A Closer Look at Causal Links: Complexity Results for Delete-Relaxation in Partial Order Causal Link (POCL) Planning

Pascal Bercher

Planning & Optimization Group College of Engineering and Computer Science the Australian National University (ANU)

ICAPS 2021

Australian National University

Motivation ••		

- Most planning systems generate action sequences as solutions!
- But plans may be just partially ordered in general.

• Here, causal links connect preconditions and effects.

Motivation ⊙●		
POCL Plans		

Why would we use POCL plans in the first place?

- In planning algorithms based on POCL plans:
 - Temporal planning due to parallelism
 - Some hierarchical approaches (some including time!)
 - For solving classical problems (not state of the art anymore)
- Some plan *encodings* (e.g., via SAT) rely on causal links.
 - To solve planning problems
 - For plan optimization

	Problem Formalization ●O	
POCL Plans		

• When is a POCL plan a solution?

	Problem Formalization ●O	
POCL Plans		

- When is a POCL plan a solution?
 - · When all preconditions are supported by a causal link, and

	Problem Formalization ●O	
POCL Plans		

- When is a POCL plan a solution?
 - · When all preconditions are supported by a causal link, and
 - there are no causal threats.
 Threats can be resolved by adding ordering constraints:

	Problem Formalization ●O	
POCL Plans		

- When is a POCL plan a solution?
 - When all preconditions are supported by a causal link, and
 - there are no causal threats.
 Threats can be resolved by adding ordering constraints:
 - Promotion: move c before a
 - Demotion: move c behind b

Input: A POCL plan *P*. Question: Can *P* be refined into a solution? (I.e., via the insertion of actions, links, and orderings)

We study the computation complexity of deciding this question under various restrictions for P and the actions to be inserted!

Which problem relaxations could we perform?

(Delete-)relax the domain, i.e., the actions to insert.
 → Decidable in *P* for classical problems!

		Problem Relaxations ●○	
Relevant Problem	n Relaxations		

Which problem relaxations could we perform?

- (Delete-)relax the domain, i.e., the actions to insert.
 - \rightarrow Decidable in *P* for classical problems!
- Relax the current plan/search node:
 - Delete-relax its actions

		Problem Relaxations ●○	
Relevant Problem	n Relaxations		

Which problem relaxations could we perform?

- (Delete-)relax the domain, i.e., the actions to insert.
 - \rightarrow Decidable in *P* for classical problems!
- Relax the current plan/search node:
 - Delete-relax its actions
 - Ignore its causal links

Prize question: How to ignore existing causal links?

Major contribution:

 $\rightarrow\,$ New problem relaxation that respects existing causal links despite delete relaxation!

		Problem Relaxations
Example for Res	pecting Causal Links	
	L R R	

Additional actions:

000

Where could these actions be inserted:

• A and middle: everywhere, since there are no conflicts.

a

Example for Respecting Causal Links

Where could these actions be inserted:

- A and *middle*: everywhere, since there are no conflicts.
- *B1*: only before *middle*.

Example for Respecting Causal Links

Where could these actions be inserted:

- A and middle: everywhere, since there are no conflicts.
- B1: only before middle.
- B2: only after middle.

 Input plan: partially ordered, delete-relaxed effects, causal links respected by inserted actions
 Insertable actions: delete-relaxed
 Complexity: NP-complete

		Complexity Results ●
Selection	of Results	

- Input plan: partially ordered, delete-relaxed effects, causal links respected by inserted actions
 Insertable actions: delete-relaxed
 Complexity: NP-complete
- Input plan: partially ordered, unchanged effects
 Insertable actions: delete-relaxed
 Complexity: NP-complete

		Complexity Results ●
Selection of	of Results	

- Input plan: partially ordered, delete-relaxed effects, causal links respected by inserted actions
 Insertable actions: delete-relaxed
 Complexity: NP-complete
- Input plan: partially ordered, unchanged effects
 Insertable actions: delete-relaxed
 Complexity: NP-complete

Want to see the proofs? \rightarrow See you at the poster! :)

