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Abstract

Verifying HTN plans is an intractable problem with two exist-
ing approaches to solve the problem. One technique is based
on compilation to SAT. Another method is using parsing,
and it is currently the fastest technique for verifying HTN
plans. In this paper, we propose an extension of the parsing-
based approach to verify totally-ordered HTN plans more ef-
ficiently. This problem is known to be tractable if no state
constraints are included, and we show theoretically and em-
pirically that the modified parsing approach achieves bet-
ter performance than the currently fastest HTN plan verifier
when applied to totally-ordered HTN plans.

Introduction
Plan verification is about finding if a given action sequence
forms a correct plan according to a given planning domain
model. For classical plans, the verification problem consists
of checking if the action sequence is executable starting with
the initial state and checking if the goal condition is satisfied
in the final state (Howey and Long 2003). For hierarchical
plans, plan verification additionally requires that the action
sequence can be obtained by decomposition of some task. A
specific root task, which decomposes to the action sequence,
might also be given to describe the goal task.

There exist two approaches to hierarchical plan verifica-
tion. One uses a translation of the verification problem into a
Boolean satisfiability problem (Behnke, Höller, and Biundo
2017). The second uses parsing and it supports state con-
straints (Barták, Maillard, and Cardoso 2018; Barták et al.
2020). The hierarchical planning domain model can be seen
as a formal grammar (Höller et al. 2014; Höller et al. 2016;
Barták and Maillard 2017) and the plan verification prob-
lem is then similar to checking if a word (action sequence)
belongs to the language generated by the grammar, which
can be done by parsing. Parsing does not require informa-
tion about the goal task – the method finds any task that
decomposes to the action sequence, which makes it appro-
priate also for plan and task recognition (Vilain 1990).

The parsing-based approach seems to be significantly
faster than the SAT-based approach (Barták et al. 2020).
Nevertheless, both approaches struggle from the combinato-
rial explosion and, depending on the domain; they can verify
plans of lengths up to a few dozens of actions. This is not
surprising as the problem of verifying hierarchical plans is

NP-hard (Behnke, Höller, and Biundo 2015; Bercher et al.
2016) and hence computationally expensive. This holds for
general hierarchical plans with task interleaving and the par-
tial order of tasks. However, as can be seen from the Interna-
tional Planning Competition 2020 on HTN planning, many
domain models contain totally-ordered tasks. Further, there
is a significant body of research dedicated to totally-ordered
HTN planning in particular (Olz, Biundo, and Bercher 2021;
Behnke and Speck 2021; Behnke 2021; Lin and Bercher
2021; Schreiber et al. 2019; Behnke, Höller, and Biundo
2018; Alford, Kuter, and Nau 2009; Marthi, Russell, and
Wolfe 2007; Nau et al. 1999). Plan verification for a totally-
ordered problem without state constraints is known to be
tractable (Behnke, Höller, and Biundo 2015). Nevertheless,
no hierarchical plan verifier exploits this theoretical result,
no verifier specializes in exploiting the total order, and no
generalisation to problems with state constraints exists.

We propose an extension of the parsing-based verifica-
tion algorithm (Barták et al. 2020) to work faster for totally-
ordered domain models. While the CYK algorithm (Sakai
1962) for parsing context-free grammars appears to be appli-
cable here at first glance, this is not the case. Totally-ordered
models can contain state constraints, which cannot, to our
current knowledge, be compiled or handled by the CYK
algorithm. Our primary modification is in handling prece-
dence relations in the totally-ordered setting. The extended
algorithm still works for arbitrary partially ordered hier-
archical plans. It detects if the model uses totally-ordered
tasks, and then uses a more strict formulation of precedence
constraints, which decreases the number of generated tasks
significantly. The algorithm works in a bottom-up fashion
starting with a given action sequence ā. It terminates once
a compound task is found that can be decomposed into ā.
Apart from other work on plan verification, our approach
is loosely related to another that aims at computing abstract
plans that are maximally abstract while still allowing to gen-
erate a non-redundant plan (de Silva, Padgham, and Sardina
2019). The proposed algorithm also performs a bottom-up
approach, though it requires a specific decomposition rather
than the entire model.

HTN Plan Verification by Parsing
We use a standard STRIPS formalization (Fikes and Nils-
son 1971). Let P be a set of propositions describing prop-



erties of world states. Then, a world state is modeled as a
set S ⊆ P of propositions that are true in that state (ev-
ery other proposition is false). Each action a is modeled
by three sets of propositions (pre(a), eff+(a), eff−(a)),
where pre(a), eff+(a), eff−(a) ⊆ P and eff+(a) ∩
eff−(a) = ∅. The set pre(a) describes positive precon-
ditions of action a. These propositions must be true right
before the action a. Action a is applicable to state S iff
pre(a) ⊆ S. Sets eff+(a) and eff−(a) describe the posi-
tive and negative effects of action a. These propositions will
become true or false in the state right after executing the ac-
tion a. If an action a is applicable to state S then the state
right after the action a is:

γ(S, a) = (S \ eff−(a)) ∪ eff+(a).

