
Compiling HTN Plan Verification Problems into HTN Planning Problems

Daniel Höller,1 Julia Wichlacz,1 Pascal Bercher,2 Gregor Behnke3

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany,
2The Australian National University, Canberra, Australia,

3University of Freiburg, Freiburg, Germany,
hoeller@cs.uni-saarland.de, wichlacz@cs.uni-saarland.de, pascal.bercher@anu.edu.au, behnkeg@cs.uni-freiburg.de

Abstract

Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. In HTN
planning, the task is computationally expensive and may be
up to NP-hard. However, there are situations where it needs to
be solved, e.g. when a solution is post-processed, in systems
using approximation, or just to validate whether a planning
system works correctly (e.g. for debugging or in a competi-
tion). In the literature, there are verification systems based on
translations to propositional logic and based on techniques
from parsing. Here we present a third approach and trans-
late HTN plan verification problems into HTN planning prob-
lems. These can be solved using any HTN planning system.
We test our solver on the set of solutions from the 2020 In-
ternational Planning Competition. Our evaluation is yet pre-
liminary, because it does not include all systems from the lit-
erature, but it already shows that our approach performs well
compared with the included systems.

1 Introduction
Plan Verification is the task of deciding whether a sequence
of actions is a solution for a given planning problem. It is
necessary in several situations, e.g. when a plan is post-
processed, or to verify whether a planning system works cor-
rectly (e.g. for debugging or in a competition).

In classical planning, it can be solved in (lower) polyno-
mial time. In Hierarchical Task Network (HTN) planning
(Bercher, Alford, and Höller 2019), the complexity depends
on several parameters:
• On whether the decomposition steps (i.e., the chosen

methods) leading to a solution are known.
• On the specific problem class (e.g., whether it’s partially

or totally ordered).
When we look at the formalisms in HTN planning, the de-

composition steps are usually not regarded part of a solution.
Since only the contained primitive tasks (i.e., actions) need
to be executed, there is often no need to do so. However,
there are use cases in the literature where they are needed,
mainly for communication with a user on different levels of
abstraction (Bercher et al. 2021; Behnke et al. 2020a; Köhn
et al. 2020; de Silva, Padgham, and Sardina 2019). When
they are present (and if full information about task labeling
is available so that multiple occurrences of the same task
can still be distinguished) plan verification can be solved in

polynomial time. Another polytime case is given by Totally
Ordered (TO) HTN problems, where all methods and the ini-
tial task network are totally ordered. In this case, plan ver-
ification is cubic and resembles the problem of parsing in
context-free languages. Otherwise, for general partially or-
dered (PO) HTN problems, it becomes NP-hard (Behnke,
Höller, and Biundo 2015).

Both cases, i.e., TO and PO HTN planning problems,
were considered in the 2020 International Planning Compe-
tition (IPC). Here, the participating systems needed to return
the decomposition steps to allow the organizers to verify so-
lutions in polynomial time. However, though it is possible
for the solvers to track this information, it causes technical
problems – consider e.g. the various compilation steps often
performed in preprocessing1 that need to be undone in post-
processing. In other cases it is even not possible, e.g. when
postoptimizing solutions or when internally using approx-
imations like e.g. the TOAD system (Höller 2021), which
overapproximates the solution set of a problem and needs
verification as a regular step of its planning procedure to
make sure only to return correct solutions.

In the literature, there are systems to solve the problem via
translation to propositional logic (Behnke, Höller, and Bi-
undo 2017) and based on parsing techniques (Barták, Mail-
lard, and Cardoso 2018; Barták et al. 2020).

In this paper, we present an approach to compile HTN ver-
ification problems to common HTN planning problems. Our
compilation is based on an approach for plan recognition as
planning (Höller et al. 2018). It is applicable in both TO and
PO HTN planning. We combine our transformation with two
planning systems from the PANDA framework (Höller et al.
2021) and evaluate it on a new benchmark set that includes
the models from the 2020 IPC and solutions generated by
the IPC participants. It yields good results both in PO and in
TO HTN planning.

The paper is structured as follows: we first introduce the
formal framework used in the paper (Section 2), then we in-
troduce the compilation (Section 3), describe the realization
(Section 4) and evaluate the approach (Section 5). We con-
clude the paper with a short discussion (Section 6).

1See e.g. the PANDA grounder (Behnke et al. 2020b) used in
the following. Among other compilations, it changes decomposi-
tion rules until convergence, which is not a simple task to undo.



2 Formal Framework
In HTN planning there are two types of tasks, primitive and
abstract tasks. Primitive tasks are equivalent to actions in
classical planning, i.e., they are directly applicable in the
environment and cause state transition. Abstract (or com-
pound) tasks are not directly applicable and need to be de-
composed into other tasks in a process similar to the deriva-
tion of words from a formal grammar. A solution to an HTN
planning problem needs to be derived via this grammar.

