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Abstract. To make planning feasible, planning models abstract from
many details of the modeled system. When executing plans in the ac-
tual system, the model might be inaccurate in a critical point, and plan
execution may fail. There are two options to handle this case: the previ-
ous solution can be modified to address the failure (plan repair), or the
planning process can be re-started from the new situation (re-planning).
In HTN planning, discarding the plan and generating a new one from
the novel situation is not easily possible, because the HTN solution cri-
teria make it necessary to take already executed actions into account.
Therefore all approaches to repair plans in the literature are based on
specialized algorithms. In this paper, we discuss the problem in detail
and introduce a novel approach that makes it possible to use unchanged,
off-the-shelf HTN planning systems to repair broken HTN plans. That
way, no specialized solvers are needed.
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1 Introduction

When generating plans that are executed in a real-world system, the planning
system needs to be able to deal with execution failures, i.e. with situations during
plan execution that are not consistent with the predicted state. Since planning
comes with several assumptions that may not hold the the real system, such
situations may arise for several reasons like non-determinism in the problem,
exogenous events, or actions of other agents. When we speak of an execution
failure, we mean that the outcome of an action is not like anticipated by the
planning model (e.g. due to the given reasons).

Two mechanisms have been developed to deal with such situations: Systems
that use re-planning discard the original plan and generate a new one from the
novel situation. Systems using plan repair adapt the original plan so that it can
deal with the unforeseen change. In classical planning, the sequence of already
executed actions implies no changes other than state transition. The motivation
for plan repair in this setting has e.g. been efficiency [20] or plan stability [18],
i.e. finding a new plan that is as similar as possible to the original one.
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In hierarchical task network (HTN) planning [17, 8], the hierarchy has wide
influence on the set of solutions and it makes the formalism also more expres-
sive than classical planning [21, 22]. The hierarchy can e.g. enforce that certain
actions might only be executed in combination. By simply re-starting the plan-
ning process from the new state, those implications are discarded, thus simple
re-planning is no option and plans have to be repaired, i.e., the implications
have to be taken into account. Several approaches have been proposed in the
literature, all of them use special repair algorithms to find the repaired plans.

In this paper we make the following contributions (some of the work has been
presented before in a workshop version of the paper [25]):

– We discuss the issues that arise when using a re-planning approach that
re-starts the planning process from the new state in HTN planning.

– We survey the literature on plan repair in HTN planning.
– Based on a transformation for plan and goal recognition [23], we introduce

a transformation-based approach that makes it possible to use unchanged
HTN planning systems to repair broken HTN plans.

Outline. We first introduce HTN planning and specify the plan repair problem
(Sec. 2), discuss issues with repairing HTN plans (Sec. 3), summarize related
work (Sec. 4), and give our transformation (Sec. 5) and its properties (Sec. 6).

2 Formal Framework

This section introduces HTN planning and specifies the repair problem.

2.1 HTN Planning

In HTN planning, there are two types of tasks: primitive tasks equal classical
planning actions, which cause state transitions. Abstract tasks describe more
abstract behavior. They can not be applied to states directly, but are iteratively
split into sub-tasks until all tasks are primitive.