γ(S, a) is undefined if action a is not applicable to state S.
We say that an action sequence (a1, . . . , an) is executable
with respect to a given initial state S0 if the precondition of
each action is satisfied in the state right before it:

pre(ai) ⊆ γ(γ(. . . γ(S0, a1), . . .), ai−1).

Hierarchical Task Network Planning (Erol, Hendler, and
Nau 1996) was proposed as a planning framework that in-
cludes control knowledge as recipes for solving specific
tasks. The recipe is modeled using a task network – a set
of sub-tasks to solve the task and a set (a conjunction) of
constraints between the sub-tasks. Let T be a compound
task and ({T1, ..., Tk}, C) be a task network, where C are
its constraints (see later). We can describe the decomposi-
tion method as a rewriting rule saying that T decomposes to
sub-tasks T1, ..., Tk under the constraints C:

T → T1, ..., Tk [C]

The order of sub-tasks in the rule does not matter (opposite
to rewriting rules in grammars) as the precedence constraints
in C explicitly describe the order. If the tasks T1, ..., Tk
in each method are totally ordered, then we speak about a
totally-ordered HTN model.

HTN planning problems are specified by an initial state S0

and an initial task representing the goal. This goal task needs
to be decomposed via decomposition methods until a set of
primitive tasks – actions – is obtained. These actions must be
totally ordered and satisfy all the constraints obtained during
decompositions. The obtained plan (a1, . . . , an) must be ex-
ecutable with respect to S0. The state right after the action
ai is denoted Si. We denote the set of actions to which a
task T decomposes as act(T ). If U is a set of tasks, we
define act(U) = ∪T∈Uact(T ). The index of the first ac-
tion in the decomposition of T is denoted start(T ), that is,
start(T ) = min{i|ai ∈ act(T )}. Similarly, end(T ) means
the index of the last action in the decomposition of T , that
is, end(T ) = max{i|ai ∈ act(T )}.

The decomposition constraints for a method T →
T1, ..., Tk can be of the following three types, where the first
is also known as an ordering constraint and the latter two are
essentially state constraints (U, V, {t1, t2} ⊆ {T1, ..., Tk}):
• t1 ≺ t2: a precedence constraint meaning that in every

plan the last action obtained from task t1 is before the
first action obtained from task t2, end(t1) < start(t2),

• before(p, U): a precondition constraint meaning that in
every plan the proposition p holds in the state right before
the first action obtained from tasks U , p ∈ Sstart(U)−1,

• between(U, p, V ): a prevailing constraint meaning that in
every plan the proposition p holds in all the states between
the last action obtained from tasks U and the first action
obtained from tasks V ,
∀i ∈ {end(U), . . . , start(V )− 1}, p ∈ Si.

The HTN plan verification problem is formulated as fol-
lows: Given a sequence of actions (a1, a2, . . . , an) and an
initial state S0, is the sequence of actions executable with
respect to S0 and obtained from some compound task?

Algorithm 1 presents the recent parsing-based approach
to HTN plan verification (Barták et al. 2020) extended with
the check of total-order constraints at line 13 (see the next
section). The set ≺ represents the precedence constraints
of the method, bef is the set of before constraints, and
btw is the set of between constraints. Executability of the
action sequence is verified at lines 2-5. The while loop
(lines 7-26) groups actions/tasks into compound tasks by
using the methods from the model until it finds a task T0
such that act(T0) = {a1, a2, . . . , an} (line 26, the plan is
valid) or it constructs all possible tasks that decompose to a
subset of actions in the plan (line 27, the plan is invalid).
The sets act(T ) are represented using Boolean vectors I
(I(j) = 1⇔ aj ∈ act(T )). These vectors are used to check
that each action is generated from one task only (line 19).
Indexes bj and ej for task Tj describe values start(Tj) and
end(Tj) respectively. They are used when checking the de-
composition constraints.

Totally-Ordered HTNs
The parsing-based verification algorithm may generate an
exponential number of pairs (T, act(T )), where T is a task
and act(T ) is a subset of actions from the plan that can be
generated from the task T . This is because actions from dif-
ferent tasks may interleave in the plan, and hence we must
assume subsets act(T ) of actions from the plan when com-
posing the tasks T . There is an exponential number of such
sets with respect to the length of the plan. However, when
the domain model is totally ordered, then the sets act(T )
form contiguous sub-sequences of actions (Figure 1).