Formally, an HTN planning problem is a tuple p = (F,
C, A, M, s0, tnI , g, prec, add , del). F is a set of proposi-
tional state features. A state s is defined by the subset of state
features that hold in it, s ∈ 2F , all other state features are as-
sumed to be false. s0 ∈ 2F is the initial state of the problem,
and g ⊆ F is the state-based goal description2. A state s is
called a goal state if and only if g ⊆ s. A is a set of symbols
called primitive tasks (also called actions). These symbols
are mapped to a subset of the state features by the functions
prec, add , del , which are all defined as f : A→ 2F and de-
fine the actions’ preconditions, add-, and delete-effects, re-
spectively. An action a is applicable in a state s if and only
if prec(a) ⊆ s. When an applicable action a is applied in a
state s, the state s′ = γ(s, a) resulting from the application
is defined as s′ = (s \ del(a)) ∪ add(a). A sequence of ac-
tions a1, a2, . . . , an is applicable in some state s0 if and only
if ai is applicable in the state si−1, where si for 1 ≤ i ≤ n
is defined as si = γ(si−1, ai). We call the state sn the state
resulting from the application.

Tasks in HTN planning are maintained in task networks.
A task network is a partially ordered multiset of tasks. For-
mally, it is a triple tn = (T ,≺, α). T is a set of identi-
fiers (ids) that are mapped to the actual tasks by the func-
tion α : T → N , where N = A ∪ C is the union of the
primitive tasks A and the abstract (compound) tasks C. ≺
is a partial order on the task ids. tnI is the initial task net-
work, i.e., the task network the decomposition process starts
with. Legal decompositions are defined by the set of (de-
composition) methods M . A method is a pair (c, tn), where
c ∈ C defines the task that can be decomposed using the
method, and the task network tn defines into which tasks
it is decomposed. When a task t from a task network tn is
decomposed using a method (c, tn ′), it is replaced by the
tasks in tn ′. When t has been ordered with respect to other
tasks in tn , the new tasks inherit these ordering constraints.
Formally, a method m = (c, tn) decomposes a task network
tn1 = (T1,≺1, α1) that contains a task id t ∈ T1 with
α1(t) = c into a task network tn2, which is defined as fol-
lows. Let tn ′ = (T ′,≺′, α′) be a copy of tn that uses ids
not contained in T1. Then tn2 is defined as:

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

2In HTN planning, there is usually no state-based goal given,
because it can be compiled away. However, it makes our definition
in the next sections more natural.

When a task network tn can be decomposed into a task
network tn ′ by applying (a finite sequence of) 0 or more
methods, we write tn →∗ tn ′.

A task network tnS = (TS ,≺S , αS) is a solution to a
given HTN planning problem if and only if the following
conditions hold:
1. tnI →∗ tnS , i.e., it can be derived from the initial task

network,
2. ∀t ∈ TS : αS(t) ∈ A, i.e., all tasks are primitive, and
3. there is a sequence (i1i2 . . . in) of the task ids in

TS in line with the ordering constraints ≺S such that
(αS(i1)αS(i2) . . . αS(in)) is applicable in s0 and results
in a goal state.
We call an HTN method totally ordered when the tasks

in the contained task network are totally ordered. We call an
HTN planning problem totally ordered when all contained
methods and the initial task network are totally ordered.
Definition 1 (Plan Verification). Given an HTN planning
problem p and a sequence of actions (a1a2 . . . an), plan
verification is the problem to decide whether there is a
task network (TS ,≺S , αS) that is a solution for p and
for an ordering (i1i2 . . . in) of the task identifiers TS ful-
filling solution criterion 3 as given above, it holds that
(αS(i1)αS(i2) . . . αS(in)) = (a1a2 . . . an).

3 Compiling Verification Problems to
Planning Problems

Let p = (F, C, A, M, s0, tnI , g, prec, add , del) be an HTN
planning problem, π = (a1a2 . . . an) a sequence of actions
out of A, and v = (p, π) a plan verification problem. We
compile v into a new HTN planning problem p′ = (F ′, C ′,
A′, M ′, s′0, tnI , g

′, prec′, add ′, del ′) that has a solution if
and only if v is solvable.

The encoding is widely identical with the one introduced
by Höller et al. (2018) for plan and goal recognition (PGR)
as planning. It has also been shown that it can be used
for plan repair (Höller et al. 2020b). We first change the
state and the actions of the original problem such that the
only applicable sequence of actions exactly resembles π. Let
f0, f1, f2, . . . , fn be new state features. We use them to en-
code which actions out of π have already been executed. In
addition to that, we need a state feature ⊥, which will never
be reachable. The set of state features of p′ is defined as
F ′ = F ∪ {f0, f1, f2, . . . , fn} ∪ {⊥}. In the beginning, no
action out of π has been executed, i.e., s′0 = s0 ∪ {f0}. We
want solutions to exactly equal π, i.e., all actions need to be
included. This is enforced by including fn in the state-based
goal definition g, i.e., g′ = g ∪ {fn}.

For ai ∈ π with 1 ≤ i ≤ n, we introduce a new action
a′i. The preconditions of the new actions enforce the correct
position in the generated solution

prec′(a′i) = prec(ai) ∪ {fi−1},
each action deletes its own precondition and adds the one of
the next action in the solution

add ′(a′i) = add(ai) ∪ {fi},
del ′(a′i) = del(ai) ∪ {fi−1}.



Please be aware that an action out of A may appear more
than once in the solution. In such cases, there will be mul-
tiple copies of the action in A′. The novel actions mimic
the state transition of the original ones, but additionally en-
sure their respective position in the solution. All other ac-
tions shall never appear in any solution, so we add the new
state feature⊥ that is never reachable to their preconditions.

