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Abstract

Hierarchical task network (HTN) planning is a model-based
approach to planning. The HTN domain model consists of
tasks and methods to decompose them into subtasks until ob-
taining primitive tasks (actions). There are recent methods
for verifying if a given action sequence is a valid HTN plan.
However, if the plan is invalid, all existing verification meth-
ods only say so without explaining why the plan is invalid.
In the paper, we propose a method that corrects a given ac-
tion sequence to form a valid HTN plan by deleting the min-
imal number of actions. This plan correction explains what
is wrong with a given action sequence concerning the HTN
domain model.

1 Introduction
Hierarchical planning is a popular form of automated plan-
ning (Bercher, Alford, and Höller 2019). It exploits the idea
of identifying functional sequences of actions – sub-plans
– and naming them as specific tasks that these action se-
quences solve. Tasks can further group into more complex
(compound) tasks which define a hierarchy of tasks. In this
hierarchy, each task may have several alternative ways to
be achieved. From the other perspective, the hierarchical
planning domain model specifies tasks and methods to de-
compose these tasks into simpler sub-tasks until obtaining
primitive tasks – actions – that form a plan. This way, a hu-
man user describes control knowledge on achieving a spe-
cific goal (task) as a recipe to decompose the tasks into sim-
pler sub-tasks. This approach speeds-up the planning pro-
cess and gives better control over the plans – sequences of
actions – generated by the planning engine. Thanks to these
properties, hierarchical planning is prevalent in areas such
as robotics (Kaelbling and Lozano-Pérez 2011) and com-
puter games (Hoang, Lee-Urban, and Muñoz-Avila 2005;
Neufeld et al. 2019).

Hierarchical plan verification checks that the action se-
quence is causally consistent, and it can be obtained by de-
composition of any (or a specific) task. Recently, two meth-
ods have been proposed to verify if a given action sequence
is a valid HTN plan. One method is based on translation to
a Boolean satisfiability problem (Behnke, Höller, and Bi-
undo 2017) and the other one uses parsing of grammars
(Barták, Maillard, and Cardoso 2018; Barták et al. 2020;
Barták et al. 2021). Using the parsing approach seems

highly canonical given the close relationship between HTN
models and formal grammars (Erol, Hendler, and Nau 1996;
Höller et al. 2014; Höller et al. 2016; Barták and Maillard
2017). Grammar parsing is also a popular method in the hi-
erarchical plan and task recognition problems (Vilain 1990;
Avrahami-Zilberbrand and Kaminka 2005; Geib and Gold-
man 2009; Kabanza et al. 2013; Mirsky, Gal, and Shieber
2017). For valid plans, the verification techniques return
the decomposition tree to justify the correctness of the plan.
However, when the plan is not valid, all existing verifica-
tion methods only say so but do not provide any additional
information about the source of invalidity. One recent ap-
proach for dealing with unsuccessful plan verification pro-
poses model changes that will make the given input plan a
valid solution (Lin and Bercher 2021a; 2021b) as a basis for
counter-factual explanations (Ginsberg 1986). These works
are however pure complexity investigations.

In this paper, we address the issue with invalid HTN plans
by studying how to correct a given action sequence to form
a valid HTN plan. Specifically, we show how the correc-
tion can be done by deleting the minimal number of actions
from the input action sequence. This is motivated by the fol-
lowing two scenarios. Firstly, as similarly suggested by Lin
and Bercher (2021a) (they change the model’s task hierar-
chy, whereas we change the plan) the necessary changes to
the flawed input plan can be exploited as a basis for counter-
factual explanations pointing out to the user why the plan
is not a solution. Identifying the minimal number of ac-
tions that need to be deleted ensure a short and thus hope-
fully more comprehensible explanation. The second moti-
vation comes from the area of goal recognition. Assume
that we observe several agents’ actions, we have a model of
one agent’s behavior, and we want to find out what task that
agent is achieving. In addition to its goal-leading behavior,
the agent also performs diversion actions (not coming from
any task) putting the observer off track. Thus, we have to
discern the actual goal-leading part of the plan from those
diversion actions. Eliminating irrelevant actions to obtain a
valid sub-plan according to the HTN model solves the above
task-detection problem. We propose a technique based on
parsing to select the longest valid hierarchical plan from a
given sequence of actions. We furthermore prove that both
the pursued form of plan verification and the proposed ac-
tion deletion-minimizing plan correction is NP-complete.



2 Background on Classical and HTN
Planning

Hierarchical planning has a long tradition in AI (Tate 1977;
Wilkins 1984). The most widely used approach is known as
Hierarchical Task Network (HTN) Planning (Erol, Hendler,
and Nau 1996). In this paper, we use a later formaliza-
tion (Barták, Maillard, and Cardoso 2018; Barták et al.
2020) that is closer to a grammar view. For the description of
valid action sequences, that is, the causal precondition/effect
relations between actions, it uses the classical STRIPS ap-
proach (Fikes and Nilsson 1971). The specific plan struc-
tures are then expressed via task decomposition methods. In
this section, we recall the formal definitions.

