The 10th International Planning Competition — Planner and Domains Abstracts

From PCP to HTN Planning Through CFGs

Daniel Holler! and Songtuan Lin® and Kutluhan Erol®> and Pascal Bercher?
! Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
2 1zmir University of Economics, Turkey
3 The Australian National University, Australia
hoeller@cs.uni-saarland.de, kutluhan.erol @ieu.edu.tr, {songtuan.lin, pascal.bercher} @anu.edu.au

Abstract

The International Planning Competition in 2020 was the first
one for a long time to host tracks on HTN planning. The used
benchmark set included a domain describing the undecidable
Post Correspondence Problem (PCP). In this paper we de-
scribe the two-step process applied to generate HTN prob-
lems based on PCP instances. It translates the PCP into a
grammar intersection problem of two context-free languages,
which is then encoded into an HTN problem.

Introduction

Hierarchical Task Network (HTN) planning is a widely-
used planning approach with many practical applications
(Bercher, Alford, and Héller 2019). It provides two means of
modeling: a grammar-like decomposition structure as well
as actions with preconditions and effects. The hierarchy
makes it more expressive than e.g. classical planning, where
only the latter is available. Erol, Hendler, and Nau (1996)
showed that it enables the description of recursively enu-
merable, undecidable problems like the intersection problem
of context-free languages. The International Planning Com-
petition (IPC) in 2020 was the first for a long time to host
tracks on HTN planning. To include provable hard domains,
we included one describing the Post Correspondence Prob-
lem (PCP), which is one of the standard decisions problems
known to be undecidable (Hopcroft and Ullman 1979).

In this paper we give a short introduction of the applied
encoding. We first translate PCP into the language intersec-
tion problem of the context-free languages. For the language
intersection model, we can use the original encoding used to
prove hardness of the plan existence problem in HTN plan-
ning (Erol, Hendler, and Nau 1996).

Background

We first shortly introduce PCP (for further details see e.g.
(Hopcroft and Ullman 1979)). An instance of a PCP consists
of two finite lists of finite strings (over an alphabet A with at
least two symbols) with the same length: P* = s} ... sl
and P? = s2,...,s2 (n € N). There is no restriction on
the length of the individual s} and s?. A solution is a finite

sequence of indices ji ...ji (k € N) with 1 < j,. < n for

24

each 1 < r < k such that the compound string 531‘1 . sjlk is
identical to 57 ... s, .

A context-free grammar is a tuple G = (I, X, P, 5),
where I is a finite set of non-terminal symbols, Y is a finite
set of terminal symbols, P is a finite set of production rules
mapping a single non-terminal symbol to a finite sequence
of terminal and non-terminal symbols. S is the start symbol.
With the language L(G) of a grammar we refer to the set of
words of that grammar, i.e., all terminal symbol sequences
that can be obtained by refining .S via adhering the rules in
P. Erol, Hendler, and Nau (1994; 1996) were the first to rec-
ognize the close relationship to HTN models, which they ex-
ploited for HTN’s undecidability proof. Holler et al. (2014;
2016) have taken this further and studied the close rela-
tionship between various hierarchical (and non-hierarchical)
planning problems and the Chomsky Hierarchy.

From PCP to HTN Planning Problems

We first translate a given PCP instance into a grammar in-
tersection problem. For each list of strings, we construct a
grammar such that words derived from that grammar begin
with newly introduced letters representing the selected string
indices from the respective P, followed by the actual con-
catenation of these strings. This is done for both Pts, when
these languages have an intersection, this means that there
is a list of indices leading to the same overall string, which
solves our PCP problem.

For each P! from the PCP, we construct a CFG Gt =
({S'}, AU L, P, S%), where L = {l;,...,1,}, n is the
length of the string list and the production rules P? are given
by two rules S* — ;S"s’ and S — I; s} for each s in the
list, where j is the string’s index, and /; a terminal symbol.