We use the formalism by Geier and Bercher [19, 22]. A classical planning
problem is defined as a tuple Pc = (L,A, s0, g, δ), where L is a set of propositional
state features, A a set of action names, and s0, g ∈ 2L are the initial state and
the goal definition. A state s ∈ 2L is a goal state if s ⊇ g. The tuple δ =
(prec, add , del) defines the preconditions prec as well as the add and delete effects
(add , del) of actions, all are functions f : A → 2L. An action a is applicable
in a state s if and only if τ : A × 2L with τ(a, s) ⇔ prec(a) ⊆ s holds. When
an (applicable) action a is applied to a state s, the resulting state is defined as
γ : A × 2L → 2L with γ(a, s) = (s \ del(a)) ∪ add(a). A sequence of actions
(a0a1 . . . al) is applicable in a state s0 if and only if for each ai it holds that
τ(ai, si), where si is for i > 0 defined as si = γ(ai−1, si−1). We call the state
sl+1 the resulting state from the application. A sequence of actions (a0a1 . . . al)
is a solution if and only if it is applicable in s0 and results in a goal state.
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An HTN planning problem P = (L, C, A, M, s0, tnI , g, δ) extends a classical
planning problem by a set of abstract (also called compound) task names C, a
set of decomposition methods M , and the tasks that need to be accomplished
which are given in the so-called initial task network tnI . The other elements are
equivalent to the classical case. The tasks that need to be done as well as their
ordering relation are organized in task networks. A task network tn = (T ,≺, α)
consists of a set of identifiers T . An identifier is just a unique element that is
mapped to an actual task by a function α : T → A ∪ C. This way, a single task
can be in a network more than once. ≺ : T × T is a set of ordering constraints
between the task identifiers. Two task networks are called to be isomorphic if
they differ solely in their task identifiers. An abstract task can by decomposed by
using a (decomposition) method. A method is a pair (c, tn) of an abstract task
c ∈ C that specifies to which task the method is applicable and a task network tn,
the method’s subnetwork. When decomposing a task network tn1 = (T1,≺1, α1)
that includes a task t ∈ T1 with α1(t) = c using a method (c, tn), we need an
isomorphic copy of the method’s subnetwork tn ′ = (T ′,≺′, α′) with T1∩T ′ = ∅.
The resulting task network tn2 is then defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn →∗ tn ′ to denote that a task network tn can be decomposed
into a task network tn ′ by applying an arbitrary number of methods in sequence.

A task network tn = (T ,≺, α) is a solution to a planning problem P if and
only if 1. all tasks are primitive, ∀t ∈ T : α(t) ∈ A, 2. it was obtained via
decomposition, tnI →∗ tn, 3. there is a sequence of the task identifiers in T in
line with the ordering whose application results in a goal state.

2.2 Plan Repair Problem in HTN Planning

Next we specify the plan repair problem, i.e., the problem occurring when plan
execution fails (that could be solved by plan repair or re-planning), please be
aware the ambiguity of the term repair naming the problem and a way to resolve
it. A plan repair problem consists of three core elements: The original HTN
planning problem P , its original solution plus its already executed prefix, and
the execution error, i.e., the state deviation that occurred during executing the
prefix of the original solution.

Most HTN approaches that can cope with execution failures do not just rely
on the original solution, but also require the modifications that transformed the
initial task network into the failed solution. How these modifications look like de-
pends on the planning system, e.g., whether it is a progression-based system [28,
24, 26] or a plan-space planner [11, 16]. To have a general definition, we include
the so-called decomposition tree (DT) of the solution. A DT is a tree repre-
sentation of the decompositions leading to the solution [19]. Its nodes represent
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tasks; each abstract task is labeled with the method used for decomposition, the
children in the tree correspond to the subtasks of that specific method. Order-
ing constraints are also represented, such that a DT dt yields the solution tn it
represents by restricting the elements to dt ’s leaf nodes.

Definition 1 (Plan Repair Problem). A plan repair problem can now be de-
fined as a tuple Pr = (P , tns, dt , exe, F+, F−) with the following elements. P
is the original planning problem. tns = (T ,≺, α) is the failed solution for it, dt
the DT as a witness that tns is actually a refinement of the original initial task
network, and exe = (t0, t1, . . . tn) is the sequence of already executed task identi-
fiers, ti ∈ T . Finally, the execution failure is represented by the two sets F+ ⊆ L
and F− ⊆ L indicating the state features that were (not) holding contrary to the
expected state after execution the solution prefix exe.

Notice that not every divergence of the state predicted by the model and the
actual state during execution prevents further execution of the plan. A technique
detecting whether repair is necessary is e.g. described by Bercher et al. [10].

Though they have been introduced before, we want to make the terms re-
planning and plan repair more precise.

Definition 2 (Re-Planning). The old plan is discarded, a new plan is gen-
erated starting from the current state of the system that caused the execution
failure.