2.1 Sequential Planning
Sequential planning deals with sequences of actions trans-
ferring the world from a given initial state to a state satisfy-
ing certain goal conditions. In the classical STRIPS formu-
lation (Fikes and Nilsson 1971), world states are modeled as
sets of propositions that are true in those states. Let P be a
set of all propositions modeling properties of world states.
A state is modeled by a set of propositions S ✓ P that are
true in that state (every other proposition is false). We use
the notation S+ = S to describe the propositions valid in S
and S� = P \ S to describe the propositions not valid in S.

Actions are used to describe state transitions under the
control of an agent. Let A be a set of actions. Each
action a 2 A is modeled by three sets of propositions
(B+

a , A+
a , A

�
a ), where B+

a , A+
a , A

�
a ✓ P,A+

a \ A�
a = ;.

The set B+
a describes positive preconditions of action a, that

is, propositions that must be true right before the action a.
Action a is applicable to state S if and only if B+

a ✓ S. Sets
A+

a and A�
a describe positive and negative effects of action

a, that is, propositions that will become true or false in the
state right after executing the action a. If an action a is ap-
plicable to state S then the state right after the action a is
�(S, a) = (S \ A�

a ) [ A+
a , and �(S, a) is undefined other-

wise. An action sequence a1, . . . , an is causally consistent
with respect to the set of propositions S0 (called an initial
state), if it holds B+

a1
✓ S0 and for each i 2 {2, . . . , n}

B+
ai
✓ �(...�(�(S0, a1), a2), ..., ai�1). In other words, the

precondition of each action is satisfied in the state right be-
fore the action.

2.2 Hierarchical Task Networks
Hierarchical planning puts an additional structure to plans.
Specifically, actions in the plan are obtained from higher-
level (compound) tasks that decompose to sub-tasks until
primitive tasks – actions – are obtained. This way, the
tasks provide recipes to achieve particular goals. Our for-
malization (Barták, Maillard, and Cardoso 2018; Barták et
al. 2020) is loosely based on the original Hierarchical Task
Networks formalization (Erol, Hendler, and Nau 1996) of
hierarchical planning.

The recipe for a compound task T is represented as a task
network – a set of sub-tasks to solve the task T together
with the set of constraints between the sub-tasks. Let T be
a compound task and ({T1, ..., Tk}, C) be a task network,

where C are its constraints (defined later). We can describe
the decomposition method as a derivation (rewriting) rule
saying that T decomposes to sub-tasks T1, ..., Tk:

T ! T1, ..., Tk [C]

We should highlight that opposite to rewriting rules in for-
mal grammars, the order of tasks on the right side of the
rule does not matter here. The sub-task order is described
explicitly by the precedence constraints in C (see below).
Note also that a compound task may have several decompo-
sition methods describing alternative ways to fulfill it. In
fact, choosing “the right” method is where the computa-
tional complexity comes in within hierarchical plan gener-
ation (Erol, Hendler, and Nau 1996; Alford, Bercher, and
Aha 2015a; Alford, Bercher, and Aha 2015b) or hierar-
chical plan verification (Behnke, Höller, and Biundo 2015;
Bercher et al. 2016), similar to choosing the right action in
classical planning. The task for which no decomposition
method exists is called a primitive task. It corresponds to
an action in sequential planning (it has preconditions and
effects). The compound tasks correspond to non-terminal
symbols and the primitive tasks to terminal symbols in the
formal grammar terminology.

Let S0 be an initial state and G be a goal task. By solv-
ing the HTN planning problem given by S0 and G we mean
decomposing the goal task G via decomposition methods
until a set of primitive tasks – actions – is obtained, and
linearly ordering these actions to satisfy all the constraints
obtained during decomposition and to be a causally consis-
tent with respect to the initial state S0. Let ai be the i-th
action in this action sequence. The state right after the ac-
tion ai is denoted Si. We denote the set of actions to which
a task T decomposes as act(T ). If U is a set of tasks, we
define act(U) =

S
T2U act(T ). The index of the first ac-

tion in the decomposition of T is denoted start(T ), that is,
start(T ) = minai2act(T ) (i). Similarly, end(T ) means the
index of the last action in the decomposition of T , that is,
end(T ) = maxai2act(T ) (i).

Let us now formalize the constraints C used in the set
of available decomposition methods M . They are the ones
available in the original HTN formalization (Erol, Hendler,
and Nau 1996), but have been re-introduced in other hier-
archical planning formalizations as well (Xiao et al. 2017).
The constraints can be of the following three types, where
the first is also known as an ordering constraint and the lat-
ter two are essentially state constraints:
• t1 � t2: a precedence (also called ordering) constraint

meaning that in every plan the last action obtained from
task t1 is before the first action obtained from task t2,
end(t1) < start(t2),

• before(U, p): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p 2 Sstart(U)�1,

• between(U, V, p): a prevailing constraint meaning that in
every plan the proposition p holds in all the states between
the last action obtained from tasks U and the first action
obtained from tasks V . That is, for all i: end(U)  i <
start(V ) holds p 2 Si.



deliver ! t1:unload, t2:move, t3:move, t4:load

[ t2 � t4, t4 � t3, t3 � t1,
before({t2},empty),
between({t4},{t1}, loaded) ]

move load move unload

empty loaded

Figure 1: The figure shows (on top) a decomposition method for the
task deliver. The order of sub-tasks on the right hand side of the
method is irrelevant, as it might even be different from the imposed
order in the constraints. At the bottom we depict the recipe de-
scribed by the method graphically. Tasks are names without boxes,
while the state constraints are depicted by boxes. The tasks they
refer to are indicated with arrows. Example taken from (Barták et
al. 2020)

