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Abstract

Landmarks are state features that need to be made true or
tasks that need to be contained in every solution of a planning
problem. They are a valuable source of information in plan-
ning and can be exploited in various ways. Landmarks have
been used both in classical and hierarchical planning, but
while there is much work in classical planning, the techniques
in hierarchical planning are less evolved. In this paper we in-
troduce a novel landmark generation method for Hierarchical
Task Network (HTN) planning and show that it is sound and
incomplete. We show that every complete approach is as hard
as the underlying HTN problem. Since we make relaxations
during landmark generation, this means NP-hard for our set-
ting (while our approach is in P). On a widely used bench-
mark set, our approach finds more than twice the number of
landmarks than the approach from the literature. Though our
focus is on landmark generation, we show that the newly dis-
covered landmarks bear information beneficial for solvers.

1 Introduction

Two widely used approaches to planning are classical plan-
ning and Hierarchical Task Network (HTN) planning. In
classical planning, the environment is described using a set
of (propositional) state features that are modified by actions,
which define valid state transitions. The objective is to find a
sequence of actions transforming the initial state of the sys-
tem into one in which certain goal features hold.

In HTN planning there are two kinds of tasks: actions like
in classical planning (also called primitive tasks) and ab-
stract tasks. The latter are not applicable directly, but are
decomposed into other (primitive or abstract) tasks by us-
ing decomposition methods. The objective in HTN plan-
ning is not to fulfill a state-based goal condition, but to
find an executable decomposition of given abstract tasks.
Since there is (usually) more than one method for an ab-
stract task, the hierarchy implies a second combinatorial
problem because a planner has to choose the “right” method
for a certain task. This makes HTN planning more expres-
sive (Erol, Hendler, and Nau 1996; Geier and Bercher 2011;
Höller et al. 2014; 2016). The decomposition process can be
seen as an AND/OR tree (Ghallab, Nau, and Traverso 2004;
Kambhampati, Mali, and Srivastava 1998). Starting with the
initial task, a planner chooses a single method (i.e. abstract

tasks form OR nodes) and has to include all subtasks into
the plan (i.e. methods form AND nodes), and so on.

A concept that has been successful especially in classical
planning is that of landmarks (LMs). LMs are state features
(or actions) that are made true (contained) in every solution.
It was first used for problem decomposition (Porteous, Se-
bastia, and Hoffmann 2001; Hoffmann, Porteous, and Sebas-
tia 2004) and later for creating non-admissible (see e.g. Zhu
and Givan (2003), Richter, Helmert, and Westphal (2008),
and Richter and Westphal (2010)) and admissible heuristics
for heuristic search (see e.g. Karpas and Domshlak (2009)
or Helmert and Domshlak (2009)). LMs have also been in-
troduced in hierarchical planning. First in form of task LMs
in hybrid planning (Elkawkagy, Schattenberg, and Biundo
2010) (an extension of HTN planning), later in form of fact
LMs in HGN planning, a formalism where the hierarchy is
defined on goals, not on tasks. The former can directly be
applied to HTN planning and will be the baseline for our ap-
proach. While the latter can apply LM generation techniques
from classical planning directly (Shivashankar et al. 2013;
2016a; 2016b; Shivashankar, Alford, and Aha 2017), the
presented techniques are not applicable to HTN planning.
We summarize landmark-related work in the context of
HGN planning in Section 5.

Work on LMs can be divided into two orthogonal cate-
gories (Keyder, Richter, and Helmert 2010): LM utilization
showing how to exploit LM information, and LM genera-
tion, showing how to find LMs. We focus on the latter.

Based on techniques from classical planning, we intro-
duce a novel approach for LM generation in HTN planning
that elegantly combines the extraction of fact, action, and
method LMs. It dominates the existing work (finding at least
the same LMs). Our approach is sound and incomplete. We
further show that every (sound and) complete approach is as
hard as the underlying planning problem, i.e., in our setting
– delete-effects and ordering-relations of the HTN model are
ignored during generation – NP-hard (while our approach is
in P). On a widely used benchmark set we find more than
twice the number of LMs than related work. Though our fo-
cus is on LM generation, we further show that the additional
LMs bear valuable information for search guidance.
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2 Formal Framework

A classical planning problem P is a tuple (F,A, s0, g, δ). F
is a set of propositional state features (or facts) that is used
to describe the environment. A state s ∈ 2F is given by
those state features that hold in it, all others are supposed to
be false. s0 ∈ 2F is called the initial state and g ⊆ F is
the goal condition. A is a set of action names. The functions
δ = (prec, add , del) with prec, add , del : A → 2F map
action names to a set of state features defining the action’s
precondition, add effects, and delete effects, respectively. An
action a is applicable in a state s ∈ 2F if and only if its
precondition is contained in the current state, prec(a) ⊆ s.
When a is applicable in s, the state s′ resulting from its ap-
plication is defined as s′ = (s \ del(a)) ∪ add(a). A se-
quence of actions (a1, a2, . . . , an) is applicable in a state s
when action ai with 1 ≤ i ≤ n is applicable in state si−1,
where si for 1 ≤ i ≤ n results from applying the sequence
up to action i. The state si is called the state resulting from
the application. All states s ⊇ g are called goal states. A
plan (or solution) is a sequence of actions applicable in s0
that results in a goal state.