Now that we have constructed the grammars G and G2
for P! and P?, we check whether they may both produce
the same string, relying on the encoding introduced by Erol,
Hendler, and Nau (1996). The resulting problems include
two tasks in the initial task network, which are not ordered
with respect to each other. Each of them can be decomposed
in sequences of actions representing the words of the lan-
guage of one of the grammars. Preconditions and effects of
the actions ensure that there is an applicable linearization if
and only if the actions derived from the two grammars are



The 10th International Planning Competition — Planner and Domains Abstracts

applied in turns, and some letter from the second grammar
follows the same letter from the first grammar. That way,
the HTN problem has a solution if and only if the languages
have a non-empty intersection.

We use the formalism by Geier and Bercher (2011). An
HTN problem is a tuple P = (F, N,, No, M,0,tny, s, g).
F is a set of propositional state features, [V, the set of prim-
itive tasks, N, the set of abstract (also compound) tasks,
M the set of decomposition methods, § a function mapping
primitive tasks to their precondition and effects, ¢tn; the ini-
tial task network, s; the initial state, and g the state-based
goal condition.

Let Gt = ({S'}, &, P!, SY) and G? = ({S?}, %,
P2, S?) be the two grammars constructed in the previ-
ous step. The set of state features is defined as ' = ¥ U
{turny, turng}, the primitive tasks as N, = {p}|a €
Y,i € {1,2}}. ¢ is defined as follows: if ¢ = 1
then §(p.) = ({turn;}, {a, turng}, {turn; }), otherwise,
S(pt) = ({turng,a}, {turn; }, {turng,a}). The domain
contains two compound tasks N, = {S*, S?}. The set of
methods M which decompose those two compound tasks is
constructed according to the set of production rules P*U P2,
Let p € P1UP? be an arbitrary production rule. If p is in the
form S — 1S%s where i € {1,2},1 € L,ands =c;...cy
isastring with k € Nandc; € Aforl < j < k, we
construct a method m = (5%, (T, <, ")) where

T ={ts,ti,t1,...,tx}
< ={(ti,ts), (ts,t1),- -, (te—1,tx)}
a={(ts,S"), (ti,p}), (t1,p%,), - - - (te, 1l )}

For production rule not containing S*, a similar method
is constructed not including S*. Initial task network, initial
state, and state-based goal condition are defined as follows:

tny = ({31732}’&{(51’51)’ (52752)})
sp={turns} g = {turn;}

Example

Fig. 1 shows the definitions of the tasks t1G1 and t1G2,
which are two actions that can be executed after each other,
since one corresponds to the “creation” of the symbol /1 by
the first grammar, whereas the other, by the second grammar,
deletes that symbol. The example code is provided in HDDL
(Holler et al. 2020). The used predicate names in our figure
differ only slightly from the respective names in the actual
problem files (we adapted it slightly to match our formal
definitions from before).

Benchmark Collection

For the IPC we selected problem instances where a solution
exists, and we varied degree of difficulty as measured by the
solution length. Meanwhile we also support the automatic
generation of problem instances based on an external PCP
problem generator. That generator creates random PCP in-
stances given a minimal solution length, which is obtained
by solving the respective problem. The random generator is
available in the IPC benchmark repository next to the in-
stances used in the IPC.

25

(raction tlGl
:parameters ()

(raction tlG2
:parameters ()

:precondition :precondition
(and (and
(turnl) (turn2)
) (11))
:effect :effect
(and (and
(not (turnl)) (not (turn2))
(turn2) (turnl)
(11))) (not (11))))

Figure 1: Examples of primitive tasks.

References

Bercher, P.; Alford, R.; and Héller, D. 2019. A survey on hi-
erarchical planning — One abstract idea, many concrete real-
izations. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence (IJCAI), 6267-6275. IJCAI
Organization.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, Inst. for Ad-
vanced Computer Studies, Inst. for Systems Research, Com-
puter Science Department, University of Maryland.

Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and Arti-
ficial Intelligence (AIMA) 18(1):69-93.

Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (1J-
CAI), 1955-1961. AAAI Press.

Holler, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI), 447-452. 10S Press.

Holler, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS), 158-165. AAAI Press.

Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An extension to
PDDL for expressing hierarchical planning problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883-9891. AAAI Press.

Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley.



