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Abstract

Incorporating user requests into planning processes is a key
concept in developing flexible planning technologies. Such
systems may be required to change its planning model to
adapt to certain user requests. In this paper, we assume a user
provides a non-solution plan to a system and asks it to change
the planning model so that the plan becomes a solution. We
study the computational complexity of deciding whether such
changes exist in the context of Hierarchical Task Network
(HTN) planning. We prove that the problem is NP-complete
in general independent of what or how many changes are al-
lowed. We also identify several conditions which make the
problem tractable when they are satisfied.

1 Introduction
Incorporating humans into planning processes has emerged
as the frontier of the research in automatic planning for its
potential to accomplish highly complicated tasks, e.g., see
the works by Ferguson, Allen, and Miller (1996), Fergu-
son and Allen (1998), Ai-Chang et al. (2004), Bresina et al.
(2005), and Behnke et al. (2016). One major challenge faced
by the community in this direction is how to deal with the sit-
uation where a planning agent acts different from what a user
expects. For instance, an agent may find a planning problem
being unsolvable under its model whereas a user thinks it
is not the case, or an agent offers a plan which differs from
the one produced by a user himself/herself. The treatment
for this problem varies in the role a user plays in the plan-
ning process. An end user may be curious about why the sys-
tem’s behavior is not in line with his/her expectation, namely
looking for the explanations about the questions like “why
the problem is unsolvable?” and “why my plan is not a so-
lution?”. Such explanations might be formulated either via
transforming the planning model accordingly, e.g., changing
the initial state (Göbelbecker et al. 2010) and abstracting the
planning model to a certain level (Sreedharan, Srivastava,
and Kambhampati, 2018; 2019), or via adjusting the user’s
expectation, e.g., correcting the plan the user has in mind
(Barták et al. 2021a) and model reconciliation (Chakraborti
et al., 2017; 2020). On the other hand, if the human involved
is a domain writer, he/she may want to modify the planning
model so that the agent’s behavior can align with his/her an-
ticipation. To this end, providing modeling assistance to help
the domain writer comprehend the planning domain (Olz

et al. 2021) or identify possible modeling errors via model
transformations (Keren et al. 2017; Sreedharan et al. 2020)
is vital especially when the planning domain is rather com-
plicated.

In this paper, we re-visit a scenario we previously stud-
ied (Lin and Bercher 2021) where a user provides a plan
and claims that it is supposed to be a solution to some plan-
ning problem, though it is actually not, and transformations
on the planning model are required so that it will be. In our
earlier work, we investigated the computational complexity
of deciding whether such transformations can be found in
the framework of totally ordered HTN (TOHTN) planning,
which is a hierarchical approach of planning. Here we will
extend those results. Our contributions are twofold. 1) We
generalize our study to cover partially ordered HTN (PO-
HTN) planning. 2) We consider the scenario with regard to
different forms of the user input. For instance, a user could
provide a partially ordered or sequential potential solution
plan. The main results are summarized in Tab. 1

2 HTN Planning
We start with an introduction to the HTN formalism, which
is based on the one by Bercher, Alford, and Höller (2019)
and by Geier and Bercher (2011). We first give the definition
of task networks.

Definition 1. A task network tn is a tuple (T,≺, α) where
T is a set of task identifiers, ≺ ⊆ T × T specifies the partial
order defined over T , and α is a function that maps a task
identifier to a task name.

Definition 2. Two task networks tn = (T,≺, α) and tn′ =
(T ′,≺′, α′) are said to be isomorphic, written tn ∼= tn′, if
and only if there exists a one-to-one mapping φ : T → T ′

such that for all t ∈ T , α(t) = α′(φ(t)), and for all t1, t2 ∈
T , if (t1, t2) ∈ ≺, (φ(t1), φ(t2)) ∈ ≺′.

The task names in a task network are further categorized
as being primitive or compound. Primitive task names are
mapped to respective actions by a function δ. The action of
a primitive task name p, δ(p) = (prec, add, del), consists of
p’s precondition, add, and delete list, respectively. We also
write (prec(p), add(p), del(p)) for short. On the other hand,
a compound task name c can be refined (decomposed) into a
task network tn by some method m = (c, tn).



Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 2 Cor. 4
Order Thm. 2

(a) The complexity of changing planning models provided with
a PO task network that is supposed to be a solution.

Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 6 Cor. 8
Order Thm. 6

P (Conditioned) Action Thm. 3 & 7 ?