We now extend classical problems to HTN problems
based on the formalism by Geier and Bercher (2011). An
HTN planning problem P = (F,A,C,M, s0, tnI , g, δ) ex-
tends a classical problem by a decomposition hierarchy on
the things to do, the tasks. Tasks are divided into primi-
tive tasks equal to actions in classical planning, and abstract
tasks that can not be applied directly but need to be decom-
posed first. Let A and C1 be the sets of primitive and ab-
stract tasks, respectively. We assume that their intersection
is empty and call the set of all task names N = A ∪ C.

Tasks are organized in task networks. A task network is a
triple tn = (T ,≺, α), where T is a set of identifiers (ids),
≺ a strict partial order on the ids, and α a mapping from ids
to actual tasks α : T → N . This definition allows having a
certain task more than once in a task network.

Planning starts with a special task network defining the
objective of the problem called initial task network tnI .

The decomposition rules are called (decomposition) meth-
ods M . They map a task c ∈ C to a task network, i.e. they
are pairs (c, tn). When a method (c, tn) is applied to a task
t with α(t) = c in a task network, the task is deleted from
the network, the tasks defined in tn are added and they in-
herit the ordering relations that have been present for t. A
task network tn1 = (T1,≺1, α1) is decomposed into a task
network tn2 = (T2,≺2, α2) by a method (c, tn), if tn1 con-
tains a task t ∈ T1 with α1(t) = c and there is a task net-
work tn ′ = (T ′,≺′, α′) equal to tn but using different ids
(i.e. T1 ∩ T ′ = ∅). tn2 is defined as follows:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)

≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪

{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

We will write tn1
−−→
t,m tn2 to denote that tn1 can be trans-

formed into tn2 by decomposing a task t contained in tn1

1C is short for compound, a common synonym for abstract.

using the method m. We will write tn1 →
∗ tn2 to denote

that a task network tn1 can be decomposed into a task net-
work tn2 by using a (possibly empty) sequence of methods.

The elements s0, g, and δ are defined as before. The ob-
jective of the problem is to find an executable decomposi-
tion of tnI = (TI ,≺I , αI) by adhering the decomposition
methods resulting in a state satisfying g. More formally, a
task network tnS = (TS ,≺S , αS) is a solution if and only
if (1) tnI →

∗ tnS , i.e. tnS can be created by decomposing
tnI , (2) All tasks in tnS are primitive, and (3) There is a
sequence of all tasks satisfying the ordering constraints ≺S ,
applicable in s0 that results in a goal state.

An HTN planning system is not allowed to add tasks apart
from the decomposition process. Since we defined the HTN
problem as an extension of a classical problem, it contains a
state-based goal definition as well. Specifying such a goal
is optional, and is indeed not required from a theoretical
perspective as it can easily be compiled away (Geier and
Bercher 2011). Our LM generation procedure works fine
without a state-based goal definition and most problem in-
stances in the used benchmark set do not contain one.

We now define various types of landmarks. Our defini-
tion for task landmarks (Def. 1) is essentially equivalent to
Def. 3 of Elkawkagy et al. (2012), but adapted to our for-
malism. Most notably, the original formalization is based on
a lifted formalization (whereas the respective landmarks are
still required to be ground). Def. 2 is new.

Definition 1 (Task Landmark). A task landmark is a task
name n ∈ N such that every sequence of decompositions
leading to some solution tnS contains a task network in-
cluding the landmark. Thus, each decomposition sequence
from tnI to tnS has the form tnI →

∗ tn →∗ tnS , where
tn = (T ,≺, α) with t ∈ T and α(t) = n.

Definition 2 (Method Landmark). A method landmark is a
method m ∈ M such that every decomposition sequence
to every solution tnS contains two task networks tn1 =
(T1,≺1, α1) and tn2 such that there is a task t ∈ T1 and it
holds that tnI →

∗ tn1
−−→
t,m tn2 →

∗ tnS .

Our definition of fact landmarks is a canonical adaptation
of fact landmarks from classical planning (Porteous, Sebas-
tia, and Hoffmann 2001).

Definition 3 (Fact Landmark). A fact landmark is a fact
f ∈ F such that for every solution tnS , every lineariza-
tion executable in s0 in line with the ordering and resulting
in a goal state there is an intermediate state si with f ∈ si.

