UMTranslog,
Kitchen, Woodworking, Monroe and Rover used to evaluate
the PANDA verifier [6]. The original parsing-based verification
algorithm in Ruby was not able to handle these domains due to
various reasons (such as missing support for empty methods
and partial order of tasks). The plan lengths were 10 to 30
actions for the PCP domain, 7 to 26 actions for UMTranslog,
16 to 49 for Kitchen, 3 to 18 for Woodworking, 5 to 29
for Monroe, and 17 to 99 for Rover. We used a runtime
limit of 300 seconds. Results are reported in Figure 4. The
empirical results confirm that the novel parsing-based verifier
outperforms the PANDA verifier with one exception. In the
Monroe domain, PANDA is faster for larger instances (but
some instances were not solved by PANDA). The Monroe
domain is using empty methods/tasks and the parsing-based
verifier greedily generates a lot of tasks, which decreases its
performance. The PANDA verifier on the other hand was not
designed to handle domains with empty methods. In such
domains, a task network with n tasks can be decomposed
into a plan with less than n actions – which is normally not
possible. By construction, the PANDA verifier cannot handle
such a case and is thus unable to verify an instance if such
a situation occurs in any possible derivation of the plan. This
is the case in two instances of the Monroe domain. Figure 4
omits the respective data point.

To evaluate scalability of the proposed technique, we added
a few more longer plans to the Satellite and Transport domains
(the original verification approach cannot handle them within
the 10 minutes cutoff time) and we also tried plans of various
lengths from four other domains: Monroe and Kitchen which
are benchmarks for plan recognition [23] and UMTranslog
and Woodworking – common HTN benchmark domains. In
previous experiments, we used modified versions of Monroe
and Kitchen domains as the PANDA verifier does not support
some features of them such as method preconditions. In
this experiment, we use full versions of the domain models.
Figure 5 shows the dependence of runtime on the plan length
for valid plans from these six domains. It demonstrates that
the domain model influences the runtime significantly. For
the parsing-based verification, the runtime depends mainly
on the number of tasks that decompose to subplans of the
input plan. The Monroe domain contains empty methods,
which significantly increases the number of tasks generated.
Similarly, the Woodworking domain contains tasks with shared



parameters, which increases the number of grounded tasks
(tasks with all attributes instantiated) so again many tasks are
generated during parsing. This explains the larger runtime in
comparison with other domains.

VI. CONCLUSIONS

In the paper we proposed a novel technique for verifying
hierarchical plans by parsing. Like the previous parsing-based
verification approach [7], this method covers HTN models
fully including recursive tasks, partially-ordered tasks, task
interleaving and various decomposition constraints, specifi-
cally the prevailing condition. Recursive methods as well as
empty methods are also supported. The major innovation with
respect to the existing parsing-based verification approach is
checking the decomposition constraints directly in the plan
and immediately, when a new task is added. The consequence
is that we never add/explore more tasks than the previous
approach and we can use a much simpler data structure
(Boolean array) to keep information about actions generated
from the task. Moreover, the Ruby implementation of the
previous parsing approach supported only total order of tasks,
so the new approach is first one that implements all above
features. We showed experimentally that the novel technique is
orders-of-magnitude more efficient than the previous parsing-
based approach [7] and a SAT-based approach [6].

Hierarchical plan verification is still a computationally chal-
lenging task. The parsing-based approaches greedily generate
tasks that span over some actions in the input plan – they
use a bottom-up approach. The advantage is that they can find
any task that decomposes to a given plan (rather than requiring

Fig. 4. Comparison of runtimes (seconds, logarithmic scale) for the plan
verification task on other domains (using valid plans).

Fig. 5. Dependence of runtime (seconds, logarithmic scale) on plan length
for the plan verification task.

information about the goal task in the input). The disadvantage
is that many irrelevant tasks might be introduced. The open
question is if some heuristics can be incorporated to prefer
composition of specific tasks or if information about candidate
goal tasks may be used to eliminate some tasks that are not
“reachable” from any goal task.

All current hierarchical plan verifiers provide only binary
output – either the plan is valid or invalid with respect to
the domain model. In case the plan is invalid, the major
research challenge is finding the source of invalidity. Note
that the plan is validated with respect to the domain model.
Hence, the bug can be in the plan but also in the model of
decomposition methods. When the bug is identified, another
research challenge is how to automatically repair it.
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[6] G. Behnke, D. Höller, and S. Biundo, “This is a solution! (... but is
it though?) - verifying solutions of hierarchical planning problems,” in
Proc. of ICAPS. AAAI Press, 2017, pp. 20–28.

[7] R. Barták, A. Maillard, and R. C. Cardoso, “Validation of hierarchical
plans via parsing of attribute grammars,” in Proc. of ICAPS. AAAI
Press, 2018, pp. 11–19.

[8] M. Vilain, “Getting serious about parsing plans: A grammatical analysis
of plan recognition,” in Proc. of AAAI. AAAI Press, 1990, pp. 190–197.
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