∀a ∈ A : prec′(a) = prec(a) ∪ {⊥},
add ′(a) = add(a),

del ′(a) = del(a)

The new set of actions is defined as A′ = A∪{a′i | ai ∈ π}.
Due to the new state features, preconditions and effects,

there is only one sequence of actions that is applicable and
leads to a state-based goal. However, none of the new actions
can ever be reached by decomposing the initial task network.
To make this possible, we need to modify the decomposition
hierarchy. It shall be possible for a newly introduced action
a′ to be placed at exactly those positions where the action
a might have been in the original model. We thereby need
to keep in mind that there might be multiple copies of some
action a, so we cannot just replace them in the methods. We
need to introduce a new choice point to choose which copy
a′, a′′, . . . of a shall be at which position in the action se-
quence. We do this by introducing one novel abstract task
ca for each action a. Let CA = {ca | a ∈ A}. We further
introduce new methods to decompose this new task into one
of the copies of a.

MA = {(ca, ({i}, ∅, {i 7→ a′})) | a′ ∈ π}

We define C ′ = C ∪CA andM ′ =M ∪MA and have fully
specified our compiled problem p′.

The resulting encoding is nearly identical with the one
used in the fully observable case of plan and goal recogni-
tion as planning (Höller et al. 2018). The only difference is
the additional precondition of the actions not included in the
solution. While the PGR encoding forces these actions to
be placed after a given plan prefix of observed actions, the
encoding here makes them entirely unreachable.

3.1 Some Technicalities
The models in our benchmark are those from the 2020
IPC, which are modeled in the description language
HDDL (Höller et al. 2020a). In HDDL, models may include
state-based preconditions for methods. These are precondi-
tions as known from actions, which have to hold for the
method to be applicable. The semantics of such precondi-
tions is a bit problematic (see Höller et al. (2020a, p. 5) for
a discussion). In HDDL it is defined as follows: a new ac-
tion is introduced that is inserted in the method and placed
before every other task of the method’s subtasks. This new
action holds the precondition of the method. We will call
such actions technical actions.

In TO HTN planning, this fully specifies the position
where the precondition needs to hold. However, consider the
case of PO HTN planning. Here, the task decomposed by the
method might be partially ordered with respect to other tasks

and the subtasks might be interweaved. As a result, we can-
not exactly determine the position the precondition needs to
hold. When the state-features contained in the method’s pre-
condition are not static (i.e., might change over time), the
position where the precondition is checked might change ap-
plicability.

Since technical actions are not actually part of the so-
lution, planners will not return them. From a verification
perspective, this is problematic, a verifier needs to check
whether there exists a position where a technical action
is applicable. This is a main problem with the SAT-based
approach from related work (Behnke, Höller, and Biundo
2017), which needs to get the technical actions as input.

In our approach, handling this issue is not a problem: we
leave the preconditions and effects of technical actions un-
changed, i.e., they will not be affected by the encoding. As a
result, they can be inserted into plans of the compiled prob-
lems at arbitrary positions in line with the definition of HTN
decomposition. That is, if the plan π to verify has a length of
n, then our encoding makes sure that – provided plan π is in-
deed a valid solution to the original problem – a solution of
size at least n will be found (corresponding to π), but addi-
tional actions which encode the method preconditions may
be included as well at appropriate positions (one for each
applied method with a precondition). Note that this means
that there is no clear limit on the length of solutions (other
than its minimum). Since methods might replace an abstract
task by no other task, i.e., delete it, it is not clear how many
such empty methods might have been applied in the worst
case leading to a plan of a certain length.

3.2 Properties
Let v = (p, π) be a Plan Verification Problem and p′ the
encoding as given above.

Our encoding serves the purpose of deciding whether π
is a solution for p. This is being achieved provided that π is
a solution for p if and only if p′ is solvable, which we cap-
ture in the following two theorems. Note that this result (re-
stricted to methods without preconditions) follows as a spe-
cial case from Thm. 1 by Höller et al. (2018). That theorem
from the context of plan recognition states that the encod-
ing – the same one we deploy for plan verification – ensures
that the solutions of the encoded problem are exactly those
of the original problem that start with the enforced actions.
In the context of this earlier work, there might have been ad-
ditional actions after the prefix of enforced actions, namely
the remaining plan that should be recognized. In our case,
this part remains empty (modulo technical actions encoding
method preconditions).
Theorem 1. When π is a solution for p, then the compiled
problem p′ is solvable.

Proof Sketch. Since π is a solution to p, we know that there
is a sequence of method applications that transforms the ini-
tial task network tnI into a primitive task network tn , which
in turn allows π as executable linearization. Note that we can
assume that the solution was achieved by a progression plan-
ner, which applies methods and actions in a forward-fashion,
since such a progression-based solution exists if and only if



any solution exists at all (Alford et al. 2012, Thm. 3). Thus,
we can assume that there is a sequence of method and action
applications ma that transforms tnI into π. That sequence
can be transformed into a corresponding (and potentially
longer) sequence in p′. For each action ai at position i in π
its corresponding encoding a′i will be executable in the solu-
tion π′ to p′, though the respective sequence of method and
action applications will be preceded by the method decom-
posing ca thus introducing that encoding of a′i. Furthermore,
every method m in ma will be applicable in the correspond-
ing method and action sequence ma′ leading to π′ in p′ as
well, though immediately preceded by the technical action
encoding the precondition of m.