(b) The complexity of changing planning models provided with
a PO/TO task network and a method sequence that is supposed
to generate it. Special cases with changing actions being al-
lowed that cover both totally ordered and partially ordered HTN
planning are in P. Whether similar cases exist for the bounded
version remains open (marked with ‘?’).

Complexity Changes Theorems
Any Changes k Changes

NP-complete Action Cor. 10 Cor. 13
Order Cor. 11

(c) The complexity of changing planning models provided with
an action sequence that is supposed to be a linearisation of a
non-given solution task network.

Table 1: The computational complexity of the problems
studied in this paper and the respective theorems (corollar-
ies). The column ‘Changes’ specifies the target that changes
are imposed to, i.e., changing actions or ordering constraints.
The column ‘Any Changes’ refers to the case where an ar-
bitrary number of changes can be applied, and ‘k Changes’
refers to the case where at most k changes can be applied.

Given a task network tn, the notations T (tn), ≺(tn), and
α(tn) refer to the task identifier set, the partial order, and the
identifier-name mapping function of tn, respectively. For a
method m, we use tn(m) to refer to its task network.

For convenience, we also define a restriction operation.
Definition 3. Let D and V be two arbitrary sets, R ⊆ D ×
D be a relation, f : D → V be a function and tn be a
task network. The restrictions of R and f to some set X are
defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V )
• tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

A planning problem is then defined as follows.
Definition 4. An HTN planning problem P is a tuple
(D, tnI , sI) where D is called the domain of P . It is a tuple
(F,Np, Nc, δ,M) in which F is a finite set of facts, Np is a
finite set of primitive task names, Nc is a finite set of com-
pound task names withNc∩Np = ∅, δ : Np → 2F×2F×2F
is a function that maps primitive task names to their actions,

and M is a set of (decomposition) methods. tnI is the initial
task network, and sI ∈ 2F is the initial state.

Definition 5. Let tn = (T,≺, α) be a task network, t ∈
T be a task identifier, c be a compound task name with
(t, c) ∈ α, and m = (c, tnm) be a method. We say m de-
composes tn into another task network tn′ = (T ′,≺′, α′),
written tn→m tn′, if and only if there exists a task network
tn′m = (Tm,≺m, αm) with tn′m ∼= tnm such that
• T ′ = (T\{t}) ∪ Tm.
• ≺′ = (≺∪≺m∪≺X)|T ′ , where≺X = {(t1, t2) | (t1, t) ∈
≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ Tm}.

• α′ = (α\{(t, c)}) ∪ αm.
Additionally, a task network tn is decomposed into another
task network tn′ by a sequence of methods m = m1 · · ·mn

(n ∈ N0 with N0 = N ∪ {0}), written tn →∗m tn′, if and
only if there exists a sequence of task networks tn0 · · · tnn
such that tn0 = tn, tnn = tn′, and for each 1 ≤ i ≤ n,
tni−1 →mi tni. Particularly, tn→∗m tn if m is empty.

The solution criteria of a planning problem are then de-
fined as follows.

Definition 6. Let P = (D, tnI , sI) be an HTN planning
problem. A solution to P is a task network tn such that all
tasks in it are primitive, there exists a method sequence m
that decomposes tnI into it, i.e., tnI →∗m tn, and it pos-
sesses a linearisation of the tasks that is executable in sI .

A linearisation t1 · · · tn of a (primitive) task network is
executable in a state s if there exists a sequence of states
s0 · · · sn such that s0 = s, and for each 1 ≤ i ≤ n, si−1 ⊆
prec(α(ti)) and si = (si−1\del(α(ti))) ∪ add(α(ti).)

The presented definition is standard in HTN planning as
proposed by Erol, Hendler, and Nau (1996) and used in sub-
sequent publications as well (Bercher, Alford, and Höller
2019). Other formalizations of hierarchical planning such
as hybrid planning (Bercher et al. 2016) which fuses HTN
planning with Partial Order Causal Link (POCL) where in
solution plans every linearization is executable. We will also
provide this alternative solution criterion.

Definition 7. Let P = (D, tnI , sI) be an HTN planning
problem. A solution to P is a task network tn such that all
tasks in it are primitive, there exists a method sequence that
decomposes tnI into tn, and every linearisation of tn is ex-
ecutable in sI .