Definition 3 (Plan Repair). The system modifies the non-executed part of
the original solution such that it can cope with the unforeseen state change.

3 About Re-Planning in HTN Planning

In classical planning, a prefix of a plan that has already been executed does not
imply any changes to the environment apart from the actions’ effects. It is there-
fore fine to discard the current plan and generate a new one from scratch from
the (updated) state of the system. HTN planning provides the domain designer
a second means of modeling: the hierarchy. Like preconditions and effects, it can
be used to model either physics or advice. Figure 1 illustrates the Toll Domain.
A car moves in a road network. The red square indicates the city center (the
toll area). Whenever the car takes a road segment starting inside the center, a
toll has to be paid at a position marked with a credit card. Since the car may
want to use a segment more than once (e.g. because the driver wants to visit
certain shops in a specific ordering), it is not sufficient to mark which segments
have been used, they need to be counted. For simplicity, we assume that the
toll area is left at the end (i.e. the final position is outside). An HTN domain is
given in Figure 2. It contains five methods. Actions are given in boxes, abstract
tasks are non-boxed. The driveTA action is only applicable inside the toll area,
drive only outside it and the payToll action only at positions marked with a
credit card. Whenever driveTA is added to the plan, an instance of the payToll
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Fig. 1. The Toll Domain.

task is added and the toll for that single segment is paid when the toll area is
left. The domain is a simple example for a context-free language-like structure.
When described in STRIPS, one has to commit to a maximum number of visits
or encode it using a richer classical model (e.g. supporting numeric variables).

Consider a car starting at position A and driving to H. A planning system
could come up with the following plan:

drive(A,C ), driveTA(C ,G), driveTA(G ,F ),

driveTA(F ,H ), payToll(), payToll(), payToll()

Consider an execution failure after the first driveTA action: being at location G:
the driver gets aware that the road to F is closed. Re-planning is triggered. The
planning system comes up with the following new plan:

driveTA(G ,E ), driveTA(E ,F ), driveTA(F ,H ),

payToll(), payToll(), payToll()

The driver executes the plan and reaches H, but while four segments are used,
the toll gets only paid three times.

move(a, b)

driveTA(a, b) payToll()

move(a, c)

driveTA(a, b) move(b, c) payToll()

move(a, b)

drive(a, b)

move(a, b)

∅

move(a, c)

drive(a, b) move(b, c)

Fig. 2. Sketch of an HTN model for the Toll domain.
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As we have seen, the hierarchy assures that certain properties hold in every
plan and the domain designer might rely on these properties. There are different
ways to ensure them during a repair process:

1. The responsibility can be shifted to the domain designer, i.e., the domain
must be created in a way that the planning process can be started from any
state of the real-world system. This leads to a higher effort for the domain
expert and it might also be more error-prone, because the designer has to
consider possible re-planning in every intermediate state of the system.

2. The reasoning system that triggers planning and provides the planning prob-
lem is responsible to incorporate additional tasks to make the system safe
again. This shifts the problem to the creator of the execution system. This is
even worse, since this might not even be a domain expert, and the execution
system has to be domain-specific, i.e., the domain knowledge is split.

3. The repair system generates a solution that has the properties assured by the
hierarchy. This solution leads to a single model containing the knowledge,
the planning domain; and the domain designer does not need to consider
every intermediate state of the real system.

Since it represents a fully domain-independent approach, we consider the last
solution to be the best. This leads us to a core requirement of a system that solves
the plan repair problem: regardless of whether it technically uses plan repair
or re-planning, it needs to generate solutions that start with the same prefix
of actions that have already been executed. Otherwise, the system potentially
discards “physics” that have been modeled via the hierarchy. Therefore we define
a solution to the plan repair problem as follows.

Definition 4 (Repaired Plan). Given a plan repair problem Pr = (P , tns,
dt , exe, F+, F−) with P = (L, C, A, M, s0, tnI , g, δ), tns = (T ,≺, α) and
exe = (t0, t1, . . . tn), a repaired plan is a plan that

1. can be executed in s0
2. is a refinement of tnI ,
3. has a linearization with a prefix (α(t0), α(t1), . . . α(tn)) followed by tasks ex-

ecutable despite the unforeseen state change, resulting in a goal state.