Theorem 2. When π is no solution for p, then the compiled
problem p′ is unsolvable.

Proof Sketch. This direction is a bit easier to see than the
previous one, since the model of p′ is an extension of the
original one, i.e., it follows the exact same structure, but
each action has additional preconditions and thus makes the
problem more constrained. So if there is no solution in the
original model, there cannot be a solution in the encoded
one.

It was also shown that the transformation maintains most
structural properties of the problem (Höller et al. 2020b,
Sec. 6.1), i.e., tail-recursive, acyclic, and totally ordered
problems remain tail-recursive, acyclic, or totally ordered,
respectively. Since we deploy the same encoding we essen-
tially get the same property, though the restriction to a spe-
cific solution might lead to even more restrictive cases. E.g.,
the restriction to the model required to obtain the plan π to
verify might turn a problem without any restriction even into
a totally ordered acyclic problem. We still can directly con-
clude the following properties:

Corollary 1. If p is tail-recursive, p′ is tail-recursive. If p
is acyclic, p′ is acyclic. If p is totally ordered, p′ is totally
ordered.

4 Pruning the Model
The encoding makes wide parts of the original actions inap-
plicable. When realizing it on the lifted definition, this would
be detected by the grounding procedure (see e.g. (Ramoul
et al. 2017; Behnke et al. 2020b)), which would not generate
unreachable parts.

However, we realized our encoding on a fully grounded
model. For us, this had two main advantages: First, it sim-
plifies the implementation. Second, since our planning sys-
tem grounds the model before planning, we have the ground
model and do not need to ground twice. However, in order to
result in a small model, we need to prune unreachable parts.
We use the following two pruning methods, which are simi-
lar to what the PANDA grounder described by Behnke et al.
(2020b) would do in its grounding process.

4.1 Bottom-up Reachability
By construction, all actions not included in the enforced so-
lution contain the unreachable precondition ⊥, i.e., the only

actions that are (potentially) reachable are those in the en-
forced solution as well as the technical actions. Let AT be
the set of technical actions. We initialize our reachability
analysis with these actions: Nr = {a′i | a′i ∈ π} ∪AT .

We now want to determine the set of reachable methods
and abstract tasks. Since we know that certain actions are not
reachable, we know that any method which includes such
actions will never be part of any solution. Or, the other way
around, we know that only methods not including such ac-
tions will be part of a solution. For an abstract task c, we
know that it can only be part of a solution when there is at
least one method that decomposes c that might be part of a
solution. Based on these observations, we calculate the sets
of methods and abstract tasks that might be part of a solu-
tion.

Let TNN be the set of all task networks over the tasks N .
We define the relation R : TNN × 2N with

R = {((T ,≺, α), N ′) | ∀t ∈ T : α(t) ∈ N ′}
Let Nr ⊆ N be a set of reachable tasks. As discussed

above, the set of reachable methods based on this set is de-
fined as

Mr = {(c, tn) ∈M | (tn, Nr) ∈ R}
The overall reachability is then defined as follows:

function bottom-up(Nr)
Mr = ∅
while Nr changes do

Mr = {(c, tn) ∈M | (tn, Nr) ∈ R}
Nr = Nr ∪ {c | (c, tn) ∈Mr}

return (Nr,Mr)

As given above, this algorithm is started with Nr = {a′i |
a′i ∈ π} ∪ AT , i.e., the set containing the actions in the
enforced solution and all technical actions.

4.2 Top-down Reachability
The sets returned by the analysis given above might include
tasks and methods not reachable from the initial task net-
work. We therefore perform a second (top-down) analysis.
Let tnI = (TI ,≺I , αI) be the initial task network and Nr

and Mr the sets returned by the bottom-up analysis. We de-
termine the tasks and methods reachable top-down using the
following function.

function top-down(TI , αI , Nr,Mr)
M ′r = ∅
N ′r = {n | ∃i ∈ TI : αI(i) = n}
while N ′r changes do

N ′r = N ′r ∪ {n | ∃c ∈ N ′r, (c, (T ,≺, α)) ∈
Mr), i ∈ T : α(i) = n}
M ′r = {(c, tn) ∈Mr | c ∈ N ′r}

return (N ′r,M
′
r)

We perform a single pass of these two methods and output
the resulting (reduced) problem afterwards.



5 Evaluation
We next describe the benchmark set and the systems in-
cluded in the evaluation. Then we discuss the results.

The experiments ran on Xeon Gold 6242 CPUs using one
core, a memory limit of 8 GB, and a time limit of 10 minutes.

5.1 Benchmark Set
We use a new set of benchmark problems that is based on the
models from the 2020 IPC. It contains 892 planning prob-
lems from 24 domains in TO planning and 224 instances
from 9 domains in PO planning. The solutions have been
created by 7 different planning systems for TO and by 4 sys-
tems for PO; namely by the final versions of the participants
of the IPC as well as by planners from the PANDA frame-
work (Höller et al. 2021). In total, this results in 10963 plan
verification instances in TO and 1077 in PO HTN planning.

