
POP ≡ POCL, right?

Complexity Results for Partial Order (Causal Link) Makespan Minimization
Pascal Bercher and Conny Olz

Institute of Artificial Intelligence, Ulm University, Germany
pascal.bercher@anu.edu.au and conny.olz@uni-ulm.de

• POCL Planning = Partial Order Causal Link Planning
I A planning technique that was prominent in the 80s to late 90s based on:

search in the space of partial plans
I The search algorithm performs a regression-like search
→ but this is not important for the paper! It focuses on the

data structure partial plans rather than on search.
• So what is a POCL plan?
I A partially ordered set of actions.
I Preconditions and effects might be “connected” with causal links. The respective

actions are then called producer and consumer, respectively.
I Causal links protect their condition: no task may be ordered in between a link. (See

graphical example)
•When is a POCL plan a solution?
I If all preconditions are protected by a causal link
→ no open precondition flaws.

I No causal link can be invalidated
→ no causal threat flaws.
→ See the next example

What is POCL?

A POCL plan that’s not a solution yet:

... because of unprotected (open) preconditions:

... and because of causal threats:

• POP = Partial Order Planning (i.e., synonym to POCL Planning)
•Here, it means Partial Order Plan! These PO plans are essentially POCL plans

without causal links.
• So what is a PO plan?
I A partially ordered set of actions.
I That’s it – no links exist.
•When is a PO plan a solution?
I If every linearization is executable. (I.e. every linearization is a solution in the stan-

dard classical sense.)
I This can be checked in polynomial time (see the paper, as this is quite complicated).

What is POP?

• Yes! (Which is important in theory and practice!)
I Every POCL solution is a PO solution

(just delete the links)
I But to turn a PO solution into a POCL solution we might have to change the ordering

constraints!
→ Thus the resulting plans are not equivalent anymore!

See the next example.

POP vs. POCL: Is there any true difference?

Example by Kambhampati:

Properties of this POCL plan:

• It has 6 linearizations.
• All linearizations are executable, so it is a PO solution (just delete the links).
• It’s not yet a POCL solution: the precondition P is still open.
• Inserting a missing link will cause a causal threat! So we will have to insert orderings.
→ For this PO plan there does not exist a POCL plan with the same linearizations!

• This has become forgotten, so there are many (sometimes “sloppy”) formulations stat-
ing POCL plans to be equivalent to PO plans.
• Theorems or even algorithms might be wrong!
I Clearly, all algorithms that optimize with regard to ordering constraints need to be

aware of any difference.
I What if an algorithm aims for makespan-optimal plans, but searches in the space of

POCL plans? Can it be optimal? Do we know this yet?
I See the paper for a deeper discussion.
• It raises an open question: Does for each PO plan exist a POCL plan with the same

makespan? This question is practically relevant as only if the answer is yes we are
allowed to search makespan-minimal plans in space of POCL plans!

POP 6≡ POCL: So What?

• Yes! We show that for every PO plan with makespan k there exists a POCL plan with
makespan k.
•We also provide a polynomial-time procedure to compute such a POCL plan.

Makespan-minimal PO plan ≡ Makespan-minimal POCL plan?

•Deordering is the process of (only!) deleting ordering constraints from a plan (i.e.,
without adding other ordering constraints) without violating executability.
•Using deordering, we can minimize the number of ordering constraints (thus increas-

ing the number of linearizations) or we can minimize the makespan.

Optimizing Plans by Deordering

Example showing that minimizing the number of ordering constraints is not the same is mini-
mizing the makespan:

•Delete 3 orderings from A2, A3, and A4 to A5 to minimize orderings.
•Delete the ordering from A1 to A5 to minimize makespan.

•We are interested in the decision problem whether a deordering of an input plan exists
that has a certain makespan.
• The computational hardness of Reordering was already known to be NP-complete.

Reordering allows to change orderings (and links) arbitrarily.
•We show that Deordering is also NP-complete.
•Membership is trivial. For hardness we provide a reduction from 3-SAT:
I We create a PO solution with makespan 4.
I That plan can be deordered to a PO plan of makespan 3 if and only if the SAT

formula is satisfiable.

Computational Hardness of Deordering

Encoding:

We are given a 3-SAT formula in a form of a set of clauses C = {C1, . . . ,Cm} over the set of
variables X = {x1, . . . ,xn}, such that for all 1 ≤ j ≤ m, C j = {l j,1, l j,2, l j,3} is a clause of three
literals over X . We construct a plan PO plan P = (PS,≺) based on the STRIPS planning
problem P = (V,A,sI,g).

V =
⋃

1≤i≤n
{xT

i ,x
F
i ,gi}∪

⋃
1≤ j≤m

{c j} sI = /0 g = {gi | 1≤ i≤ n}