4 HTN Plan Repair: Related Work

Before we survey practical approaches on plan repair in HTN planning, we recap
the theoretical properties of the task. Modifying existing HTN solutions (in
a way so that the resulting solution lies still in the decomposition hierarchy)
is undecidable even for quite simple modifications [5] and even deciding the
question whether a given sequence of actions can be generated in a given HTN
problem is NP-complete [6, 7]. Unsurprisingly, the task given here – finding a
solution that starts with a given sequence of actions – is undecidable [6].

We now summarize work concerned with plan repair or re-planning in hier-
archical planning in chronological order.
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One of the first approaches dealing with execution failures in hierarchical
planning is given by Kambhampati and Hendler [27]. It can be seen as plan
repair, since it repairs the already-found solution with the least number of
changes. There are two properties we want to point out regarding our classi-
fication: (1) Though they assume a hierarchical model, (i.e., they also feature
abstract tasks and decomposition methods for refining them), the planning goals
are not defined in terms of an initial task network, but as a state-based goal.
Abstract tasks use preconditions and effects so that they can be inserted as well.
The plan that is repaired is a primitive plan, but it was generated by a hierar-
chical planner. (2) They do not base their work on an execution error, such as an
unexpected change of a current situation, but instead assume that the problem
description changes, i.e., the initial state and a goal description.

Drabble et al. [15] introduced algorithms to repair plans in case of action
execution failure and unexpected world events by modifying the existing plan.

Boella and Damiano [14] propose a repair algorithm for a reactive agent
architecture. Though they refer to it as re-planning, it can be seen as plan repair
according to our classification. The original problem is given in terms of an initial
plan that needs to be refined. Repair starts with a given primitive plan. They
take back performed refinements until finding a more abstract plan that can be
refined into a new primitive one with an optimal expected utility.

Warfield et al. [31] propose the RepairSHOP system, which extends the
progression-based HTN planner SHOP [29] to cope with unexpected changes
to the current state. Their plan repair approach shows some similarities with
the previous one, as they backtrack decompositions up to a point where differ-
ent options are available that allow a refinement in which the unexpected change
does not violate executability. To do this, the authors propose the goal graph,
which is a representation of the commitments that the planner has already made
to find the executed solution.

Bidot et al. [12] propose a plan repair algorithm to cope with execution fail-
ures. The same basic idea has later been described in a more dense way relying
on a simplified formalism [13]. Their approach also shows similarities to the
previous two, as they also start with the failed plan and take planning deci-
sions back, starting with those that introduced failure-associated plan elements,
thereby re-using much of the planning effort already done. The already executed
plan elements (steps and orderings) are marked with so-called obligations, a new
flaw class in the underlying flaw-based planning system.

The previous plan repair approach has been further simplified by Bercher et
al. [9, 10]. Their approach uses obligations to state which plan elements must
be part of any solution due to the already executed prefix. In contrast to the
approaches given before, it starts with the initial plan and searches for refine-
ments that achieve the obligations. Technically, it can be regarded re-planning,
because it starts planning from scratch and from the original initial state while
ensuring that new solutions start with the executed prefix. It was implemented
in the plan-space-based planning system PANDA [11] and practically in use in
the described assembly scenario, but never systematically evaluated empirically.
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The most recent approach for HTN plan repair is the one by Barták and
Vlk [4]. It focuses on scheduling, i.e., the task of allocating resources to ac-
tions and determine their execution time. In case of an execution error (a
changed problem specification), another feasible schedule is found via backjump-
ing (conflict-directed backtracking).

All these approaches address execution failures by a specialized algorithm. In
the next section, we propose a novel approach that solves the problem without
relying on specialized algorithms. Instead, it encodes the executed plan steps and
the execution error into a standard HTN problem, which allows to use standard
HTN solvers instead.