The reason for including the more restricted solution cri-
terion is to be able to identify the cause of computational
hardness when model changes are required, though it is
somehow unrealistic. A more practical one would be ‘a
task network tn is a solution iff it can be obtained via de-
compositions, and by adding some ordering constraints, ev-
ery linearisation of it is executable’. However, the require-
ment of asking for additional ordering constraints has the
same algorithmic lower bound as deciding whether tn has
an executable linearisation, which itself is NP-hard already
(Nebel and Bäckström 1994; Erol, Hendler, and Nau 1996)1,
because if such extra ordering constraints can be found,

1See Bercher (2021) for a discussion and further related work.
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Figure 1: The scenarios where model change is involved.
Criterion 1 states that a task network is a solution iff it is a
refinement of tnI and there exists a linearisation of it which
is executable, whereas Criterion 2 requires that every lineari-
sation is executable.

tn must have an executable linearisation. Thus, if we de-
mand the solution criterion given by Def. 6 or the one re-
quiring extra ordering constraints, it would not be clear
where NP-hardness comes from. On the other hand, veri-
fying whether all linearizations of a task network are ex-
ecutable was shown to be tractable (Nebel and Bäckström
1994; Chapman 1987).2 Consequently, we list Def. 6 only
for the sake of completeness, and we will adhere to Def. 7
throughout the paper in order to eliminate the ambiguous
hardness source, unless otherwise indicated.

Fig. 1 previews what scenarios will be considered next.
In the right branch we assume that a partially ordered plan
is provided that is supposed to be a solution. Although we
provide two solution criteria with regard to this case, we will
primary focus on the one given by Def. 7. In the left branch
we consider the case where an action sequence is provided
rather than a partially ordered plan.

3 Changing the Model
For the purpose of changing planning models, we shall first
define the allowed changes. We have introduced several
model-change operations in the context of totally ordered
HTN planning in our earlier work (Lin and Bercher 2021),
which is a restricted version of HTN planning where the
tasks in each task network in a planning model are totally
ordered. For such a task network tn, its definition can be
simplified by regarding it as a sequence of task names, i.e.,
tn ∈ (Np∪Nc)

∗. We first reproduce the definitions of those

2Nebel and Baeckstroem did not show this in the context of
HTN planning, but for unconditional event systems. These, how-
ever, perfectly coincide with a partially ordered set of actions such
as in primitive task networks. A more detailed discussion can be
found in the work by Bercher and Olz (2020).

operations since we will require them later on.
Definition 8. Let p be a primitive task name, m = (c, tn)
with tn = t1 · · · tn be a method, and 1 ≤ i ≤ n + 1 be
an integer. The operation ACT+

TO is a function that takes as
inputs p, m, and i and outputs a new method m′ = (c, tn′)
such that tn′ = tn1 p tn2 where tn1 = t1 · · · ti−1 and tn2 =
ti · · · tn.
Definition 9. Let m = (c, tn) be a method where tn =
tn1 p tn2 with tn1 = t1 · · · ti−1 and tn2 = ti+1 · · · tn be
two sequences of task names, and p be a primitive task name.
The operation ACT−

TO is a function that takes as inputs m
and i and outputs a new method m′ = (c, tn′) such that
tn′ = tn1 tn2.

We use CTO to refer to the set of changes allowed in to-
tally ordered HTN planning. On top of those operations, we
define several new operations that are targeted at partially
ordered HTN planning problems. We first consider the oper-
ations that change the ordering constraints in a method.
Definition 10. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t1, t2 ∈ T be two task identifiers. The operation
ORD+ is a function that takes as inputs m and (t1, t2) and
outputs a new method m′ = (c, tn′) with tn′ = (T ′,≺′, α′)
such that T ′ = T , ≺′ = (≺ ∪ {(t1, t2)})+3, and α′ = α.
Definition 11. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t1, t2 ∈ T be two task identifiers with (t1, t2) ∈
≺. The operation ORD− is a function that takes as inputs m
and (t1, t2) and outputs a new method m′ = (c, tn′) with
tn′ = (T ′,≺′, α′) such that T ′ = T , ≺′ = ≺\{(t1, t2)},
and α′ = α.

We then consider the operations that change the actions
(primitive tasks) in a method. We start with the operation
which adds an action to a method’s task network.
Definition 12. Let m = (c, tn) with tn = (T,≺, α) be
a method, TA = {t1, · · · , tn} and TB = {t′1, · · · t′m} with
n,m ∈ N and TA∩TB = ∅ be two subsets of T , and p ∈ Np

be a primitive task name. The operation ACT+
PO is a function

that takes as inputs m, TA, TB , and p and outputs a new
methodm′ = (c, tn′) with tn′ = (T ′,≺′, α′) such that T ′ =
T ∪{t} with t /∈ T be a new task identifier,≺′ = (≺∪≺A∪
≺B)

+ with ≺A =
⋃n

i=1{(ti, t)} and ≺B =
⋃m

i=1{(t, t′i)},
and α′ = α ∪ {(t, p)}.