Since plans and domains stem from a recent competition,
we consider it an interesting benchmark set with respect to
the included plans and the difficulty of the instances. How-
ever, there is one weakness that we want to address in future
work: Since the current set includes only instances from the
final planner versions (after the debugging process), it in-
cludes only very few instances that are incorrect plans, only
2 instances for TO and 1 for PO.

In related work, this problem was solved by using ran-
dom walks (Behnke, Höller, and Biundo 2017). However, it
is hard to create such instances with appropriate difficulty,
and we do not consider the resulting instances as interesting
as the positive ones given above. In future work, we want to
include instances from early planner versions from the IPC
(before debugging) to obtain a more realistic benchmark set.
However, this work is still in progress and here we present
the results from the benchmark set as described above.

5.2 Systems
We ground the models using the PANDA grounder (Behnke
et al. 2020b). Grounding time is included in the runtimes.
After transformation and pruning as given in Section 3 and
4, we output the same format as the PANDA grounder.

We use two planner configurations from the PANDA
framework (Höller et al. 2021) to solve the resulting HTN
planning problems:

• The progression search with the Relaxed Composition
(RC) heuristic (Höller et al. 2018, 2020c) and loop de-
tection (Höller and Behnke 2021).

• The SAT-based solver for TO (Behnke, Höller, and Bi-
undo 2018; Behnke 2021) and for PO (Behnke, Höller,
and Biundo 2019) HTN planning.

We compare our system against two systems from the lit-
erature, a SAT-based and a parsing-based approach.

SAT-based verification. The first system is based on a
compilation to propositional logic (Behnke, Höller, and Bi-
undo 2017). It supports both totally ordered and partially
ordered problems. However, it relies on an input plan that
contains all actions – including the technical actions given
above. This makes a comparison difficult. We addressed the

issue by removing all method preconditions from the in-
put model provided to this particular system. As a result,
no technical actions are introduced and the approach can be
applied. Since we remove constraints from the model, all so-
lutions to the original problem are also solutions to the new
model. However, the new model allows for more solutions.
Thus, the results obtained by this workflow might be incor-
rect. However, we argue that this does not make the solving
process harder and that we can fairly compare our runtimes
against this approach.

Parsing-based verification. The second approach from
the literature is based on parsing (Barták, Maillard, and Car-
doso 2018; Barták et al. 2020). In principle, it supports both
TO and PO models. However, while the TO version works
fine on our benchmark set, we where not able obtain a stable
run with the PO version and thus do not include the results
here. We know that this makes our evaluation preliminary
and will address the issue in future work.

5.3 Results
In the TO setting, our compilation approach reaches a cov-
erage of 99.4% with the progression search and 89.2% with
the SAT-based PANDA. The SAT-based verifier has a cover-
age of 8.3%, the parsing-based system one of 23.5%. When
comparing our two configurations, the SAT-based planner
solves 7 instances that the progression search does not solve.
For our compilation combined with the progression search
planner, only 67 plans of the corpus cannot be verified. In
43 of these cases, we already fail to ground the planning
problem (within the given memory/time limits). We cur-
rently do grounding without considering the plan to be veri-
fied. As such, the grounded model usually contains a signifi-
cant number of actions, tasks, and methods which cannot be
part of the compiled model. From the instances where the
grounding was successful, our compilation combined with
the progression search solves 99.8% of the instances.

Figure 1 visualizes the runtimes for the TO setting. The
curve on the left is the SAT-based approach from related
work, which has the worst performance, followed by the
parsing-based approach. Our translation combined with the
progression search performs best, followed by our transla-
tion combined with the SAT-based planner.

For the PO setting, our compilation reaches a coverage of
98.9% with the SAT-based planner and a coverage of 90.3%
with the progression search. The SAT-based verifier has a
coverage of 72.0%. We assume that the higher coverage is
caused by the fact that the plans in the PO setting are signif-
icantly shorter. For the PO instances, grounding never fails.

Table 1 shows some characteristic numbers in the TO set-
ting for the different domains. Our approach combined with
the progression search has a coverage of 100% in 18 of 24
domains. The parsing-based system has a higher coverage
in the Childsnack domain, where we have a coverage of
98.1% and the parsing-based system has 99.6%. Though the
parsing-based system also works on a grounded model, it
does not use an external grounder and can incorporate reach-
ability information into the grounding process. This seems



Domain #Plans Verified Shortest Plan Length Runtime for Verified Pearson
SAT Parsing Comp unverified Min–Max Avg Median Min–Max Avg Median Corr-