Proposition 1. For a totally ordered HTN domain model,
each task decomposes to a contiguous sub-sequence of ac-
tions in the plan.

Proof. Assume a pair of different tasks T and T ′ used in the
decomposition of some goal task Tg to a sequence of actions
such that T and T ′ are not descendants of each other. There
must exists a common ancestor task Ta for tasks T and T ′ in
the decomposition tree and a method Ta → T1, ..., Tk [C]
used for the decomposition. Let the task T be obtained from
the sub-task Ti and T ′ be obtained from the sub-task Tj . As
the domain model is totally-ordered, without loss of gener-
ality, we may assume that Ti ≺ Tj and hence end(Ti) <
start(Tj). As T is a sub-task of Ti, we know end(T ) ≤
end(Ti) and similarly start(Tj) ≤ start(T ′). Together we



get end(T ) < start(T ′). Hence for any pair of non descen-
dant tasks T and T ′, it holds either end(T ) < start(T ′)
or end(T ′) < start(T ), which means that the tasks do not
interleave in the plan.

We can exploit this property when verifying plans for
totally-ordered domain models as follows. Assume a decom-
position method T → T1, ..., Tk [C] in a totally-ordered do-
main model. Then it holds ∀i ∈ {1, . . . , k− 1} : Ti ≺ Ti+1.
We call these precedence constraints direct precedences to
distinguish them from classical precedence relations. Note
that it is easy to detect automatically, if the domain model is
totally ordered, for example, by using a transitive closure of

Data: a plan P = (a1, ..., an), an initial state S0, and
a set of decomposition methods (domain
model); TO = true if the domain is totally
ordered,

Result: true if the plan can be derived from some
compound task, false otherwise

1 Function VERIFYPLAN
2 for i = 1 to n do
3 if ¬(pre(ai) ⊆ Si−1) then
4 return false
5 Si = (Si−1 \ eff−(ai)) ∪ eff+(ai)

6 sp← ∅; new← {(Ai, i, i, Ii) |i ∈ 1..n}
Data: Ai is a primitive task corresponding to

action ai, Ii is a Boolean vector of size n,
such that ∀i ∈ 1..n, Ii(i) = 1,
∀j 6= i, Ii(j) = 0

7 while new 6= ∅ do
8 sp← sp∪new; new← ∅
9 foreach decomposition method R of the form

T0 → T1, ..., Tk [≺,bef,btw] such that
{(Tj , bj , ej , Ij)|j ∈ 1..k} ⊆ sp do

10 if ∃(i, j) ∈ ≺ : ¬(ei < bj) then
11 continue with the next method
12 if TO ∧ ∃i : ¬(ei + 1 = bi+1) then
13 continue with the next method
14 b0 ← min{bj |j ∈ 1..k}
15 e0 ← max{ej |j ∈ 1..k}
16 for i = 1 to n do
17 I0(i)←

∑k
j=1 Ij(i);

18 if I0(i) > 1 then
19 continue with the next method
20 if ∃(p, U) ∈ bef : p 6∈ Smin{bj |j∈U}−1 then
21 continue with the next method
22 if ∃(U, p, V ) ∈ btw ∃i ∈ max{ej |j ∈

U}, . . . ,min{bj |j ∈ V } − 1 : p 6∈ Si then
23 continue with the next method
24 new← new∪{(T0, b0, e0, I0)}
25 if ∀k, I0(k) = 1 then
26 return true

27 return false
Algorithm 1: Parsing-based HTN plan verification

T1 T2 T1 T2

start(T1)
start(T2)

end(T1)
end(T2)

start(T1)
start(T2)

end(T1)
end(T2)

Figure 1: Task interleaving (left) vs. totally ordered (right).

precedence relations in the decomposition methods and ver-
ifying that sub-tasks in the method are totally ordered. The
direct precedence relation Ti ≺ Ti+1 means that the last ac-
tion of task Ti is right before the first action of task Ti+1.
This is a consequence of Proposition 1. Task T decomposes
to a contiguous action sequence P . Each of its sub-tasks Ti
also decomposes to a contiguous action sequence and these
sub-sequences are ordered as end(Ti) < start(Ti+1). To-
gether these sub-sequences must form the sequence P with-
out any gap. Hence, the direct precedence relation imposes
a more strict constraint

end(Ti) + 1 = start(Ti+1). (1)

Note that the above claim also holds in the reverse order.
Suppose we impose the above ordering constraint (1) for di-
rect precedence relations in all decomposition methods. In
that case, the tasks decompose to contiguous sequences of
actions as no action can be inserted between any pair of di-
rectly following tasks.