Informally, the above operation inserts a primitive task to
a position in tn that is after the tasks listed in TA and before
those in TB . For instance, a new task is placed before all
tasks in tn if TA = ∅ and TB = T . On the other hand,
when removing an action from a method, we should delete
all ordering constraints associated with this action.
Definition 13. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t ∈ T be a task identifier. The operation ACT−

PO
is a function that takes as inputs m and t and outputs a new
method m′ = (c, tn′) with tn′ = tn|T\{t}.

Similarly, we use CPO to refer to the set of change oper-
ations allowed in a partial order setting. Given two meth-
ods m, m′ and a sequence of model-change operations

3The superscript + refers to the transitive closure.



X = x1(m1, ∗) · · ·xn(mn, ∗) where for each 1 ≤ i ≤
n, xi ∈ CTO if a total order setting is given, otherwise
xi ∈ CPO, mi is a method, and ∗ refers to the remain-
ing parameters in the operation. We write m →∗X m′ if
m = m1, m′ = xn(mn, ∗), and for each 1 ≤ i ≤ n − 1,
mi+1 = xi(mi, ∗).
Definition 14. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M) and M = {m1, · · · ,mn} be a planning
problem, and X be a sequence of method-changes. A prob-
lem P ′ = (D′, tnI , sI) with D′ = (F,Np, Nc, δ,M

′) and
M ′ = {m′1, · · · ,m′n} is obtained from P by applying X ,
written P →∗X P ′ if and only if for each 1 ≤ i ≤ n, either
m′i = mi or there exists a sub-sequence Xi of X such that
mi →∗Xi

m′i.

The definition is applied to both partially ordered and to-
tally ordered HTN planning, and it implies that the method
set in P maintains a one-to-one mapping to that in P ′. We
use βX : M → M ′ to denote this mapping, where for each
method mi with 1 ≤ i ≤ n, βX (mi) = m′i.

Now we have defined all necessary model changes, we
can move on to investigate the computational complexity of
checking whether a change sequence exists that turns the
given task network into a solution.

4 Complexity of Correcting the Model –
Given Just A Task Network

We start by considering the question asking whether there
exists a sequence of model-change operations with arbitrary
length that turns a given partially ordered task network into
a solution. We formulate the decision problem as follows,
which generalizes the old one we gave for totally ordered
HTN planning.

Definition 15. Let X ⊆ {ACT+
SET,ACT−

SET,ORD+,ORD−}
and |X| ≥ 1, SET ∈ {TO, PO}, P be a planning problem,
and tn be a task network. The problem FIXMETHSX

SET with
SET specifying whether it is in a TO or a PO setting is to
decide whether there is a sequence of change operations X
consisting of the operations restricted byX such that P →∗X
P ′, and tn is a solution to P ′.

The hardness of the problem in a PO setting can be imme-
diately obtained under the solution criterion given by Def. 6
(because deciding whether a partially ordered task network
has an executable linearisation is already NP-hard). Thus,
the question of interest is whether NP-hardness (henceforth
NP-completeness) holds when we employ the solution crite-
rion given by Def. 7. For this, we first consult our old result
(Lin and Bercher 2021) that the problem is NP-complete in
totally ordered HTN planning.

Proposition 1 (Lin and Bercher (2021, Thm. 1–4)). Given
an X ⊆ {ACT+

TO,ACT−
TO} and |X| ≥ 1, FIXMETHSX

TO is
NP-complete.

This proposition holds for both solution criteria given by
Def. 6 and 7 because every task network in totally ordered
HTN planning has only one linearisation. Since totally or-
dered HTN planning is a restricted version of partially or-
dered HTN planning, the hardness of the variants in the con-

text of partially ordered HTN planning where only changing
actions is allowed follows directly.

Corollary 1. FIXMETHSX
PO with X ⊆ {ACT+

PO,ACT−
PO}

and |X| ≥ 1 is NP-hard.

Next we show that these variants are in NP as well. To
this end, we first prove that there always exists a polynomial
upper bound of the length of the shortest change sequence
that turns the given task network into a solution independent
of what changes are allowed.

Lemma 1. Let P and tn be a planning problem and a task
network given by an instance of the FIXMETHSX

PO problem
with X ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and X ≥ 1.

There must exist a change sequence X consisting of changes
restricted by X such that P →∗X P ′, tn is a solution to P ′,
and |X | ≤ (

∑
(c,tnm)∈M |T (tnm)|+|≺(tnm)|)+|T (tn)|+

|≺(tn)| provided that any change sequence exists that meets
the restriction of X and turns tn into a solution.