SAT pro plan elation
Comppro

AssemblyHierarchical 193 24 102 193 193 – 4 – 256 31.1 14 0.07 – 0.76 0.2 0.11 0.812
Barman-BDI 423 79 33 396 423 – 10 – 1198 128.4 69 0.07 – 6.57 0.3 0.14 0.890
Blocksworld-GTOHP 160 2 5 142 160 – 21 – 6661 479.8 209.5 0.07 – 534.39 10.3 0.15 0.906
Blocksworld-HPDDL 172 0 5 143 170 4853 20 – 5732 461.1 163 0.07 – 542.21 15.8 0.19 0.914
Childsnack 529 92 527 516 519 750 50 – 2500 119.8 80 0.12 – 56.20 1.2 0.28 0.864
Depots 455 60 210 436 455 – 15 – 971 129.1 92 0.07 – 4.32 0.3 0.13 0.930
Elevator-Learned 2812 2 213 2700 2812 – 10 – 2165 225.1 200 0.06 – 6.71 0.3 0.21 0.940
Entertainment 159 111 159 159 159 – 24 – 128 71.7 64 0.08 – 4.33 1.6 0.58 0.199
Factories-simple 123 9 9 96 123 – 15 – 2968 623.7 251 0.07 – 17.38 1.8 0.14 0.928
Freecell-Learned 204 0 26 152 204 – 57 – 489 162.7 138.5 2.86 – 13.06 4.9 5.2 0.882
Hiking 565 0 156 565 565 – 26 – 174 70.8 72 0.17 – 45.97 2.4 0.97 0.641
Logistics-Learned 1108 0 9 683 1108 – 27 – 2813 413.1 370 0.07 – 14.55 0.6 0.37 0.919
Minecraft-Player 75 0 0 73 74 278 35 – 278 51.9 44 10.64 – 120.90 73.5 93.61 0.923
Minecraft-Regular 766 0 0 616 734 107 35 – 9947 253.8 135 0.12 – 207.75 11.6 1.455 0.326
Monroe-FO 248 0 176 248 248 – 3 – 96 41.5 39 3.48 – 3.94 3.7 3.66 0.334
Monroe-PO 217 0 63 217 217 – 6 – 91 45.1 45 3.43 – 3.91 3.7 3.67 0.390
Multiarm-Blocksworld 443 9 22 419 443 – 20 – 543 182.1 124 0.07 – 6.25 0.8 0.20 0.903
Robot 117 21 27 85 117 – 2 – 1725 272.4 37 0.06 – 59.25 4.2 0.08 0.914
Rover-GTOHP 509 22 172 397 509 – 16 – 2640 320.7 212 0.06 – 86.33 5.3 1.49 0.827
Satellite-GTOHP 296 9 84 199 296 – 12 – 1584 379.1 270 0.06 – 58.23 6.9 2.67 0.846
Snake 183 153 77 182 183 – 2 – 162 20.6 16 0.09 – 8.99 1.1 0.57 0.230
Towers 17 3 5 8 12 8191 1 – 131071 15419.1 511 0.07 – 141.21 14.6 0.195 0.684
Transport 695 65 239 664 678 382 8 – 5077 188.9 76 0.06 – 406.08 2.4 0.1 0.719
Woodworking 494 251 261 494 494 – 3 – 219 57.5 25 0.08 – 22.49 5.0 1.01 0.994

10963 912 2580 9783 10896 107 1 – 131071 239.2 119 0.06 – 542.21 3.2 0.29 0.273

Table 1: Characteristic numbers for the TO setting. From left to right: Name of the domain, followed by the number of verifica-
tion instances and coverage for all systems per domain. Length of the shortest plan that has not been solved by the progression
search, statistics regarding plan length and runtime. The last column gives the correlation between plan length and runtime.

Domain #Plans Verified Shortest Plan Length Runtime for Verified Pearson
SAT Comp unverified Min–Max Avg Median Min–Max Avg Median Corr-

pro SAT plan elation
CompSAT

Barman-BDI 56 37 46 44 90 10 – 1198 108.4 32 0.01 – 495.17 48.1 6.65 0.621
Monroe-Fully-Observable 129 7 129 129 – 9 – 61 24.9 24 6.85 – 105.65 29.3 14.82 0.656
Monroe-Partially-Observable 104 9 103 104 – 9 – 47 23.3 24 3.84 – 88.76 21.9 14.375 0.234
PCP 26 6 26 26 – 10 – 90 28.0 26 0.01 – 99.15 4.6 0.19 0.772
Rover 144 131 138 144 – 8 – 115 31.2 25 0.01 – 113.22 4.3 0.57 0.579
Satellite 246 246 246 246 – 5 – 28 13.5 13 0.00 – 0.11 0.0 0.02 0.677
Transport 183 150 96 183 – 8 – 69 27.2 28 0.01 – 139.83 2.1 0.23 0.321
UM-Translog 52 52 52 52 – 7 – 37 16.8 13 0.01 – 0.05 0.0 0.02 0.800
Woodworking 137 137 137 137 – 3 – 20 11.9 12 0.00 – 0.36 0.2 0.14 0.863

1077 775 973 1065 90 3 – 1198 25.7 18 0.00 – 495.17 8.8 0.19 0.667

Table 2: Characteristic numbers for the PO setting. From left to right: Name of the domain, followed by the number of verifica-
tion instances and coverage for all systems per domain. Length of the shortest plan that has not been solved by the progression
search, statistics regarding plan length and runtime. The last column gives the correlation between plan length and runtime.

Compilation + PANDApro

Compilation + PANDASAT

Parsing
SAT Verifier

100

101

102

0% 25% 50% 75% 100%

ru
n
ti

m
e

in
se

co
n

d
s

solved instances

Figure 1: Solved instances in percent (on the y axis) relative to
the runtime (on the x axis) for the TO setting.

Compilation + PANDApro
Compilation+ PANDASAT
SAT Verifier

100

101

102

0% 25% 50% 75% 100%

ru
n
ti

m
e

in
se

co
n

d
s

solved instances

Figure 2: Solved instances in percent (on the y axis) relative to
the runtime (on the x axis) for the PO setting.