The precedence constraints are used to define a specific or-
der of sub-tasks. As an example, consider the deliver task.
A decomposition method for it is depicted in Fig. 1. The
task deliver may decompose to four sub-tasks: we first move
the robot to a location, where we load an item to the robot,
then the robot moves to the destination, where we unload the
item. The precondition constraints are used in the same way
as for actions. For example, before the robot starts moving
to the place where the item is located, we may require the
robot to be empty (note that this is not a precondition of task
move, but it may be required for the move task used in the
context of item delivery). The prevailing constraint is used
to maintain some property between sub-tasks. For exam-
ple, we may require the item to stay in the robot all the time
between load and unload sub-tasks. Though the prevailing
constraint was part of the original definition of HTN plan-
ning (Erol, Hendler, and Nau 1996), we are not aware of any
HTN planning system that supports this constraint. How-
ever, they are used in more practical scenarios, for instance,
for the generation of abstract solutions (de Silva, Padgham,
and Sardina 2019). We regard this constraint as practically
very useful, as demonstrated in the example above. Task in-
terleaving allows the robot to do other tasks when doing the
delivery task. For example, when going to the item’s desti-
nation, the robot may visit another location, take a sample
there, and then deliver the sample after delivering the item.
Hence actions for the delivery task and for the take-sample
task interleave in the final plan.

The HTN plan verification problem is formulated as fol-
lows: given a sequence of actions a1, a2, . . . , an, and an ini-
tial state S0, is the sequence of actions causally consistent
with respect to S0 and obtained from some compound task?
Specifically, the action sequence must be obtained by de-
composing any task and all its sub-tasks (no extra action is
allowed in the plan). The action sequence must also satisfy
all the constraints C from methods used in the decomposi-
tion. In some formulations, the goal task is given, and the
action sequence must then be generated from that task.

3 HTN Plan Corrections
As of today, there exist two approaches for HTN plan veri-
fication. The system by Behnke, Höller, and Biundo (2017)
translates the verification problem to a Boolean satisfiability
problem. It does not support the before and between con-
straints1 and requires the goal task to be given at input as
well (because they verify whether the input plan is a solution
to a given problem, rather than verifying whether it can be
decomposed from some compound task). The parsing-based
system by Barták, Maillard, and Cardoso (2018) supports all
of the HTN constraints previously introduced. In the case of
invalid plans, both approaches only report invalidity but no
further details.

In the paper, we focus on what should be done with an
invalid hierarchical plan. The core motivation is helping the
user correct the plan by identifying and removing flaws in
the plan. Let us first look at possible flaws in the hierarchical
plan. Some action may miss its precondition. Missing pre-
condition is the core type of flaw in classical planning (and
easy to identify). However, in HTN planning, such an action
may not be part of any task decomposition, so the missing
precondition is not the problem. The presence of the action
in the action sequence is the problem. Other flaws may hap-
pen due to the hierarchical structure. Some tasks may not
be achievable via a specific method because some action is
missing in the action sequence or some method constraint is
violated. However, it is not clear if that task is needed as
it may not be used in the root task spanning over the whole
action sequence. Hence, rather than finding the violated con-
straints, we suggest telling the user how to modify the action
sequence to achieve a valid hierarchical plan. There are ba-
sically two operations for the action sequence that cover all
possible plan modifications – action deletion and action ad-
dition. Note that we can use deletion and addition operations
also to change the order of actions. Recall that we are given
a sequence of actions and an initial state, so if the action
sequence is not a valid plan, we are looking for the closest
action sequence, that is. The distance between action se-
quences can be defined as the minimal number of addition
and deletion operations to transform one action sequence to
the other one (note that such transformation is symmetrical).
Hence, we want to modify the given action sequence as lit-
tle as possible to get a valid action sequence. This approach
seems like a reasonable suggestion in plan verification. If
the action sequence is valid, then no modification is sug-
gested. If the action sequence is invalid, then a minimal
number of modifications are suggested to make the action
sequence valid.

The above concept of plan modification can also be used
in the task of the hierarchical plan and goal recognition
(Höller et al. 2018). In this task, we observe actions, and
we are trying to find what task is being achieved by these
actions. We may observe actions not related to the task, so
these actions should be deleted. We may miss an observation
of some action (or that action has not yet been performed),
so we need to add that action. Alternatively, we observed
an action incorrectly, and we need to substitute it with the

1The before constraints can be compiled away.



correct action. This example illustrates that the concept of
modifying an action sequence by action deletion and addi-
tion is generally helpful.