3 Landmark Generation in HTN Planning

The concept of landmarks in HTN-like planning has first
been studied by Elkawkagy, Schattenberg, and Biundo
(2010). Here, landmarks have not been extracted from states,
but from the task hierarchy. They introduced a technique to
identify tasks that are contained in all methods (c, tn) ∈ M
decomposing a certain task c by computing the intersection
of their subtasks. These tasks are called mandatory tasks.
However, the empirical evaluation in their paper evaluates
the impact of a domain model reduction that is done simul-
taneously to the mandatory task generation.
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In follow-up work (Elkawkagy et al. 2012) they tested
how the computed landmark information can be exploited
by introducing and evaluating landmark-based search strate-
gies. These search strategies are tailored to the deployed
search algorithm, which prioritizes different methods that
belong to the same abstract task similar to SHOP (Nau et
al. 2003; Goldman and Kuter 2019). However, whereas the
SHOP systems rely on depth-first search and the order of the
methods is specified in the model, Elkawkagy et al.’s sys-
tem uses informed search strategies and computes the meth-
ods’ order based on the mandatory tasks. The core idea is
to prioritize methods with fewer tasks, whereas only non-
mandatory tasks are considered (as mandatory tasks have to
be achieved anyway). So, their work did not yet define a
landmark heuristic that can be exploited by standard heuris-
tic HTN planners.

Bercher, Keen, and Biundo (2014) then introduced these
ideas to standard heuristic search. They showed how land-
marks of a planning task can be computed based on manda-
tory tasks and used these landmarks for an admissible land-
mark counting heuristic. To show in which way we extend
their landmark heuristic (Bercher, Keen, and Biundo 2014,
Def. 1), we reproduce their definition, but simplified and
adapted to our notation:

Definition 4 (Mandatory Task-based Landmarks). Let P =
(F,A,C,M, s0, tnI , g, δ) and tnI = (TI ,≺I , αI) be an
HTN planning problem. For a primitive task a ∈ A, we de-
fine the set of mandatory tasks as MT (a) = ∅ and for an
abstract task c ∈ C it is defined as follows:

MT (c) =
⋂

(c,(T ,≺,α))∈M

⋃

t∈T

α(t)

A set of MT landmarks LMmt for P can be computed by:

1 LMmt ←
⋃

t∈TI
αI(t)

2 while LMmt changes do

3 LMmt ← LMmt ∪
⋃

n∈LMmt MT (n)

The generation method collects the tasks contained in all
methods that belong to the same abstract task. Thus all tasks
that get introduced at deeper levels of abstraction cannot be
found unless all methods share some abstract task(s). This,
however, could be improved by lookahead techniques as
done in early approaches in classical planning.

4 AND/OR Landmarks in HTN Planning

We now introduce HTN landmark generation based on
AND/OR graphs, adapting a landmark technique from clas-
sical planning to our setting. A main problem when applying
techniques from classical planning to HTN planning is the
absence of a state-based goal. Since the objective in classi-
cal planning is given in terms of such a goal, techniques like
landmark extraction usually rely on it. When an HTN prob-
lem also includes one, techniques could be directly applied
to it, but it is usually not present. One approach to apply
classical techniques would be to extract task landmarks for

the HTN model and calculate the state-based landmarks of
the preconditions of primitive task landmarks.

However, we introduce a more elegant approach that
smoothly combines the generation of task, method, and fact
LMs in HTN models based on the approach of Keyder,
Richter, and Helmert (2010). Their technique extracts LMs
from an AND/OR graph representation for delete-relaxed
classical planning problems that was introduced by Mirkis
and Domshlak (2007). We first introduce the approach of
Keyder, Richter, and Helmert (Sec. 4.1), and then show that
it can nicely be adapted to HTN planning (Sec. 4.2).

4.1 Extracting Landmarks in Classical Planning
Using AND/OR Graphs

We use the definition of AND/OR graphs by Keyder,
Richter, and Helmert (2010, p. 2):

Definition 5 (AND/OR Graph). An AND/OR graph G =
(VI , Vand, Vor, E) is a directed graph with vertices V =
VI ∪ Vand ∪ Vor and edges E, where VI , Vand and Vor are
disjoint sets called initial nodes, AND nodes, and OR nodes,
respectively. A subgraph J = (V J , EJ) of G is said to jus-
tify VG ⊆ V if and only if the following conditions holds:

1. VG ⊆ V J

2. ∀a ∈ V J ∩ Vand : ∀(v, a) ∈ E : v ∈ V J ∧ (v, a) ∈ EJ

3. ∀o ∈ V J ∩ Vor : ∃(v, o) ∈ E : v ∈ V J ∧ (v, o) ∈ EJ

4. J is acyclic

Let P = (F,A, s0, g, δ) with δ = (prec, add , del) be
a delete-relaxed (DR) classical planning problem (i.e., for
all a ∈ A holds del(a) = ∅). It can be understood as
the following AND/OR graph (Mirkis and Domshlak 2007;
Keyder, Richter, and Helmert 2010):

Definition 6 (AND/OR representation of delete-relaxed
classical problems). Let G = (VI , Vand, Vor, E) with
VI = s0, Vand = A, and Vor = F \ s0. The set of edges
is defined as E = {(a, f) | a ∈ A, f ∈ add(a)} ∪ {(f, a) |
a ∈ A, f ∈ prec(a)}.