Proof. We first consider the variant where all changes are
allowed. We need to show that the upper bound presented
is sufficient for the shortest change sequence. In such a
change sequence, the number of action deletions must not
exceed the total number of tasks in all methods, which is∑

(c,tnm)∈M |T (tnm)|, otherwise, there must exist some ac-
tion that is added first and removed afterward, and thus a
shorter change sequence exists. For the same reason, the
number of ordering constraint deletions is smaller or equal
to

∑
(c,tnm)∈M |≺(tnm)|, which is the total number of or-

dering constraints in all methods. On the other hand, the
number of action insertions in the shortest change sequence
cannot exceed the total number of tasks in tn (i.e., |T (tn)|),
otherwise, some inserted actions must be deleted, and thus
a shorter change sequence exists. The same argument holds
for the number of ordering constraint insertions, which can-
not exceed |≺(tn)|. Thus, the presented upper bound holds.

For the remaining variants, the length of the shortest
change sequence is strictly smaller than the presented up-
per bound because some changes are forbidden, e.g., if
only adding actions is allowed, the length of the shortest
change sequence must not exceed |T (tn)|. Thereby, the up-
per bound holds for all variants.

The presented lemma not only reveals the NP-
membership of the variants where only changing actions is
allowed, but the fact that all classes are in NP.

Theorem 1. Let X ⊆ {ACT+
PO,ACT−

PO,ORD+,ORD−} and
X ≥ 1. FIXMETHSX

PO is in NP.

Proof. For each X ⊆ {ACT+
PO,ACT−

PO,ORD+,ORD−} and
X ≥ 1, we can guess a change sequence of length smaller
or equal to the upper bound stated in Lem. 1 which turns
P into P ′ and consists of operations restricted by X . This
step can be done in poly-time because the change sequence
is bounded in length by a polynomial. Afterward, we ver-
ify whether every linearisation of tn is executable, which
can be accomplished in polynomial time as well (Nebel and
Bäckström 1994; Chapman 1987). Lastly, we employ the
non-deterministic VERIFYTN algorithm (Behnke, Höller,



and Biundo 2015) to check whether tnI can be decomposed
into tn under the modified domain. Although the VERI-
FYTN algorithm is developed under the solution criterion
given by Def. 6, it can be employed here because it is ex-
ploited in the sense that we do not need to consider the exe-
cutability of tn (which has been verified previously). Thus,
FIXMETHSX

PO is in NP.

The NP-completeness of the variants where only chang-
ing actions in methods is allowed is thus a direct corollary
of the previous results.

Corollary 2. FIXMETHSX
PO with X ⊆ {ACT+

PO,ACT−
PO}

and |X| ≥ 1 is NP-complete.

What is new compared to totally ordered HTN planning
are the operations that change ordering constraints in meth-
ods. It turns out that deciding whether we can transform
a plan into a solution via changing ordering constraints in
methods is NP-complete as well.

Theorem 2. FIXMETHSORD+

PO is NP-complete.

Proof. Membership has been given by Thm. 1. For hard-
ness, we reduce from the independent set problem. The in-
dependent set problem is that given a graph G = (V,E)
and an integer k ∈ N, we want to decide whether there
is a subset V ′ ⊆ V such that |V ′| = k, and there are
no two vertices in V ′ which are connected to each other
by an edge in E. Suppose k ∈ N and G = (V,E) with
V = {v1, · · · vn} and E = {e1, · · · , em} are the integer
and the graph given by an instance of the independent set
problem. The key idea of the reduction is constructing a
planning problem P whose initial task network tnI encodes
the structure of G. To this end, we construct one compound
task vci (1 ≤ i ≤ n) for each vertex vi and one primitive
task epi (1 ≤ i ≤ m) for each edge ei. The initial task
network tnI consists of two parts as shown by Fig. 2. The
first part contains the unordered tasks vc1, · · · , vcn. The sec-
ond part is m continuous blocks E1 · · ·Em

4. A block Ei

(1 ≤ i ≤ m) consists of the primitive task epi , two com-
pound tasks vci1 and vci2 (1 ≤ i1, i2 ≤ n) whose respec-
tive vertices vi1 and vi2 in G are connected by the edge ei,
and one additional compound task hci . Further, the block also
has the ordering constraints (epi , v

c
i1
), (epi , v

c
i2
), and (epi , h

c
i )

which are drawn by thin arrows. Each thick arrow in the fig-
ure represents a set of ordering constraints specifying that
all tasks in the left-hand side are ordered before those in
the right-hand side. Afterward, we construct one method
mvi = (vci , tnvi) with tnvi = ({t1, t2}, ∅, {(t1, s), (t2, s)})
for each vci in which s is an action. Additionally, for each
hci (1 ≤ i ≤ m), we construct a method mhi