Action addition can be seen as a form of planning – what
actions need to be added to form a valid plan. Hence, the
plan correction problem would be undecidable if action ad-
dition is allowed. In this paper, we focus on modifying
plans by action deletion only. This decision is motivated
by assuming a complete action sequence that is not a hi-
erarchical plan. We are looking for the largest (not neces-
sarily contiguous) sub-sequence of actions that is a valid
hierarchical plan. In other words, we want to delete the
minimal number of actions from a given action sequence to
obtain a valid plan. In terms of task recognition, we are
looking for the task that spans over the largest number of
observed actions. We formulate the problem of HTN plan
correction by action deletion as follows: given a sequence
of actions a1, a2, . . . , an and an initial state S0, what is
the largest (even non-contiguous) sub-sequence of actions
causally consistent with respect to S0 and obtained from
some compound task? Notice that the HTN plan correc-
tion problem includes the HTN plan verification problem. If
the plan is correct, then the correction algorithm returns that
plan as this is the largest sub-sequence of actions that forms
a valid plan. Note also, that the input action sequence may
not be a plan at all as some actions’ preconditions might be
violated (the action sequence is not causally consistent with
respect to S0).

Although we are already given a sequence of actions to
start with, it turns out that finding a maximally long sub-plan
is still NP-complete. Before we show this, we will show that
even just checking whether a given action sequence is a hier-
archical plan is NP-complete. For this, we essentially have
to show two things, namely that (1) the plan is executable
and that (2) the plan can be obtained by some of the com-
pound tasks. This is a variant of plan verification that was
introduced by Barták, Maillard, and Cardoso (2018) and dif-
fers from the standard HTN plan verification as defined by
Behnke, Höller, and Biundo (2015), in that the latter does
not admit plans to be derived from any compound task in
the domain, but from the initial task network of the prob-
lem only. Standard plan verification was proved to be NP-
complete, but the hardness of the variant used here was still
unknown. The hardness of our verification problem does
not follow from the hardness of standard plan verification,
although both are closely related. The hardness does, how-
ever, follow directly from the proof of one of the theorems
by Behnke, Höller, and Biundo that was used as a basis to
prove NP-hardness of plan verification in the absence of
action preconditions or effects. We thus state this corollary
and briefly explain why it holds.
Corollary 1 (Plan Verification Complexity). Given an HTN
domain model, an action sequence ~a = a1, . . . , an, and an
initial state S0, it is NP-complete to decide whether ~a is a
hierarchical plan wrt. S0 (i.e., deciding whether there ex-
ists a compound task in the model that decomposes into a
task network that admits ~a as executable linearization) if
the constraint sets only contain precedence constraints, and
NP-hard otherwise.

Proof. Membership: NP membership follows from the fact
that standard plan verification as defined by Behnke, Höller,
and Biundo is a special case of our plan verification vari-
ant (provided that the only constraints are precedence con-
straints, which correspond to ordering constraints in their
formalism), as they have to verify that the input plan can
be obtained by one dedicated compound task (the initial
compound task), whereas we return true when there exists
any. We can thus guess a compound task (or simply try all,
as there are only linearly many) from the domain and test
whether it can be decomposed into ~a using the technique by
Behnke, Höller, and Biundo (2015) (cf. their Thm. 1). Re-
turn yes or no accordingly.

Hardness: Hardness follows directly from the proof of
Thm. 2 by Behnke, Höller, and Biundo (2015). That the-
orem states the NP-hardness of VERIFYSEQ (Def. 12), the
problem of determining whether for a given action sequence
~a there exists a solution task network tnS , such that ~a is
a linearization of tnS . Their proof reduces from the NP-
complete Vertex Cover (Karp 1972). In the planning prob-
lem they construct, the only possibility of obtaining the ac-
tion sequence ~a is from their initial task tI . In other words,
given their planning domain, the only possible task that al-
lows to obtain ~a is exactly the initial task tI of their con-
struction. Thus, this compound task is the only one allowing
to generate ~a thus showing the claim.

Knowing the complexity of our variant of the HTN verifi-
cation problem is not just interesting from a theoretical point
of view, but it also allows us to infer the complexity of the
optimization problem we are solving in this paper:

Theorem 1 (Plan Correction Complexity). Given an HTN
domain model, an action sequence ~a, an initial state S0, and
a natural number k > 0, the problem of deciding whether
k or fewer actions can be deleted from ~a, such that the re-
sulting sequence is a hierarchical plan, is NP-complete if
the constraint sets only contain precedence constraints, and
NP-hard otherwise.

Proof. Membership: We first guess the number of actions k0
we delete, 1  k0  k. Then guess k0 numbers (positions in
the action sequence) between 1 and n = |~a|. Note that al-
though the input number k can be encoded logarithmically,
we are not in risk of incurring an exponential runtime in-
crease, since k can be bounded by n, the size of ~a, whereas
the entire sequence ~a is given in the input and thus linear
in size. Delete the respective actions from ~a obtaining the
sequence ~a0 of length n � k0. Now check whether ~a0 is a
hierarchical plan, which is in NP if there are no state con-
straints (Cor. 1). Return yes if and only if the answer is yes.

Hardness: We reduce from our verification problem,
which is NP-hard (Cor. 1). Thus, let ~a = a1, . . . , an
be given, and the question (we reduce from) is whether ~a
is executable in S0 and can be obtained from some com-
pound task. We reduce this to our problem by first as-
suming the exact same HTN domain, but we introduce one
new action an+1 without preconditions or effects that is
not contained in any method. We construct the sequence



~a0 = a1, . . . , an, an+1 and ask with k = 1 whether there ex-
ists a sub sequence of ~a0 with k or less actions deleted from
it, such that the resulting sequence is a hierarchical plan.
Since an+1 is not contained in any method, we know that ~a0
cannot be a hierarchical plan, so we must delete at least one
action, which must be an+1. Thus, the answer to the con-
structed problem is yes if and only if ~a was a hierarchical
plan.

