sfb transregio 62

Companion Technology

POP = POCL, right?

Complexity Results for Partial Order (Causal Link) Makespan Minimization

Pascal Bercher and Conny Olz

Institute of Artificial Intelligence, Ulm University, Germany
pascal.bercher@anu.edu.au and conny.olz@uni-ulm.de

POCL Planning = Partial Order Causal Link Planning
A planning technique that was prominent in the 80s to late 90s based on:
search in the space of partial plans

The search algorithm performs a regression-like search
— but this is not important for the paper! It focuses on the
data structure partial plans rather than on search.

So what is a POCL plan?

A partially ordered set of actions.

Preconditions and effects might be “connected” with causal links. The respective
actions are then called producer and consumer, respectively.

Causal links protect their condition: no task may be ordered in between a link. (See
graphical example)
When is a POCL plan a solution?
If all preconditions are protected by a causal link
— No open precondition flaws.

No causal link can be invalidated
— no causal threat flaws.

— See the next example

A POCL plan that’s not a solution yet:

.. because of unprotected (open) preconditions:

TruckAtLoct _ o HoldCrate

moveleft |-TruckAtLoc2 XTruckAtLom load

CratelnTruck
—HoldCrate \' CratelnTruck

OT ruckAtLoc?2

CrateAtLoc1

TruckAtLoc2

TruckAtLoc2 ‘/—\'Trucmtmﬂ

moveRIight | _truckatLoct

OT ruckAtLoc1

.. and because of causal threats:

CratelnTruck
—HoldCrate \' CratelnTruck

TruckAtLoc?2

CrateAtLoc1

-

TruckAtLocY\ HoldCrate
moveLeft ﬁTruckAthwckAthm load

-~ _ =T \i “\
TruckAtLoc2 .~

TruckAtLoc?2 _““‘-}TruckAthc2
TruckAtLoc - -
mOVEnghf ﬁTruckAtLocb

POP = Partial Order Planning (i.e., synonym to POCL Planning)

Here, it means Partial Order Plan! These PO plans are essentially POCL plans
without causal links.

So what is a PO plan?

A partially ordered set of actions.
That’s it — no links exist.

When is a PO plan a solution?

If every linearization is executable. (l.e. every linearization is a solution in the stan-
dard classical sense.)

This can be checked in polynomial time (see the paper, as this is quite complicated).

Yes! (Which is important in theory and practice!)

Every POCL solution is a PO solution
(Just delete the links)

But to turn a PO solution into a POCL solution we might have to change the ordering
constraints!

— Thus the resulting plans are not equivalent anymore!
See the next example.

Example by Kambhampati:

P

IS lav

P"’—\(Wl

P%

Properties of this POCL plan:

w

=

e It has 6 linearizations.

e All linearizations are executable, so it is a PO solution (just delete the links).

e It's not yet a POCL solution: the precondition P is still open.

e Inserting a missing link will cause a causal threat! So we will have to insert orderings.
— For this PO plan there does not exist a POCL plan with the same linearizations!

This has become forgotten, so there are many (sometimes “sloppy”) formulations stat-
ing POCL plans to be equivalent to PO plans.

Theorems or even algorithms might be wrong!
Clearly, all algorithms that optimize with regard to ordering constraints need to be
aware of any difference.

What if an algorithm aims for makespan-optimal plans, but searches in the space of
POCL plans? Can it be optimal? Do we know this yet?

See the paper for a deeper discussion.

It raises an open question: Does for each PO plan exist a POCL plan with the same
makespan? This question is practically relevant as only if the answer is yes we are
allowed to search makespan-minimal plans in space of POCL plans!

Yes! We show that for every PO plan with makespan k there exists a POCL plan with
makespan k.

We also provide a polynomial-time procedure to compute such a POCL plan.

Deordering is the process of (only!) deleting ordering constraints from a plan (i.e.,
without adding other ordering constraints) without violating executability.

Using deordering, we can minimize the number of ordering constraints (thus increas-
Ing the number of linearizations) or we can minimize the makespan.

Example showing that minimizing the number of ordering constraints is not the same is mini-
mizing the makespan:

| Po

e Delete 3 orderings from A2, A3, and A4 to A5 to minimize orderings.
e Delete the ordering from A1 to A5 to minimize makespan.

We are interested in the decision problem whether a deordering of an input plan exists
that has a certain makespan.

The computational hardness of Reordering was already known to be NP-complete.
Reordering allows to change orderings (and links) arbitrarily.

We show that Deordering is also NP-complete.
Membership is trivial. For hardness we provide a reduction from 3-SAT:

We create a PO solution with makespan 4.

That plan can be deordered to a PO plan of makespan 3 if and only if the SAT
formula is satisfiable.

Encoding:

We are given a 3-SAT formula in a form of a set of clauses C = {Cy,...,C,} over the set of
variables X = {xi,...,x,}, such that for all 1 < j <m, C;={l;1,l;2,1;3} is a clause of three
literals over X. We construct a plan PO plan P = (PS, <) based on the STRIPS planning

problem & = (V. A,s;,g).
V T U {'xl 7xz 7gl}U U {CJ} ST = @ g {gl ’ 1 < l < n}
1<i<n 1<j<m
action prec add del action prec add del
T, 0 0 A9} By {li.} {c;} 0
A7 0 gzl 0 B {l5,) {¢) 0
A7 0 Agoxy 0 B {155} {e} 0
D {cit 0 0

Table 1: Actions for each atom x; (left) and clause C
(right). We define I}, < x} if l;, = zy and [}, « xj
if [, = —wy.

e

AT Bl
T; < { < B2 < Dj.
Ai B%

Deutsche
Forschungsgemeinschaft

DFG