= (hci , tnhi
)

such that tnhi
= ({t1, t2}, ∅, {(t1, s), (t2, s)}) as well. Fi-

nally, we construct the target task network tn as shown by
Fig. 2. By construction, each compound task in tnI has only
one method that can decompose it. Adding an ordering con-
straint to some method mvi with 1 ≤ i ≤ n is now equiv-
alent to selecting the respective vertex into the independent
set. Next we show that an independent set of size k exists if

4Note that each Ei (1 ≤ i ≤ m) is not a compound task but an
abbreviation of a component in tnI .

and only if tn can be turned into a solution by adding order-
ing constraints to methods.

( =⇒ ): Suppose V ′ is an independent set of size k. The
change sequence that turns tn into a solution can be found
as follows. For each vi ∈ V ′, we add the ordering constraint
(t1, t2) to the method mvi . Afterward, we examine whether
there exists some edge ej of which two endpoints are not
in V ′, and if it is the case, we add the ordering constraint
(t1, t2) to the method mhj . By accomplishing this proce-
dure, tn can now be obtained from tnI .

( ⇐= ): Suppose X is a change sequence that turns tn
into a solution. An independent set of size k can be found
by examining each operation in X iteratively and check-
ing whether it adds the ordering constraint (t1, t2) to some
method mvi (1 ≤ i ≤ n). If so, the respective vertex vi is in
the set. The remaining operations that adds (t1, t2) to some
mhi (1 ≤ i ≤ m) can be simply ignored.

Note that the only difference between the solution (which
is uniquely defined) to the (unmodified) planning problem P
and the task network tn in the presented proof is their order-
ing constraints. Thus, the proof still holds when the opera-
tions that change actions in methods are allowed. Moreover,
since each method constructed in the proof does not have
any ordering constraint at the beginning, allowing ordering
constraint deletions is redundant as well. The following re-
sult is then a direct corollary.
Corollary 3. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXMETHSX
PO is NP-complete.

Instead of asking whether there exists a change sequence
of arbitrary length that transforms a task network into a so-
lution, we are also interested in finding an optimal one. The
decision problem asking for that is formulated in terms of an
additional integer k.
Definition 16. Let X ⊆ {ACT+

SET,ACT−
SET,ORD+,ORD−}

and X ≥ 1, SET ∈ {TO, PO}, and k ∈ N, the problem
FIXMETHSX,k

SET is identical to FIXMETHSX
SET except that any

change sequence should be limited in length by k.
We have shown in our previous work that the problem

is NP-complete in a total order setting (Lin and Bercher,
Cor. 1). In a partial order setting, any given FIXMETHSX

PO
instance can be reduced to a FIXMETHSX,k

PO instance by repli-
cating the planning problem and the target task network
given and setting k to the upper bound given by Lem. 1.
Hardness thus follows immediately. For membership, al-
though the given k can be exponentially large via logarith-
mic encoding, we can always guess a change sequence of
length smaller than the minimum of k and the polynomial
bound given by Lem. 1. Thereby, the problem is in NP as
well.
Corollary 4. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXMETHSX,k
PO is NP-complete.

5 Complexity of Fixing the Model – Given A
Task Network and A Method Sequence

So far our investigation only consider a given planning prob-
lem and a task network which is supposed to be a solution.
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One can identify that one possible source of hardness is that
we do not know which methods should be applied to gen-
erate the task network in question. To eliminate this source,
we consider another scenario where we are given not only a
task network and a planning problem, but a decomposition
method sequence that is supposed to decompose the initial
task network into the given one. For the practical motivation
for this scenario, consider, e.g., a scenario in the context of
modeling assistance where a user provides a plan as well
as a method sequence to a planning system and argues that
the plan must be generated by the given method sequence,
whereas a plan verification system (Behnke, Höller, and Bi-
undo 2017; Barták, Maillard, and Cardoso 2018; Barták
et al. 2020, 2021b) rejects the plan. Thus, there must be some
methods in the planning model that are incorrectly imple-
mented. Correcting the model and identifying which meth-
ods are flawed can not only satisfy user requests but serve
as counter-factual explanations (Ginsberg 1986; Chakraborti
et al. 2017; Chakraborti, Sreedharan, and Kambhampati
2020) telling users what are the implementation errors in the
case that plan verification fails, e.g., in a hierarchical plan-
ning competition.