Note that we expect that the problem will remain in NP
if there are state constraints. The proof would be however
overly technical (since the inheritance of all constraints had
to be handled correctly), which will remain future work.

NP-completeness in the absence of state constraints was
expected given that correcting a plan essentially contains
verifying the new plan, and given that many variants of HTN
change requests were shown to be NP-complete (Behnke et
al. 2016).

4 Correction Algorithm
We shall now describe a novel algorithm that deals with
invalid HTN plans and corrects them by deleting superflu-
ous actions. What we do can be regarded as plan repair.
There exist approaches for repairing HTN plans, but they
do so because of an unexpected execution error, that is, due
to an exogenous change to the current world state “outside
of the model” (Warfield et al. 2007; Höller et al. 2020b;
Goldman, Kuter, and Freedman 2020). This view poses dif-
ferent constraints, such as starting with a plan that was a so-
lution in the first place, maintaining the actions already exe-
cuted, and repairing the rest of the plan to fulfill the original
goal task. Sometimes the repaired plans do not even need
to be hierarchical plans (that is, they do not always have to
lie within the decomposition hierarchy). Thus, none of these
approaches is suited for our purpose, and we talk about plan
correction rather than plan repair.

Our approach finds a minimal set of actions deleted from
a given action sequence to obtain a valid hierarchical plan.
We will base the algorithm on the parsing technique derived
from the parsing-based validator (Barták et al. 2020) for the
following reasons. It is currently the only technique that sup-
ports all constraints in the HTN model, and it uses a greedy
approach that finds all tasks that decompose to some actions
in the input action sequence. We need to find even more
such tasks during plan correction as violations of some state
constraints can be ignored if the constraints can be satisfied
by deleting some actions.

The parsing-based plan validator works as follows. It first
checks the causal consistency of the given action sequence.
If it is inconsistent, then the plan is invalid. If the action se-
quence is causally consistent, the algorithm attempts to find
a task that decomposes to the action sequence. It starts with
a set Tasks of primitive tasks – actions from the input ac-
tion sequence. Then it finds a method to compose a new
task. Specifically, if there is a method T ! T1, ..., Tk [C],
such that all tasks Ti are in the set Tasks and all the con-
straints C are satisfied, the task T is added to the set Tasks .
This process is repeated until a task spanning over the whole

action sequence is found, then the plan is valid, or no new
task is introduced, then the plan is invalid.

When action deletion is allowed in the action sequence,
we need the following extensions of the above parsing ap-
proach. First, when checking causal consistency and some
action precondition is not satisfied, we find a preceding sup-
port action providing the precondition and delete all actions
threatening this causal link (Weld 1994). Let p 2 B+

ai
be

a precondition of action ai. We need to find a support for
this precondition, which is either some action aj , such that
j < i ^ p 2 A+

ai
, or the initial state, if p 2 S0 (then j = 0).

Moreover, all actions ak such that j < k < i ^ p 2 A�
ai

must be deleted to ensure that the causal link between aj (or
S0) and ai is not broken. We start with the support closest
to ai and if this support cannot be used (for example, be-
cause it deletes another precondition of the action) we look
for another support earlier in the plan. To find supports we
introduce a set called timeline that describes how actions in
the plan modify a given proposition p:

tln(p) = {(+i)|p 2 A+
ai
} [ {(�i)|p 2 A�

ai
} [ {0|p 2 S0}

Basically, the timeline is a set of indexes of actions that
change the validity of the proposition. Figure 2 gives the
timelines for a simple package delivery plan. a, b, c are pos-
sible locations, and p, q are packages.

In the algorithm’s initial stage, we generate primitive
tasks for actions in the input action sequence and en-
sure that each such primitive task has supports for all
its preconditions. Each task T is described as a 5-tuple
(T, beg, end, idx, del, sup), where:
• idx = indexes of actions to which the task T decomposes,
• beg = index of the first action to which T decomposes,
• end = index of the last action to which T decomposes,
• del = action indexes to be deleted to decompose T ,
• sup = set of supports; each support is a pair (tln, j),

where j 2 tln is an index of an action providing some
condition of the task (if we have the timeline, we do not
need the proposition p anymore) and that action is not in-
cluded in the task decomposition (in idx).

Alg. 1 shows the initialization stage that converts the action
sequence to a set of primitive tasks that will later be merged
to compound tasks via methods. For each action, the al-
gorithm finds a set of supports and a set of actions to be

timeline Init move1(a,b) load2(b,p) load3(b,q) move4(b,c) move5(c,a) unload6(c,p)

empty 0 -2 -3 +6

loaded(p) +2 -6

loaded(q) +3

on(b,p) 0 -2

on(c,p) +6

on(b,q) 0 -3

at(a) 0 -1 +5

at(b) +1 -4

at(c) +4 -5

Figure 2: Example of timelines describing effects of actions.