5 Plan Repair via Domain Transformation

Technically, the task is similar to plan recognition as planning (PGR) and we
heavily build on the transformation-based PGR approach by Höller et al. [23].
The encoding of actions used by Höller et al. is similar to the one introduced by
Ramı́rez and Geffner [30] in plan recognition in the context of classical planning.

Let Pr = (P , tns, dt , exe, F+, F−) be the plan repair problem, P = (L, C, A,
M, s0, tnI , g, δ) with δ = (prec, add , del) the original HTN planning problem,
exe = (a1, a2, . . . , am) the sequence of already executed actions5, and F+, F− ∈
2L the sets of the unforeseen positive and negative facts, respectively. We define
the following HTN planning problem P ′ = (L′, C ′, A′,M ′, s′0, tn

′
I , g
′, δ′) with

δ′ = (prec′, add ′, del ′) that solves the plan repair problem.
First, a set of new propositional symbols is introduced that indicate the

position of some action in the enforced plan prefix. We denote these facts as li
with 0 ≤ i ≤ m and li 6∈ L and define L′ = L ∪ {li | 0 ≤ i ≤ m}.

For each task ai with 1 ≤ i < m− 1 in the prefix of executed actions, a new
task name a′i is introduced with

prec′(a′i) 7→ prec(ai) ∪ {li−1},
add ′(a′i) 7→ add(ai) ∪ {li} and

del ′(a′i) 7→ del(ai) ∪ {li−1}.

The last action in the executed prefix am needs to have additional effects, it
performs the unforeseen state change.

prec′(a′m) 7→ prec(am) ∪ {lm−1},
add ′(a′m) 7→

(
add(am) \ F−

)
∪ F+ ∪ {lm} and

del ′(a′m) 7→ del(am) ∪ F− ∪ {lm−1}.

The original actions shall be ordered after the prefix, i.e., ∀a ∈ A : prec′(a) 7→
prec(a) ∪ {lm}. The new set of actions is defined as A′ = A ∪ {a′i | 1 ≤ i ≤ m}.
5 To simplify the following definitions, the definition is slightly different from Def. 1,

where it is a sequence of identifiers mapped to the tasks. The latter makes it possible
to identify which decomposition resulted in an action, which is not needed here.
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To make the first action of the prefix applicable in the initial state, the symbol
l0 is added, i.e., s′0 = s0 ∪ {l0}. We enforce that every solution starts with the
entire prefix, i.e. g′ = g ∪ {lm}.

Having adapted the non-hierarchical part of the problem, the newly intro-
duced actions now need to be made reachable via the hierarchy. Since they
simulate their duplicates from the prefix of the original plan, the planner should
be allowed to place them at the same positions. This can be enabled by intro-
ducing a new abstract task for each action appearing in the prefix, replacing the
original action at each position it appears, and adding methods such that this
new task may be decomposed into the original or the new action. Formally, the
transformation is defined in the following way.

C ′ = C ∪ {c′a | a ∈ A}, c′a 6∈ C ∪A,
M c = {(c, (T ,≺, α′)) | (c, (T ,≺, α)) ∈M}, where

∀t ∈ T with α(t) = k we define α′(t) =

{
k, if k ∈ C
c′k, else.

Ma = {(c′a, ({t}, ∅, {t 7→ a})) | ∀a ∈ A},

So far the new abstract tasks can only be decomposed into the original action.
Now we allow the planner to place the new actions at the respective positions
by introducing a new method for every action in exe = (a1, a2, . . . , am), decom-
posing a new abstract task c′ai

into the executed action ai:

Mexe = {(c′ai
, ({t}, ∅, {t 7→ a′i})) | ai ∈ exe}

The set of methods is defined as M ′ = M c ∪Ma ∪Mexe .
Figure 3 illustrates the method encoding. On the left, a method m is given

that decomposes an abstract task c into another abstract task c′ and an action
a. When we assume that a is contained in the prefix once, the given approach
will result in three new methods in the new model that are given on the right.
In the original method m, the action a is replaced by a new abstract task ca
(the resulting method is named m1). When a is contained in other methods, it is
replaced in the same way as given here. The abstract task ca can be decomposed
using one of the two methods m2 and m3. They replace ca either by the original
action a or by the newly introduced copy a′. That way, a′ can be added into the
solution at exactly the positions where a has been possible before.

c

c′ a

m

→
c

c′ ca

m1

ca

a

m2

ca

a′

m3

Fig. 3. Encoding of methods.
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s0
l0
. . . a′1

l0
. . .