Definition 17. Let X ⊆ {ACT+
SET,ACT−

SET,ORD+,ORD−}
and |X| ≥ 1, SET ∈ {TO, PO}, P be a planning problem,
m = m1 · · ·mn (n ∈ N0) be a sequence of methods, and
tn be a task network. The problem FIXMSEQX

SET with SET
specifying whether it is in a TO or a PO setting is to decide
whether there is a sequence of change operations X consist-
ing of the operations restricted by X such that P →∗X P ′,
and tnI →∗m′ tn with m′ = βX (m1) · · ·βX (mn).

In our early study (Lin and Bercher 2021) we have shown
that the problem is NP-complete in general in the context
of totally ordered HTN planning. Here we will extend this
result by showing that the presence of the method sequence
does make the problem become easier when certain condi-
tions are satisfied.

Proposition 2 (Lin and Bercher (2021, Thm. 5)).
FIXMSEQX

TO with X ⊆ {ACT+
TO,ACT−

TO} is NP-complete.

Theorem 3. Let X = {ACT+
TO,ACT−

TO}. The problem
FIXMSEQX

TO can be decided in constant time if tnI con-
tains no primitive tasks and there exists at least one method

mi = (ci, tni) (1 ≤ i ≤ n) in m such that for all
mj = (cj , tnj) with 1 ≤ j ≤ n and j 6= i, ci 6= cj .

Proof. Suppose mi is the method in m that satisfies those
conditions. A change sequence that turns tn into a solution
can always be found by first removing every action from
each method in m and then inserting the tasks in tn in turn
into mi. Thus, the problem is constant time decidable.

Unfortunately, Thm. 3 does not hold in the case where we
are only allowed to add or remove actions.

Theorem 4. FIXMSEQACT−
TO

TO is NP-complete even if tnI
and m satisfy the conditions presented in Thm. 3.

Proof. Let X = ACT−
TO. Membership follows from Prop.

2. For hardness, we reduce from the general FIXM-
SEQX

TO problem. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M), m, and tn be the planning problem, the
method sequence, and the task network given by an in-
stance of the general FIXMSEQX

TO problem, respectively. We
construct an equivalent instance as follows. We first con-
struct a planning problem P ′ = (D′, tn′I , sI) with D′ =
(F,Np, Nc ∪ {c′}, δ,M ∪ {m′}) where c′ is an additional
compound task name, m′ = (c′, ε) decomposes c′ into an
empty task network, and tn′I = tnI c

′. Afterwards, we con-
struct the method sequence m′ = mm′ and keep tn un-
changed. Since m′ results in an empty task network, we im-
plicitly forbid ACT−

TO being applied to it. Thus, the general
problem has a ‘yes’ answer if and only if the problem we
constructed has one.

Theorem 5. FIXMSEQACT+
TO

TO is NP-complete even if tnI
and m satisfy the conditions presented in Thm. 3.

Proof. Let X = ACT+
TO. Membership follows from Prop.

2. For hardness, we reduce from the general FIXM-
SEQX

TO problem. Let P = (D, tnI , sI) with D =
(F,Np, Nc, δ,M), m, and tn be the planning problem, the
method sequence, and the task network given by an instance
of the general FIXMSEQX

TO problem, respectively. To com-
plete the reduction, we first construct the planning problem
P ′ = (D′, tn′I , sI) with D′ = (F,Np ∪ {p′1, p′2}, Nc ∪
{c′1, c′2}, δ,M ∪ {m′1,m′2}) where p′1 and p′2 are two ad-
ditional primitive tasks, c′1 and c′2 are additional compound



tasks, m′1 = (c′1, p
′
1) and m′2 = (c′2, p

′
2) decompose c′1 and

c′2 to p′1 and p′2, respectively, and tn′I = tnI c
′
1 c
′
1 c
′
2. Next

we construct the method sequence m′ = mm′1m
′
1m
′
2 and

the task network tn′ = tn p′1 p
′
1 p
′
2 that should be a solu-

tion to the modified planning problem. The existence of p′1
and p′2 ensures that actions cannot be added to m′1 and m′2.
Thus, the general FIXMSEQX

TO instance has a yes answer if
and only if the problem we construct has one.

Next we extend our investigation to partially ordered HTN
planning. We again consider the problem under the solution
criterion given by Def. 7. Note that the polynomial upper
bound presented in Lem.1 still holds because the methods in
m is a subset of M , i.e., the number of methods that need
to be changed is smaller than the size of M , and thus the
minimal number of changes required must not exceed that
upper bound. NP-membership thus follows immediately.
Corollary 5. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXMSEQX
PO is in NP.