The extended HTN plan verification algorithm (Algo-
rithm 1) checks the direct precedence constraints for totally-
ordered domain models at line 13. This extension gives the
theoretical guarantee on the number of generated tasks.

Proposition 2. Let t be the number of tasks in the totally-
ordered HTN domain model and n be the number of ac-
tions in a plan. Then the extended HTN plan verifica-
tion algorithm generates at most O(t × n2) different pairs
(T, act(T )).

Proof. For totally ordered domain models, the sets act(T )
form contiguous sub-sequences of the plan. These sub-
sequences are identified by the first and the last actions in the
sequence, and hence there are at most O(n2) such sets. The
same set of actions may be generated from different tasks;
hence the maximal number of different pairs (T, act(T ))
that the parsing-based verification algorithm may generate
is O(t× n2).

Note that if the original verification algorithm is applied
to totally-ordered domain models, then it may still generate
an exponential number of pairs (T, act(T )) because the al-
gorithm allows sets act(T ) to be arbitrary subsets of actions
in the plan. The experimental study confirms this.



Empirical Evaluation
We compared the recent HTN plan verification algo-
rithm (Barták et al. 2020) with its extended version that de-
tects totally-ordered domain models and imposes constraints
(1) to check the direct precedence constraints used in decom-
position methods. Compared to previous evaluations, we
have significantly increased the number of instances we con-
sider. The International Planning Competition (IPC) 2020
has released an extensive set of plans1 that were generated
by the planners in the IPC on the IPC domains2. We are us-
ing the set of totally-ordered plans provided by the IPC, that
is, all plans in our evaluation are totally-ordered. This set
contains 10963 plans with an average length of 239 actions
and a maximum length of 131071 actions.

Both the original verifier (Barták et al. 2020) and the mod-
ifications presented in this paper were implemented in C# 7
(from .NET 4.7). For running the program, we used mono in
version 6.8.0.105 on a singularity container based on Ubuntu
20.10. We ran all experiments on an Intel Xeon Gold 6242
CPU (2.80GHz) with 5GB of RAM and a timeout of 10 min-
utes. The memory limit was never reached.
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Figure 2: The number of solved problems per time.
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Figure 3: Direct comparison of runtimes.

The summary results are presented in Figure 2 showing
the number of solved instances within a given time. The
new approach solves a significantly larger number of in-
stances (8870) than the original approach (2443). Any in-
stance solved by the original approach was also solved by

1https://github.com/panda-planner-dev/ipc-2020-plans
2https://github.com/panda-planner-dev/ipc2020-domains
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Figure 4: Runtime of the original algorithm as a function of
plan length (omitting plans with more than 10.000 actions).
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Figure 5: Runtime of the extended algorithm as a function of
plan length (omitting plans with more than 10.000 actions).

the new approach, while the new approach solved 6427
instances more. Figure 3 presents the direct comparison
of both techniques using the same data. Each point repre-
sents one of the 2443 problem instances solved by both ap-
proaches. The runtimes of the algorithms define the coordi-
nates of the point. Of these 2443 instances, the old approach
is faster in 362 instances. Of these 362, only 159 have a run-
time of more than one second. For these 362 instances, the
old algorithm is faster than the new one by more than 10%
in only 24 instances and at the most only 25% faster. The
minor overhead of the new algorithm seems not to incur a
significant disadvantage. For 210 instances, the runtime is
identical, and for the remaining 1871 instances solved by
both verifiers, the runtime of the new one is faster. The re-
duction in runtime on these 1871 instances is on average
46.36% with a maximum of 99.93%.

Figures 4 and 5 show the dependence of runtime on plan
length for the original and extended algorithm, respectively.
Again, it is clearly visible that the new method solves a
larger number of instances. The new approach can verify
about one order of magnitude longer plans than the original
algorithm. The longest verified plan for the old technique
has 1500 actions, while for the new one has 4095 actions.



Conclusions
We proposed extending the HTN plan verification algorithm
to impose a more strict constraint describing direct prece-
dence relations for totally-ordered models. The effect of this
modification on the runtime of the algorithm is dramatic.
The new algorithm verifies a much larger number of prob-
lem instances and also longer plans. As totally-ordered HTN
domain models are frequent in practical applications, the
method brings automated HTN plan verification closer to
practical applicability on non-trivial plans and domains.
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Barták, R.; Ondrčková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-
ification of Hierarchical Plans. In Proc. of the 32nd Int. Conf.
on Tools with AI (ICTAI 2020), 118–125. IEEE.
Behnke, G. 2021. Block Compression and Invariant Pruning
for SAT-based Totally-Ordered HTN Planning. In Proc. of
the 31st Int. Conf. on Automated Planning and Scheduling
(ICAPS 2021), 25–35. AAAI Press.
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