¬l0
l1
. . .

a′2
l1
. . .

¬l1
l2
. . .

. . . a′m
lm−1
. . .

¬lm−1
lm
. . .

ai
lm
. . . . . .

aj
lm
. . . . . .

. . .

g
lm
. . .

Fig. 4. Schema of the overall plan generated from our transformation.

Figure 4 shows the schema of plans generated from our transformation: The
structure of preconditions and effects results in a totally ordered sequence of
actions in the beginning that is equal to these actions already executed. The
last action (a′m) has additional effects that realize the unforeseen state change.
Afterwards the planner is free to generate any partial ordering of tasks as allowed
by the original domain. The newly introduced goal feature forces the prefix to
be in the plan.

Now we come back to our example. Starting the planner after the execution
failure on the transformed model, it might now come up with the following plan
that is executed starting with the third action. Now the toll is paid correctly.

drive(A,C )′, driveTA(C ,G)′, driveTA(G ,E ),

driveTA(E ,F ), driveTA(F ,H ),

payToll(), payToll(), payToll(), payToll()

Like the approach given by Bercher et al. [9], our transformation is a mixture
between re-planning and repair. The planning process is started from scratch,
but the system generates a solution that starts with the executed prefix and
incorporates constraints induced by the hierarchy. Since it enforces the properties
by using a transformation, the system that generates the actual solution can
be a standard HTN planning system. For future work, it might be interesting
to adapt the applied planning heuristic to increase plan stability (though this
would, again, lead to a specialized system).

A problem class related to HTN planning where our transformation may also
be used is HTN planning with task insertion [19, 2, 8] (TIHTN planning). Here,
the planning system is allowed to add actions apart from the decomposition pro-
cess. This makes the issues described in Section 3 less obvious, since the sequence
of already executed actions might simply be considered inserted. However, a TI-
HTN planner needs to include all actions that are enforced via the hierarchy
into the plan. Consider an action that can only be executed once and that has
already been executed. When the prefix is considered inserted and planning is
done from scratch, the planner needs to insert it again and no executable plan is
found. Using our techniques (with minor changes) will prevent such situations.

6 Theoretical Properties of the Transformation

We do not give an empirical evaluation of the encoding. Instead we analyze the
theoretical properties of the transformation.
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We first show that the common sub-classes of HTN planning are closed under
the transformation, i.e., that the transformed problem is in the same class as
the original problem. We consider the following sub-classes:

1. Full HTN planning – The full formalism without restrictions.
2. Totally ordered HTN planning [17, 1] – The subtasks of all methods as well

as the initial task network are totally ordered.
3. Tail-recursive HTN planning [3, 1] – In this class, there exists a pre-order on

all tasks in the domain (not to be confused with the partial order on tasks
within task networks). For all methods, the following holds: All subtasks
except the distinct last task (if there is one) have to be smaller than the
decomposed task with respect to the pre-order. The last task may not be
greater. Intuitively, there are layers of tasks and all but the last task are in
lower layers. The last task may be in the same layer. It is always possible to
put primitive tasks on a single lowest layer.

4. Acyclic HTN planning – There is no recursion, i.e. (one or more steps of)
decomposition of a task can not end up with the same task.

Afterwards, we show that the size of the transformed problem is – in the
worst case – quadratic when considering the executed prefix part of the in-
put (as done in our definition, cf. Def. 1). Please be aware, however, that the
transformed problem can become arbitrary large in comparison to the original
planning problem when the prefix is not considered part of the input.

6.1 Closure Properties

We first show closure properties of the given HTN sub-classes.

Full HTN Models. Since the model resulting from the transformation is a com-
mon HTN model, it is obvious that this class is closed under the transformation.