Algorithm 1 Initialization of primitive tasks
Input: initial state S0 and action sequence ~a =

{a1, . . . , an}
Output: set of primitive tasks and their timelines
forall p 2 P do
tln(p) {i | p 2 A+

ai
, ai 2 ~a} [ {(�i) | p 2 A�

ai
, ai 2

A} [ {0 | p 2 S0}
Tasks  ;
forall ai 2 ~a do
idx {i}, beg  i, end i, del ;, sup ;
check  {tln(p) | p 2 B+

ai
} // support is

needed for these preconditions
for j = i� 1 downto 1 do

if 9tln 2 check, s.t. (�j) 2 tln then
// action aj deletes condition
del del [ {j}

else
forall tln 2 check, s.t. j 2 tln do
// action aj provides condition
sup sup [ {(tln, j)}
check  check \ {tln}

if {tln | tln 2 check, 0 62 tln} = ; then
// remaining preconditions are
supported by the initial state
Tasks  Tasks [ {(ai, beg, end, idx, del, sup)}

return Tasks

deleted as these actions break the causal links in supports. If
no support is found for action, this action is not assumed (it
is not used to compose tasks). Note that not every primitive
task can actually be used in the plan as it is not checked yet
if its supports are also supported. Action inclusion will be
decided in the second stage of the algorithm, where prim-
itive tasks will be merged to compound tasks via methods.
Figure 3 shows how the primitive tasks look like after the
initialization stage.

As mentioned above, the parsing-based approach to hier-
archical plan validation progressively groups sub-tasks via
methods to get compound tasks until a task spanning over
all primitive tasks – actions – is found. We will now de-
scribe this grouping step for a decomposition method T !
T1, . . . , Tk [C], where the sub-tasks T1, . . . , Tk were al-
ready obtained, that is, (Ti, begi, endi, idxi, deli, supi) 2
Tasks . Each sub-task Ti describes over which actions it
spans (idxi) and which actions must be deleted (deli) to
make the sub-task decomposable to actions in the plan. To
obtain a proper hierarchy, sub-tasks must decompose to dis-
joint sets of actions (8i 6= j : idxi \ idxj = ;) and deleted
actions cannot be part of the task (

S
i idxi \

S
i deli = ;).

The method constraints are checked as follows. The prece-
dence constraints are not influenced by action deletion and
they can be checked immediately. The before constraints
behave identically to preconditions of actions, so they are
handled similarly to action preconditions. The between con-
straint requires some proposition to be true in all states
between two actions ai1 and ai2 (these actions are defined by

Algorithm 2 Task composition
Input: A method T ! T1, . . . , Tk [C] 2 M

with [C] = [Prec,Before,Between], where
(Ti, begi, endi, idxi, deli, supi) 2 Tasks

Output: ; if task T cannot be decomposed, or a new task
otherwise.

if 9i 6= j, s.t. idxi \ idxj 6= ; then return ;
if 9(i, j) 2 Prec, s.t. begj  endi then return ;
idx  

S
i idxi, beg  min (idx), end  max (idx),

del 
S

i deli
check  {(tln, j) | (tln, j) 2

S
i supi,

j /2 idx} // supports to be checked

forall (U, p) 2 Before // find initial support
for before conditions do
for j = mini2U (begi)� 1 downto 1 do

if (�j) 2 tln(p) then
// action aj deletes condition
del del [ {j}

else if j 2 tln(p) then
// action aj provides condition
check  check [ {(tln(p), j) | j /2 idx}
continue with next before condition

if 0 /2 tln(p) then return ; // before condition
cannot be satisfied

forall (U, V, p) 2 Between // find initial
support for between conditions do
st maxi2U (endi)
for j = mini2V (begi)� 1 downto 1 do

if (�j) 2 tln(p) then
// action aj deletes condition
del del [ {j}

else if j 2 tln(p) ^ j  st then
// action aj provides condition
check  check [ {(tln(p), j) | j /2 idx}
continue with next between condition.

if 0 /2 tln(p) then return ; // between condition
cannot be satisfied

sup  ; // update all supports so no
support is among deleted actions

for j = n downto 1// n is the number of
actions in the input plan do
if j 2 del then continue
if 9(tln, i) 2 check, s.t. j < i ^ (�j) 2 tln then
// action aj deletes condition
del del [ {j}

else
forall (tln, i) 2 check, s.t. j  i, j 2 tln do
// action aj provides condition
sup sup [ {(tln, j) | j /2 idx}
check  check \ {(tln, i)}

if idx \ del 6= ; then return ;
if {(tln, i) | (tln, i) 2 check, 0 /2 tln} = ; then

return (T, beg, end, idx, del, sup)
else return ;



two sets U and V of tasks). Hence, the proposition must
be true in the state right after action ai1 , which can again
be handled similarly to action preconditions. If some action
between ai1 and ai2 violates (deletes) the proposition, this
action must be deleted (cannot be part of a plan for the task).
All these state-based constraints are handled using the sets
of supports as described above.

As the supports are initially checked for each constraint
independently, and there are also supports connected to each
sub-task, we need to update all the supports. The reason is
that a particular action can be a support in one constraint
while deleted to satisfy another constraint. This update is
realized by going right to left in the action sequence, and
if some support action is deleted, then another support is
looked for in the corresponding timeline. If no support is
found, then the task cannot be accepted as some state con-
straint is violated, and this violation cannot be corrected by
action deletion. Finally, note that if some support is part of
the task, this support is granted (the action providing the sup-
port cannot be deleted), so the support can be omitted from
further checks. The above process is described in Alg. 2.