Landmarks in these graphs are characterized by the fol-
lowing definition (Keyder, Richter, and Helmert 2010):

Definition 7 (Landmarks in AND/OR graphs).

LM (v) = {v} for v ∈ VI ,

LM (v) = {v} ∪
⋂

u∈pred(v)

LM (u) for v ∈ Vor,

LM (v) = {v} ∪
⋃

u∈pred(v)

LM (u) for v ∈ Vand,

where pred(v) is the set of predecessors of v in G, i.e.
pred(v) = {u | (u, v) ∈ E}.

The set of landmarks for a problem is then defined as the
set of landmarks for the nodes representing the goal defini-
tion g, i.e. VG = g and we are looking for

⋃
n∈VG

LM(n).
Keyder, Richter, and Helmert calculate the maximal set

fulfilling these equations in P by initializing the landmark
sets of all nodes apart from VI with all vertices of the graph,
i.e. the full landmark set. Nodes in VI are initialized with
its own value. Then the equations given before are used as
update rules for the sets until a fixpoint is reached.
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4.2 Extracting Landmarks in HTN Planning
Using AND/OR Graphs

From a high-level perspective, what is encoded in the
AND/OR graph constructed above is that for every state fea-
ture that is in the goal condition, there must be (at least) one
action that has it as an add effect. When an action is in the
graph, its preconditions must also be fulfilled, i.e. there must
be at least one action (for each precondition fact) with this
state feature as add effect, and so on (until the state features
in the initial state are reached).

When we now have a look at HTN planning, we see a
similar structure: for each abstract task in the initial task
network, there must be a method decomposing it. When
a method is in the graph, all its subtasks must also be in
the graph, and so on (until all tasks are primitive). This
similarity to AND/OR graphs has been pointed out be-
fore (Kambhampati, Mali, and Srivastava 1998; Ghallab,
Nau, and Traverso 2004, Chapter 11).

However, we do not need to stop at this point: when we
have reached an action, we know that its preconditions need
to be fulfilled. So there must be actions that have those state
features as add effects. To reflect this in landmark genera-
tion, we do not replace the definition of the AND/OR graph
given before, but extend it in the following way.

Definition 8 (AND/OR representation of delete-relaxed
HTN problems). Let P = (F,A,C,M, s0, tnI , g, δ) be
an HTN planning problem. We define the corresponding
AND/OR graph as follows:

G = (VI , Vand, Vor, E) with VI = s0, Vand = A ∪M 2

and Vor = F \ s0 ∪ C. The set of edges is defined as E =

{(a, f) | a ∈ A, f ∈ add(a)} ∪

{(f, a) | a ∈ A, f ∈ prec(a)} ∪

{(m, c) | m = (c, tn) ∈M} ∪

{(n,m) | m = (c, (T ,≺, α)) ∈M, t ∈ T , α(t) = n}

Now we generate the landmarks by using the same gener-
ation mechanism as Keyder, Richter, and Helmert. Since the
size of the graph is linear in the size of the model, it trivially
follows that this computation is in P. The overall set of LMs
is then based on hierarchy and (if present) state-based goal:

Definition 9 (HTN Landmarks). Let tnI = (TI ,≺I , αI) be
the problem’s initial task network. The overall set of HTN
and/or landmarks LM ao is defined as

LM ao =
⋃

v∈VG

LM(v) with VG =
⋃

t∈TI

{αI(t)} ∪ g

The example given in Figure 1 illustrates the interplay of
hierarchy and state during landmark generation. The initial
task network contains a single abstract task T that may be
decomposed using the methods m1 or m2, both introducing
an action b. The abstract task S can be decomposed into an
action a using m3. There are two state features x and z. The
former is included in the initial state (s0 = {x}) and pre-
condition of a. The latter is the precondition of b. When we

2Wlog., we assume that A ∩M = ∅ and F ∩ C = ∅.

T

S bz

T

bz

S

ax z

m1 m2 m3

Figure 1: Simple HTN domain. S and T are abstract tasks,
m1 to m3 methods, a and b actions, and x and z state fea-
tures. T might be decomposed by m1 into S and b, or by m2

into b. S can be decomposed by m3 into a.

zx

a b

m3 m2

S

m1

T
LM (x ) = {x}
LM (z ) = {a, x, z}

LM (a) = {a, x}
LM (b) = {a, b, x, z}

LM (m1 ) = {a,m3, S, x} ∪ {a, b, x, z} ∪ {m1}
= {a, b,m1,m3, S, x, z}

LM (m2 ) = {a, b,m2, x, z}
LM (m3 ) = {a,m3, x}
LM (S ) = {a,m3, S, x}

LM (T ) = ({a, b,m1,m3, S, x, z} ∩ {a, b,m2, x, z}) ∪ {T}
= {T, a, b, x, z}

Figure 2: AND/OR graph of our example given in Fig. 1.
Circles are OR nodes, boxes are AND nodes, and the
diamond-shaped node labeled x is the only initial node.

apply the mandatory task landmark generation, we end up
with the landmark set {T, b}.