10−2 10−1 100 101 102
10−2

10−1

100

101

102

TLE

TLE

D
an

ie
lr

un
tim

e
in

se
co

nd
s

Roman runtime in secondsFigure 3: Runtime of our system (y axis) on the TO set com-
pared to the parsing-based approach on the x axis (log scale).

100 101 102 103 104 105 106
10−2

10−1

100

101

102

TLE

ru
nt

im
e

in
se

co
nd

s

length of the plan

Figure 4: Runtime against length of the verified solution (be
aware of the log scale).

to be an advantage in the Childsnack domain. In all other
domains, our system has the highest coverage. For those do-
mains where not all instances have been solved, we included
the length of the shortest plan that could not be verified.

The next table (Table 1) gives statistics on plan length.
Regarding the medians, AssemblyHierarchical is the domain
with the shortest plans (14), and Towers the one with the
longest (511). The median over all domains is 119.

Next, the table gives information about the runtime
needed by our approach (combined with the progres-
sion search). The longest median runtime is needed for
Minecraft-Player. In 16 domains, the median is one second
or less. The last column gives the correlation between the
plan length and the runtime needed for verification.

Table 2 shows the same characteristics for the PO setting.
Notably the plans are much shorter (the average length is
smaller by nearly one order of magnitude). Our compilation
together with the SAT-based planner can verify all plans for
8 of the 9 domains with only Barman-BDI to have some
plans that could not be verified. Notably, these plans are
longer than almost all plans.

Figure 3 shows the runtime of our approach with the pro-
gression search in the TO setting compared to the parsing-
based system. It can be seen that in most instances solved by
both systems, our system is faster than the one from the lit-
erature. If it is not, the difference is about one second or less.
Figure 4 shows a comparison of runtime and plan length. It
can be seen that the runtime of equally long plans can be
very different, but also that longer plans are harder to verify.

Figure 2 visualizes the runtime in the PO setting. It
includes the compilation in combination with SAT-based
PANDA and progression search and the SAT-based verifier.
Like in the TO setting, our approach outperforms the SAT-
based verifier. The plateau in the curves of our approaches
are caused by the Monroe domain, where (especially us-
ing progression search) nearly the entire time is needed for
grounding and not for solving the ground problem.

6 Discussion & Conclusion
We have presented an approach to compile HTN plan verifi-
cation problems to HTN planning problems and have shown
that recent planning systems can solve the resulting prob-
lems for plans with reasonable length (i.e., for plan lengths
resulting from the recent IPC benchmarks/planners).

A possible criticism of a compilation-based approach
might be that one has to rely on the correctness of the applied
HTN planning system. So the question is why we rely more
on these systems than on the planning system that has gener-
ated the plan in the first place. Since HTN planning systems
are complex systems, we agree that these systems might also
be incorrect (though this might also be the case for verifiers,
of course). However the HTN planning systems used in our
evaluation return the decomposition steps performed to find
a plan as specified for the IPC. Therefore they provide a wit-
ness for the validity of their result (at least for cases where
they find a solution) that can be checked with the much sim-
pler systems based on these steps. So we can e.g. use the
verifier developed for the IPC to check our results.

For cases where the HTN planning system does not find a
solution, we cannot provide a meaningful explanation why
planning failed. However, please note that what we would
like to have here is a certificate of unsolvability of a planning
problem, which is at least in classical planning an active field
of research (see e.g. (Eriksson, Röger, and Helmert 2017;
Eriksson and Helmert 2020)), though we are not aware of
similar work in HTN planning.

As most important steps in future work we consider the
collection of unsolvable instances from early runs of the IPC
planners and the comparison to the parsing-based approach
in the setting of PO planning.

The performance of the progression-based system on the
PO benchmark set points to other lines of research. One
is to help the planners by propagating the implications of
the total order of the plan though the partial ordered HTN
model. Since this is another compilation, it would preserve
the property of needing no specialized solver. A second
promising direction is to actually adapt the planner and,
e.g., come up with specialized heuristics that take the addi-
tional information about the problem into account. Natural
candidates would be the landmark heuristic by Höller and



Bercher (2021), which might benefit from the ordering con-
straints implied by the solutions, or the IP-based heuristic
introduced by Höller, Bercher, and Behnke (2020), where
it is straightforward to integrate the additional knowledge.
However, such systems would, of course, lack the elegance
of using standard planning systems.

Acknowledgments
Gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – Projektnummer 232722074 – SFB 1102 / Funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project-ID 232722074 – SFB 1102.