When composing a new task, only conflicting actions are
deleted to ensure that the task can decompose to some subset
of actions from the input action sequence. This minimizes
the number of action deletions. The compound task can be
assumed in the plan only if all its supports are included.

Suppose we found a compound task T , whose set of sup-
ports sup is empty, or all current supports can be substituted
by other actions from the task or by the initial state. In that
case, we have a root task that decomposes to a subset of
actions from the input plan (identified by the set idx), and
this subset forms a valid plan. This property is checked by
Alg. 3. It may happen that idx [ del 6= {1, . . . , n} so there
are still some actions not covered by the task and not re-
quired to be deleted. These actions can be omitted from the
action sequence, and we still get a valid plan as these actions
do not support any state-based constraint from the task. To
correct the plan optimally, we are looking for a root task with
the largest set idx. There might be more such tasks and the
proposed technique finds them all thanks to its greedy char-
acter. Alg. 4 describes how to greedily generate all tasks un-
til the root task with the minimal number of deleted actions
is found.

Figure 3 shows a decomposition tree with the task
deliver(b, c, p). Preconditions of all involved actions (and
before and between constraints) are satisfied either by ac-
tions in the task or by the initial state. Hence the support set
is empty. Action move5(c, a) needs to be deleted because
it violates the precondition at(c) of action unload6(c, p).
Action load3(b, q) is not included, but it can be deleted as
it does not interfere with the task’s actions. Hence task
deliver(b, c, p) is a possible root task.
Theorem 2 (Soundness and completeness). Alg. 4 is sound
and complete in the sense of returning a task that decom-
poses to a valid plan that is obtained from the given action
sequence by a minimal number (� 0) of action deletions.

Proof. First, each action in the primitive task is executable
if its supports are present in the plan and no action that

Algorithm 3 Support check
Input: set sup of supports, set idx of action indexes from

the task
Output: True if supports can be found among actions in

the task or in the initial state; False otherwise
forall (tln, k) 2 sup do

for j = k � 1 downto 1 do
if j 2 tln ^ j 2 idx then

continue with next timeline.
if (�j) 2 tln ^ j 2 idx then

return False
if 0 /2 tln then

return False
return True

Algorithm 4 Plan repair
Input: initial state S0, action sequence ~a = {a1, . . . , an},

and an HTN domain model
Output: task T that decomposes to the largest sub-

sequence of actions forming a valid plan or Fail
if no such task exists

New  Initialization(S0,~a) // Alg.1
Tasks  ;, maxd  n
while New 6= ; do
Tasks  Tasks [New, New  ;
forall methods T ! T1, . . . , Tk [C], s.t.
(Ti, begi, endi, idxi, deli, supi) 2 Tasks do
Tk  Compose(T ! T1, . . . , Tk [C]) // Alg.2
if Tk = (T, beg, end, idx, del, sup) s.t. |del| 
maxd ^ Tk /2 Tasks) then
New  New [ {Tk}
if SupportCheck(sup, idx) then
// root task; Alg.3
maxd  min (maxd, n� |idx|)

if maxd < n then
return Tk = (T, beg, end, idx, del, sup) 2 Tasks , s.t.
SupportCheck(sup, idx) ^ n� |idx| = maxd

else return Fail

breaks the causal link from the support is present. This prop-
erty is easy to verify when the initialization stage introduces
the primitive tasks. If a compound task includes a subtask
whose supports were deleted during the composition, the al-
gorithm finds other supports. If no such support exists, then
the compound task cannot be accepted. For each root task,
either the support set is empty, or the supports can be sub-
stituted by supports from the task or the initial state. This
property justifies that the set of actions over which the root
task spans is causally consistent.

The root task decomposes to actions described by indexes
in its idx set as the task was obtained by the reverse ap-
plication of the decomposition methods. Moreover, all the
method constraints are satisfied. The precedence constraints
were checked during task composition (and they are not af-
fected by action deletions). The before and between con-
straints were satisfied using the same mechanism as for ac-
tion preconditions described above. Hence, the root task de-



move1(a,b) load2(b,p) load3(b,q) move4(b,c) move5(c,a) unload6(c,p)
idx: {6}
beg: 6
end: 6
del: {5}
sup: {(tln(loaded(p)),2),

(tln(at(c)),4)}

idx: {1}
beg: 1
end: 1
del: {}
sup: {}

idx: {2}
beg: 2
end: 2
del: {}
sup: {(tln(at(b)),1)}

idx: {3}
beg: 3
end: 3
del: {2}
sup: {(tln(at(b)),1)}

idx: {4}
beg: 4
end: 4
del: {}
sup: {(tln(at(b)),1)}

idx: {5}
beg: 5
end: 5
del: {}
sup: {(tln(at(c)),4)}

at(a)

at(b)
on(b,p)
empty

at(b)
on(b,q)
empty at(b) at(c)

at(c)
loaded(p)

- at(a)
+ at(b)

- at(b)
+ at(c)

- at(c)
+ at(a)

- on(b,p)
- empty

+ loaded(p)

- on(b,q)
- empty

+ loaded(q)

+ empty
+ on(c,p)

- loaded(p)

deliver(b,c,p) idx: {1,2,4,6}
beg: 1
end: 6
del: {5}
sup: {}

Figure 3: Decomposition tree. Action preconditions and effects are shown above the actions; Task data structure is below the actions.

composes to a sub-sequence of actions from the input action
sequence, and this sub-sequence forms a valid plan. Hence
the algorithm is sound.