The AND/OR graph resulting from the problem is given
in Figure 2. The resulting landmark sets are given at the
right. Notably, though it is not even reachable when using
m2, we end up with a inside our landmark set, since it is the
only action that fulfills the precondition of the landmark b.

4.3 Theoretical Properties

Before we state the properties of our approach, let us state
theoretical properties of landmarks in general. Similar to
classical planning, we will see that deciding whether a task,
method, or fact is a landmark is as hard as planning itself.

Theorem 1. Let P be an HTN planning problem. Let t be a
task, m be a method, and f a fact. Deciding whether t, m, or
f is a landmark is exactly as hard (with matching upper and
lower bounds of the respective complexity class) as deciding
the plan existence problem for P .

Proof. Our proof is a straight-forward adaptation of the
corresponding proof by Hoffmann, Porteous, and Sebas-
tia (2004, Thm. 1) for classical planning landmarks.

Hardness. We will introduce a new artificial initial ab-
stract task cI with two decomposition methods. The first,
m1, decomposes cI into the original initial task network of
P , whereas the other, m2, decomposes it into a new task net-
work that solves the problem. For this, m2 decomposes into
an abstract task t, which in turn decomposes (i.e., with yet
another method) into a primitive task t′. t′ uses an empty
precondition, a new “dummy” fact f as effect, as well as g
as further effects. t′ does not use negative effects. Note that
we could have put t and t′ into the same task network, thus
saving another “decomposition level” and method, but we
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wanted to keep the size of new task networks limited to 1
so we don not potentially change properties of the problem
we reduce from (like number of tasks per task network, their
form of ordering constraints, or the “position” of said task,
which may all influence the computational complexity).

Clearly, m2, t (abstract), t′ (primitive), and f are land-
marks if and only if P is unsolvable. Note that determining
the unsolvability is as hard as determining the solvability, as
those two problems are complimentary to each other.

Membership. Similar to Hoffmann, Porteous, and Sebas-
tia (2004, Thm. 1), we test whether the problem remains
solvable if we ignore all parts of the model that “relate” to
the landmark(s) in question. I.e., in case of a method we just
remove it. In case of a task (abstract or primitive), we remove
all task networks and methods that contain them. And in case
of a fact landmark, we remove all actions (i.e., again remov-
ing all methods that introduce it) that add it. Decide the re-
sulting problem. The task, method, or fact is a landmark if
and only if the respective problem is not solvable.

Using that theorem we can thus deduce the computational
hardness of determining whether a task, method, or fact is
a landmark for many standard HTN planning problems. We
only mention the most important ones here, but as mentioned
above our theorem is more general.

Corollary 1. Let P be an HTN planning problem. Deciding
whether a task, method, or fact is a landmark of P is unde-

cidable. If P is totally ordered, its complexity is EXPTIME-
complete. If it is delete-relaxed it is NP-complete.

Proof. Follows from Thm. 1 in conjunction with the results
for the general case (Erol, Hendler, and Nau 1996; Geier and
Bercher 2011), totally ordered problems (Alford, Bercher,
and Aha 2015a), and delete-relaxed problems (Alford et al.
2014; Höller, Bercher, and Behnke 2020).

We can conclude that any complete landmark extrac-
tion technique for delete- and ordering-relaxed HTN prob-
lems cannot run in polynomial time unless P=NP (Höller,
Bercher, and Behnke 2020).

Some of our further results (i.e., their proofs) rely on
the so-called Decomposition Tree (Geier and Bercher 2011),
which we formally introduce next. It is a formal representa-
tion of a task network and it deviation from the initial task.3

Definition 10 (Decomposition Tree). Given an HTN plan-
ning problem, a Decomposition Tree (DT) is a tuple g =
(V,E,≺, α, β). V and E are the vertices and edges of a di-
rected tree. ≺ is a strict partial ordering on V . α : V → N
maps the vertices to (primitive or abstract) tasks from the
problem. Vertices that are labeled with abstract tasks are
mapped to methods by β : V →M .

A DT is valid if its root is labeled with the initial task of
the problem and for every vertex v labeled with an abstract
task c, the following conditions hold:

1. It is labeled with a method applicable to c, i.e. β(v) =
(c, tnm).

3Problems with an initial task network can trivially be compiled
into one with just an initial task (Geier and Bercher 2011).

2. The task network induced by the children of v in g differs
from tnm only in the task identifiers.

3. For all vertices v′ ∈ V , the ordering with respect to the
children of v is like defined for HTN planning, i.e. for each
child v′′ the following conditions hold:

(a) if (v, v′) ∈ ≺ then (v′′, v′) ∈ ≺

(b) if (v′, v) ∈ ≺ then (v′, v′′) ∈ ≺

4. ≺ does only contain ordering relations enforced by the
conditions 2 and 3.