References
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012. HTN
Problem Spaces: Structure, Algorithms, Termination. In Proc. of
the 5th Annual Symposium on Combinatorial Search (SoCS), 2–9.
AAAI Press.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Validation of Hi-
erarchical Plans via Parsing of Attribute Grammars. In Proc. of the
28th Int. Conf. on Automated Planning and Scheduling (ICAPS),
11–19. AAAI Press.
Barták, R.; Ondrcková, S.; Maillard, A.; Behnke, G.; and Bercher,
P. 2020. A Novel Parsing-based Approach for Verification of Hier-
archical Plans. In Proc. of the 32nd IEEE Int. Conf. on Tools with
Artificial Intelligence (ICTAI), 118–125. IEEE Press.
Behnke, G. 2021. Block Compression and Invariant Pruning for
SAT-based Totally-Ordered HTN Planning. In Proc. of the 31st
Int. Conf. on Automated Planning and Scheduling (ICAPS), 25–35.
AAAI Press.
Behnke, G.; Bercher, P.; Kraus, M.; Schiller, M.; Mickeleit, K.;
Häge, T.; Dorna, M.; Dambier, M.; Minker, W.; Glimm, B.; and Bi-
undo, S. 2020a. New Developments for Robert – Assisting Novice
Users Even Better in DIY Projects. In Proc. of the 30th Int. Conf.
on Automated Planning and Scheduling (ICAPS), 343–347. AAAI
Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Complexity
of HTN Plan Verification and Its Implications for Plan Recogni-
tion. In Proc. of the 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), 25–33. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a solution!
(. . . but is it though?) – Verifying solutions of hierarchical planning
problems. In Proc. of the 27th Int. Conf. on Automated Planning
and Scheduling (ICAPS), 20–28. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT – Totally-
Ordered Hierarchical Planning through SAT. In Proc. of the 32nd
AAAI Conf. on Artificial Intelligence (AAAI), 6110–6118. AAAI
Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing Order to
Chaos – A Compact Representation of Partial Order in SAT-based
HTN Planning. In Proc. of the 33rd AAAI Conf. on Artificial Intel-
ligence (AAAI), 7520–7529. AAAI Press.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo, S.
2020b. On Succinct Groundings of HTN Planning Problems. In
Proc. of the 34th AAAI Conf. on Artificial Intelligence (AAAI),
9775–9784. AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on Hierar-
chical Planning – One Abstract Idea, Many Concrete Realizations.
In Proc. of the 28th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI), 6267–6275. IJCAI organization.

Bercher, P.; Behnke, G.; Kraus, M.; Schiller, M.; Manstetten, D.;
Dambier, M.; Dorna, M.; Minker, W.; Glimm, B.; and Biundo, S.
2021. Do It Yourself, but Not Alone: Companion-Technology for
Home Improvement – Bringing a Planning-Based Interactive DIY
Assistant to Life. Künstliche Intelligenz – Special Issue on NLP
and Semantics .
de Silva, L.; Padgham, L.; and Sardina, S. 2019. HTN-Like So-
lutions for Classical Planning Problems: An Application to BDI
Agent Systems. Theoretical Computer Science 763: 12–37.
Eriksson, S.; and Helmert, M. 2020. Certified Unsolvability for
SAT Planning with Property Directed Reachability. In Proc. of the
30th Int. Conf. on Automated Planning and Scheduling (ICAPS),
90–100. AAAI Press.
Eriksson, S.; Röger, G.; and Helmert, M. 2017. Unsolvability Cer-
tificates for Classical Planning. In Proc. of the 27th Int. Conf. on
Automated Planning and Scheduling (ICAPS), 88–97. AAAI Press.
Höller, D. 2021. Translating Totally Ordered HTN Planning Prob-
lems to Classical Planning Problems Using Regular Approximation
of Context-Free Languages. In Proc. of the 31st Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS), 159–167. AAAI Press.
Höller, D.; and Behnke, G. 2021. Loop Detection in the PANDA
Planning System. In Proc. of the 31st Int. Conf. on Automated
Planning and Scheduling (ICAPS), 168–173. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018. Plan and
Goal Recognition as HTN Planning. In Proc. of the 30th IEEE Int.
Conf. on Tools with Artificial Intelligence (ICTAI), 466–473. IEEE
Computer Society.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2021. The
PANDA Framework for Hierarchical Planning. Künstliche Intel-
ligenz doi:10.1007/s13218-020-00699-y.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.; Pel-
lier, D.; and Alford, R. 2020a. HDDL: An Extension to PDDL for
Expressing Hierarchical Planning Problems. In Proc. of the 34th
AAAI Conf. on Artificial Intelligence (AAAI), 9883–9891. AAAI
Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in HTN
Planning. In Proc. of the 35th AAAI Conf. on Artificial Intelligence
(AAAI), 11826–11834. AAAI Press.
Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and Ordering-
Relaxation Heuristics for HTN Planning. In Proc. of the 29th Int.
Joint Conf. on Artificial Intelligence (IJCAI), 4076–4083. IJCAI
organization.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018. A
Generic Method to Guide HTN Progression Search with Classical
Heuristics. In Proc. of the 28th Int. Conf. on Automated Planning
and Scheduling (ICAPS), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b. HTN
Plan Repair via Model Transformation. In Proc. of the 43rd Ger-
man Conference on AI (KI), 88–101. Springer.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020c. HTN
Planning as Heuristic Progression Search. Journal of Artificial In-
telligence Research 67: 835–880.
Köhn, A.; Wichlacz, J.; Torralba, Á.; Höller, D.; Hoffmann, J.; and
Koller, A. 2020. Generating Instructions at Different Levels of Ab-
straction. In Proc. of the 28th Int. Conf. on Computational Linguis-
tics (COLING), 2802–2813. International Committee on Computa-
tional Linguistics.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017. Ground-
ing of HTN Planning Domain. International Journal on Artificial
Intelligence Tools 26(5): 1760021:1–1760021:24.