Totally Ordered HTN Models. When we have a look at the transformation,
we see that (1) the ordering of modified methods is exactly as it was before and
that (2) new methods contain a single subtask (making them totally ordered, i.e.
maximally restricted in the ordering). Surely we do not change properties related
to method ordering and the transformation resulting from a totally ordered
model as input will also be totally ordered.

Tail-recursive HTN Models. The newly introduced abstract tasks form a decom-
position layer between the original abstract tasks and the original and newly in-
troduced actions: when such a new abstract task is reached, it is not possible to
reach any abstract task anymore, only actions are reachable from it. Given there
was an ordering of the tasks with the given properties before the transformation,
we can define one on the transformed model by inserting a new “layer” between
the original actions and the original abstract tasks and put the new abstract
tasks on this layer. So if there was a pre-order with the given properties on all
tasks in the first place (making the problem tail-recursive) the new model will
still possess such a pre-order, i.e. it is still tail-recursive.
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Acyclic Models. We do not introduce recursive decomposition structures. When
a model is non-recursive before, it will also be non-recursive afterwards.

6.2 Model Size

Next we show that the transformation is in the worst case quadratic in the input.
Let n be the size of the HTN model and m the size of the already executed prefix.
We consider both model and prefix as part of the input. For each step in the
prefix, the transformation adds to the model:

1. a single state feature,

2. a single new action,

3. up to two methods (with constant size), and

4. at most a single abstract task.

Due to the (rather artificial) case that the actions included in the prefix
dominate the size of the HTN model (e.g. if they have every state feature as pre-
condition/effect and the elements defining the hierarchy, i.e. abstract tasks and
methods are small in comparison to the actions) the size of the transformation
is bounded by n ×m (caused by adding a new action m times). In practice, it
should be much smaller, though.

Even in this artificial kind of domain, the size of the encoding will only be
quadratic for a certain prefix length. When the prefix is very small, the size of
the input model will dominate the size of the resulting model, if it becomes very
large, the prefix dominates the size. Only when they are of similar size we end
up with quadratic model size.

7 Conclusion

In this paper we introduced a novel approach to repair broken plans in HTN
planning. We discussed that simply re-starting the planning process is no option
since this discards constraints implied by the hierarchy. Instead, systems need
to come up with a new plan that starts with the actions that have already been
executed. All systems in the literature tackle the given problem by specialized
algorithms. We provided a transformation-based approach that enables the use
of unchanged HTN planning systems.
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10. Bercher, P., Höller, D., Behnke, G., Biundo, S.: User-centered planning. In: Biundo,
S., Wendemuth, A. (eds.) Companion Technology – A Paradigm Shift in Human-
Technology Interaction, pp. 79–100. Cognitive Technologies, Springer (2017)

11. Bercher, P., Keen, S., Biundo, S.: Hybrid planning heuristics based on task decom-
position graphs. In: Proceedings of the 7th Annual Symposium on Combinatorial
Search (SoCS). pp. 35–43. AAAI Press (2014)

12. Bidot, J., Schattenberg, B., Biundo, S.: Plan repair in hybrid planning. In: Proceed-
ings of the 31st German Conference on Artificial Intelligence (KI). pp. 169–176.
Springer (2008)

13. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user
assistance based on AI planning. Cognitive Systems Research 12(3-4), 219–236
(2011)

14. Boella, G., Damiano, R.: A replanning algorithm for a reactive agent architec-
ture. In: Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications (AIMSA). pp. 183–192. Springer (2002)

15. Drabble, B., Dalton, J., Tate, A.: Repairing plans on-the-fly. In: Proceedings of the
NASA workshop on Planning and Scheduling for Space. pp. 13.1–13.8 (1997)
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21. Höller, D., Behnke, G., Bercher, P., Biundo, S.: Language classification of hier-
archical planning problems. In: Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI). pp. 447–452. IOS Press (2014)
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24. Höller, D., Bercher, P., Behnke, G., Biundo, S.: A generic method to guide HTN
progression search with classical heuristics. In: Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS). AAAI Press
(2018)
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