Note that there exists a valid decomposition tree for ev-
ery solution of an HTN problem (Geier and Bercher 2011,
Prop. 1), since they simply represent the underlying hierar-
chy of the respective task network. We can now discuss some
properties of the new approach.

Lemma 1. Let P be an HTN planning problem, tn a solu-
tion task network, and dt its decomposition tree. Then, there
exists a justification for the initial task of the AND/OR graph
(given in Definition 8) representing dt.

Proof. Consider the following observations:

1. Task Insertion – Assume we have a justification for an
AND/OR graph representation of a classical problem. As-
sume we want to add additional actions. This results in
more AND nodes, but as long as we support their precon-
ditions by other action nodes or the initial state, we get
another valid justification.

2. Eliminating Cycles – Geier and Bercher (2011, Sec. 4.1
and 4.2) have shown that – when allowing an HTN plan-
ner to insert tasks apart from the decomposition process –
cycles in the decomposition structure are not necessary
and can be removed. When removed actions have been
needed to make the resulting sequence executable, they
can be reintroduced via task insertion. While Geier and
Bercher use this result to show an upper bound of the size
of task networks (for this special class of HTN planning
problems), we need it to show the existence of justifica-
tions without cycles.

Given a decomposition tree, we know by Obs. 2 that (a) there
is a modified tree that (a) contains a subset of the tasks of g,
that (b) does not contain cyclic decompositions and that (c)
the contained actions can be made executable by task inser-
tion. Now consider the basic structure of a DT: We start by
adding all tasks contained in the (acyclic) DT to the justi-
fication. Therefore we know that condition 1 for the justifi-
cations is fulfilled. For every abstract task, DT it explicitly
contains the method used for its decomposition, i.e., we can
use this method to add the edges from the abstract task node
to the method node, and from the method node to the subtask
nodes. For the hierarchical part of the graph, the latter fulfills
condition (2) and the former condition (3) of the justification
definition. Since our decomposition structure is acyclic, we
know that the new graph is.

What is left to show is that there is a justification for the
part of the graph representing the state transition system. By
Obs. 1 we know we can “add actions” to fulfill the conditions
for a justification. Since we started with a valid decomposi-
tion tree before we removed cycles, we know that there is a
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Figure 3: HTN domain without delete-effects and ordering
relations. S and T are abstract tasks, a–e are actions, m1–
m4 are methods, and x–z are state features.

LM (x ) = {x}

LM (a) = {a, x}

LM (b) = {b, x}

LM (c) = {c, x}

LM (d) = {d, x}

LM (e) = {a, e, x, y, z}

LM (y) = {y, a, x}

LM (z ) = {z, x} = {z} ∪

({b, x}∩{c, x})

LM (m1 ) = {m1, a, x}

LM (m2 ) = {m2, b, x}

LM (m3 ) = {m3, c, x}

LM (m4 ) = {m4, d, x}

LM (S) = {S, x} = {S} ∪

({m1, a, x}∩{m2, b, x})

LM (T ) = {T, x} = {T} ∪

({m3, c, x}∩{m4, d, x})

Figure 4: Landmarks found on the domain given in Figure 3.

set of actions that makes the sequence applicable, thus there
is a valid justification for the state transition system.

Theorem 2 (Soundness). LM ao landmarks are landmarks
for the underlying HTN planning problem.

Proof. The approach by Keyder, Richter, and Helmert ex-
tracts landmarks for AND/OR graphs, i.e., nodes that have
to be in every justification. By Lemma 1, there is a justifi-
cation corresponding to every DT. Since every justification
includes the nodes, this holds for every one that represents a
DT and every DT includes the nodes.

A second question is whether the approach is complete.
Obviously, delete effects and ordering relations are not rep-
resented in the graph. Thus all LMs depending on delete-
effects and/or the ordering can not be found. This leaves
the question whether all LMs apart from these are found for
delete- and ordering-free (DOF) HTN problems.

Theorem 3 (Completeness). LM ao does not find all LMs in
DOF HTN planning problems.

Proof. Consider the HTN domain given in Figure 3. The ini-
tial task network (tnI ) contains the abstract tasks S and T ,
and the action e. The initial state is s0 = {x}. All tasks are
unordered. S can be decomposed by m1 into the action a,
or by m2 into the action b. T can be decomposed by m3 and
m4 into the actions c and d, respectively.

Since e is in tnI , it is necessarily in every solution. To
make it executable, y needs to be fulfilled, thus S needs to
be decomposed using m1 to include a in the plan, which is
the only way to make y true. z is also precondition of e, i.e.
b or c must be contained in every plan. However, since S
needs to be decomposed into a, c is the only option to fulfill
z. I.e. c must be contained in the set of LMs.