The number of different tasks is finite (and this is true
even if recursive methods are present) as the input action
sequence’s length is finite. Hence the algorithm must finish
sometime as only new tasks are added during parsing. The
algorithm also remembers the minimal number of deleted
actions for all root tasks that decompose to a valid sub-plan
of the input plan, and it returns one of these tasks. It may,
however, happen that no root task is found. Because of the
algorithm’s greedy character, no sub-sequence of the input
plan forms a valid HTN plan.

5 Empirical Evaluation
As of now, there exists no other technique that can deal with
failed plan verification. To evaluate our approach, we empir-
ically compare the novel algorithm with the currently fastest
HTN plan validation algorithm by Barták et al. (2020). We
will call this validation algorithm pure validator, while our
novel technique will be called extended validator. By this
comparison, we shall see the new method’s overhead over
the technique that only identifies invalid plans but does not
correct them. When the plan is valid, both algorithms give
the same answer. Otherwise, the extended validator will pro-
vide the task that decomposes to the longest possible subset
of actions as opposed to the pure validator, which simply
states that “Plan is invalid”.

All the experiments run under 64-bit Windows 10 on In-
tel Core i7 7700 processor and 16GB RAM. Both algo-
rithms were implemented in C# 7 (from .NET 4.7), and they
use the new PDDL-like representation HDDL (Höller et al.
2020a) that is also used by the PANDA planners and veri-
fier (Behnke, Höller, and Biundo 2017), as well as for the In-
ternational Planning Competition (IPC 2020) on HTN plan-
ning (Behnke et al. 2019). The code is available at https:
//github.com/siprog/PlanCorrectionKR2021. We compared
both algorithms on four different domains: PCP, Transport,
Kitchen, and Satellite. In each domain, we tested ten valid
plans generated by the PANDA progression search and SAT-
based planners. All of these plans were also used previously

to compare pure validation techniques (Barták et al. 2020).
We created five invalid plans for each domain by manually
adding 1 to 5 additional actions that must be deleted to ob-
tain a valid plan. In total, we used 60 problem instances.

The plan length for valid plans ranges from 2 to 49 actions
(PCP 10-30, Transport 2-10, Kitchen 16-49, and Satellite
2-15). As the results in Fig. 4a show, both algorithms are
comparable in speed, and the runtimes are very close to each
other. This result was expected as no actions need to be
deleted. This experiment also shows that the overhead to
maintain timelines and supports is not significant. For the
PCP domain, neither algorithm solved one of the instances
within the given time limit (runtime is 300s in the graph).

For invalid instances, the plan length ranged from 15 to
53 actions (PCP: 27-31, Transport: 15-19, Kitchen: 49-53,
and Satellite: 20-24). We have given both algorithms a time
limit of 300 seconds. There are two main reasons of plan in-
validity. Either the plan is not causally consistent, or no task
decomposes to a given sequence of actions. The PCP and
Transport domains represent the causally inconsistent plans
– at least one action has violated preconditions. The pure
validator identified that the plan is not causally consistent
and stopped without ever trying to build the task structure
on top of the actions. This observation explains runtimes
close to zero as verifying causal consistency requires linear
time with respect to the plan length. Figure 3 gives an exam-
ple of a causally inconsistent action sequence. The extended
validator is able to correct such plans by removing the extra
actions. This approach naturally takes more time as the ex-
tended validator builds the task structure even if the action
sequence is causally inconsistent.

The Satellite and Kitchen domains contain causally con-
sistent plans, but no task decomposes to all actions. As we
can see in Fig. 4b both algorithms have comparable runtimes
there. This result is encouraging, taking into account that the
extended validator also finds a valid sub-plan. This demon-
strates that most information necessary to identify the flaws
is already present in the task descriptions generated by the
original validation algorithm. Moreover, the result confirms
that the overhead to maintain the timelines and supports is
not significant.

https://github.com/siprog/PlanCorrectionKR2021
https://github.com/siprog/PlanCorrectionKR2021


(a) Comparison of runtimes (seconds) as a function of plan length
(valid plans).

(b) Comparison of runtimes (seconds) as a function of the number
of actions to be deleted (invalid plans).

Figure 4: Comparison of runtimes for valid and invalid plans, respectively.

6 Conclusions
We proposed the first approach to correct invalid hierarchi-
cal plans by action deletion, thus dealing with failed plan
verification in HTN planning. We proved that the problem
of finding a corrected plan with the minimal number of dele-
tions is NP-complete (and also that pure HTN verification
is NP-complete) in the absence of state constraints and NP-

hard otherwise, and we proposed a parsing-based algorithm
that finds such a plan efficiently. Empirical comparison with
the fastest HTN plan validator showed that the new method’s
overhead over the pure validation is minimal. Hence, the
new technique can be used for HTN plan validation with the
additional benefit of suggesting how to correct the invalid
plan and explaining the reason for action deletion.
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