The LMs found by LM ao are given in Fig. 4. The LMs for
the overall problem includes LM (S ) ∪ LM (T ) ∪ LM (e)
= {S, T, e, x, y, z, a}. The landmark c is not included.

The reason for the incompleteness can be seen in the
AND/OR encoding. Besides the two obvious relaxations
given above (delete-relaxation and ordering-relaxation), a
third relaxation is made that further increases the set of so-
lutions: A certain abstract task may be decomposed more
than once. This can be seen as task insertion (cf. Geier and
Bercher (2011) and Alford, Bercher, and Aha (2015b) for an
investigation of its impact on the computational complex-
ity). This relaxation is often used in HTN heuristics to make
computation feasible (Alford et al. 2014), e.g. by Bercher et
al. (2017) or Höller et al. (2018; 2019; 2020).

The incompleteness result raises the question whether
there is a complete algorithm that is feasible (i.e. that can
be computed in P). However, due to Cor. 1 we know that
his is unlikely (as it would require P=NP). There might, of
course, be incomplete methods finding more LMs than ours.
However, when we compare our method with the one from
the literature, we see that the following theorem holds:

Theorem 4 (Dominance). Let L1 and L2 be the task LMs
generated by LMmt & LM ao , respectively. Then, L1 ⊆ L2.

Proof. In our generation, a task c is represented by an OR
node. When its LM set is updated, it is set to the intersection
of its predecessors. These predecessors are nodes resulting
from the methods m1 to mk applicable to c. The LM sets of
m1 to mk are set to the union of the sets of their subtasks.
Since a LM set of a node n contains n by definition, the
subtasks of m1 to mk contain themselves, i.e. that the sets
of m1 to mk contain at least all their subtasks, and c the
intersection of all these sets. This is exactly the definition of
MT LMs. In Fig. 1 and 2 we have given an example for a
LM found by LM ao but not by LMmt , so we might find a
proper superset of LMs.

5 Landmarks Apart from HTN Planning

There are many hierarchical planning formalisms in the liter-
ature, some of them differ severely in their formalization, se-
mantics, and computational properties (Bercher, Alford, and
Höller 2019). Landmarks have also been used in HGN plan-
ning, which is concerned with the refinement and achieve-
ment of state-based goals rather than tasks (Shivashankar et
al. 2012). In a nutshell, there are no task networks in HGN
planning, but goal networks instead, which are partially or-
dered formulae over state-variables. Methods now refine
these goals into further goal networks. There is just one sort
of task: the actions known from classical planning. The ob-
jective is to find an executable action sequence that achieves
all goals and satisfies the given order (possibly by refining
goals using the methods), whereas each action can only be
applied to a state if it achieves some goal, thereby making
it as expressive as HTN planning (Shivashankar et al. 2012;
Alford et al. 2016b). When the HGN formalism was first de-
scribed, Shivashankar et al. (2012) already proposed how an
HGN planner could incorporate heuristics, but no landmark
information was used.

Their follow-up planner GoDeL (Goal Decomposition
with Landmarks) (Shivashankar et al. 2013) uses standard
classical landmark generation (Hoffmann, Porteous, and Se-
bastia 2004; Richter and Westphal 2010) to obtain a partially
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ordered set of landmarks (called a landmark graph) that can
be used to guide the search to the next goal.

Their next system HOpGDP (Hierarchically-Optimal
Goal Decomposition Planner) is guided by a landmark
heuristic called hHL (HGN Landmark heuristic) (Shiv-
ashankar et al. 2016a; 2016b). hHL builds upon existing
landmark techniques and extends them to work on a par-
tially ordered set of goals rather than on a single “at end”
goal as in classical planning: Given a current goal network,
i.e., a partially ordered set of goals, they can regard this net-
work as a landmark graph and extend it by further landmarks
found by techniques from the literature (Richter and West-
phal 2010). They then use this extended landmark graph as
input to the technique of Karpas and Domshlak (2009) to
obtain an admissible heuristic.

The newest HGN system is called HOGL (Hierarchically-
Optimal Goal Decomposition Planner using LMCut) and
again relies on landmarks to guide search (Shivashankar,
Alford, and Aha 2017). In this work, they obtain heuris-
tic estimates by first performing a problem relaxation that
ignores the hierarchy and action applicability restrictions
and then compiling that problem into a classical planning
problem (per search node) to use standard classical heuris-
tics. Whereas this approach is agnostic towards the classical
heuristic actually used, the approach was evaluated using the
LM-cut heuristic (Helmert and Domshlak 2009).

To summarize this line of research: In HGN planning, in-
formation about landmarks was used successfully to a large
extent, but all approaches use the procedures from classical
planning as black box procedures without extending them
(at all or) by the information provided by the hierarchy.

6 Evaluation

We evaluate our new LM generation on a widely-used HTN
benchmark set. It e.g. has been used by Höller et al. (2018)
and Behnke, Höller, and Biundo; Behnke, Höller, and Bi-
undo (2019a; 2019b). It contains 144 problem instances
from 8 domains. Experiments ran on Xeon E5-2660 v3
CPUs, 4 GB RAM and 10 min time.

Landmark Extraction. Task LMs are extracted by both
generation procedures. Over all instances, our generation
finds 13% more task LMs than MT. Besides task LMs, our
approach also extracts fact and method LMs. However, we
find only very few method LMs (0 to 1 per instance)4. When
we compare the full sets of LMs that are found (Figure 5),
we extract 2.3 as many LMs over the entire instance set.

Extraction time is not an issue for both methods: MT LM
generation needs 0.03 ms on average, we need 1.3 ms.

Landmark-guided Search. Though the focus of this pa-
per is on LM generation, we want to show that the newly
found LMs bear information that helps guiding the search.
We therefore integrated the generation mechanisms into the

4This is caused by the grounding procedure of PANDA (see
Behnke et al. (2020)). Whenever there is only a single method
m for a task c, occurrences of c in other methods (or the initial
task network) are replaced by the subtasks of m. At most a single
method LM is left that is caused by a second compilation step that
replaces an initial task network by an initial task.
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Figure 5: Number of all LMs extracted by MT (on the x axis)
and AND/OR (on the y axis) generation split by domain.
Please be aware the different scaling of the axis.

PANDA framework and combined them with the progres-
sion search algorithm described by Höller et al. (2020, Alg.
3). We realized the following heuristics:

• LMC-MT – Landmark count heuristic using MT LMs.
Landmarks are extracted once for the initial task network.
During search, reached LMs are tracked and the number
of unfulfilled LMs is used as heuristic value.

• LMC-AND/OR – Same as before, but using our LM gen-
eration (which also includes fact and method LMs).

• LMC-AND/OR-R – As before with additional analysis
checking whether all unfulfilled LMs are still reachable.

Be aware that a configuration with reachability analysis
is not reasonable for MT LM generation. Here, all LMs are
reached by definition, there is no chance to prevent this. Have
a second look at Fig. 1 & 2. After applying m2, a is not
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entertainment 12 9 9 9 12 12 12 9 9 5
PCP 17 13 13 13 14 12 12 9 8 3
Satellite 25 21 21 21 25 25 25 24 21 23
SmartPhone 7 4 4 4 5 7 6 6 5 6
UM-Translog 22 22 22 22 22 22 22 22 22 19
Woodworking 11 5 6 6 10 11 11 9 9 5
rover 20 4 4 3 4 10 4 5 5 5
transport 30 7 1 1 15 22 22 2 1 19
total 144 85 80 79 107 121 114 86 80 85

Table 1: Coverage table for different systems.
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Figure 6: Number of solved instances over time.

reachable anymore and the search node can be pruned. For
the MT LM set {T, b}, however, pruning is not possible.

Table 1 shows the coverage of several HTN planning sys-
tems. It contains the configuration with the highest cover-
age for each of our LM heuristics; the Relaxed Composi-
tion heuristic (Höller et al. 2018) with FF (Hoffmann and
Nebel 2001) as inner heuristic (RC FF); TDGm and TDGc

heuristics (Bercher et al. 2017), and compilation-based sys-
tems. Two of the latter bound the problem and translate it to
propositional logic (see Behnke, Höller, and Biundo (2018;
2019a)). When no solution is found, the bound is increased.
The third compilation (Alford et al. 2016a) translates the
(also bounded) problem to classical planning and uses the
Jasper planner (Xie, Müller, and Holte 2014) to solve it.

It can be seen that the LMC heuristic benefits from the
new LM generation process. When only looking at coverage,
the possibility to integrate a reachability analysis has a larger
impact than the increased LM set. However, as can be seen
in Figure 6 (showing solved instances after a given time), the
increased LM set also speeds up search considerably. While
the SAT-based systems perform best, our new LM genera-
tion makes LMC competitive with all search-based systems
apart from the RC FF heuristic. However, having the sophis-
ticated and rather complex search techniques of successful
LM planners in classical planning like LAMA (Richter and
Westphal 2010) in mind, it is not surprising that a simple LM
count heuristic is not competitive with the RC heuristic.

7 Conclusion

We introduced a novel LM generation technique for HTN
planning that is based on AND/OR graphs. Notably, we do
not depend on a state-based goal definition, which is often
not present in HTN planning though we can also extract
LMs from this definition if there is one. Our approach finds
fact, task, and method LMs in a single generation process. It
dominates the approach on HTN LMs from the literature,
even when restricted to just task LMs (no other kinds of
LMs could be extracted before). We have shown that the ap-
proach is sound, incomplete, runs in P, and that every com-
plete technique must be NP-hard. We tested our approach on

a widely-used benchmark set and showed that it also finds
more LMs in practice. Though the simple LM count heuris-
tic we used is not competitive with state-of-the-art solving
techniques, we showed that the new LMs bear information
valuable to guide the search.
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