On the other hand, the NP-hardness of the variants in a PO
setting where only changing actions is allowed is a direct
corollary of Prop. 2. Taken together, we immediately have
the following result.
Corollary 6. FIXMSEQX

PO withX ⊆ {ACT+
PO,ACT−

PO} and
|X| ≥ 1 is NP-complete.

Next we consider the complexity of the problem when
changing ordering constraints is allowed.
Theorem 6. FIXMSEQORD+

PO is NP-complete.

Proof. Membership has been given by Cor. 5. For hardness,
we again reduce from the independent set problem. Given
any instance of the independent set problem, we first con-
struct a planning problem P and a target task network tn that
are identical to those presented in the proof of Thm. 2. We
have argued there that any compound task in the constructed
initial task network has only one method which can decom-
pose it. Thus, we can choose any method sequence that re-
sults in a solution to P as m, and the proof still holds.

The presented proofs also imply that allowing any com-
bination of the defined changes will not make the problem
easier because of the same argument made for Cor. 3.
Corollary 7. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXMSEQX
PO is NP-complete.

Additionally, Thm. 3 can be further generalized in the
framework of partially ordered HTN planning since a
change sequence can always be constructed by following the
same procedure if the conditions described there hold.
Theorem 7. FIXMSEQX

PO can be decided in constant time if
{ACT+

PO,ACT−
PO} ⊆ X , tnI does not contain any primitive

task and there exists at least one unique method in m.
We now proceed to study the complexity of finding the

minimum number of changes required. We again define the
problem by introducing an extra integer k.
Definition 18. Let k ∈ N. The problem FIXMSEQX,k

SET with
X ⊆ {ACT+

SET,ACT−
SET,ORD+,ORD−} and X ≥ 1 and

SET ∈ {TO, PO} is identical to FIXMSEQX
SET except that

we demand that any change sequence is limited in size by k.

The NP-completeness of the problem in the context of to-
tally ordered HTN planning has been given by our previous
work (Lin and Bercher 2021). For partially ordered HTN
planning, since the polynomial upper bound given by Lem.
1 still holds, the arguments made for Cor. 4 is still valid,
which implies NP-completeness.
Corollary 8. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXMSEQX,k
PO is NP-complete.

One may ask whether there exist some conditions that
make the problem easier once they are satisfied. For exam-
ple, in totally ordered HTN planning, the problem can be de-
cided in polynomial time if each method in the given method
sequence decomposes a unique compound task (Lin and
Bercher 2021). However, we cannot guarantee that the same
argument holds in a partial order setting due to the existence
of isomorphic task networks. Thus, whether such conditions
exist in the context of partially ordered HTN planning is still
an open question and will be studied in the future.

6 Complexity of Fixing the Methods – Given
An Action Sequence

Our previous discussion over partially ordered HTN plan-
ning is based on the solution criterion given by Def. 7 be-
cause deciding whether a partially ordered task network
has an executable linearisation is intractable. The remain-
ing question is whether changing planning models becomes
easier under the solution criterion given by Def. 6 if an ex-
ecutable linearisation of a task network is already provided.
We formally define this problem as follows.
Definition 19. Let X ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−}

and X ≥ 1, P be a partially ordered HTN planning prob-
lem, and π be an action sequence. We define the problem
FIXTSEQX

PO as: Is there a sequence of method-change oper-
ations X such that P →∗X P ′, P ′ has a solution that pos-
sesses a linearisation which is identical to π, and X consists
of the operations with respect to the value of X .

Clearly, Lem. 1 still holds for this problem because an
action sequence π is actually a totally ordered task network
which itself is a special partially ordered task network. It
then follows that all variants are in NP.
Corollary 9. LetX ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and

X ≥ 1. FIXTSEQX
PO is in NP.

If we restrict ourselves to totally ordered HTN planning
and only consider the operations that change actions in
methods, then the problem is identical to the one we stud-
ied before (Lin and Bercher 2021), which implies the NP-
completeness of these variants.
Corollary 10. Let X ⊆ {ACT+

PO,ACT−
PO} and |X| ≥ 1.

FIXTSEQX
PO is NP-complete.

For the variants where only changing ordering constraints
is allowed, it turns out that they are NP-complete as well.
Corollary 11. Let X ⊆ {ORD+,ORD−} and |X| ≥ 1.
FIXTSEQX

PO is NP-complete.

Proof. Membership has been given by Cor. 9. Hardness fol-
lows from that fact that VERIFYSEQ is NP-hard for the
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Figure 3: The construction for the proof of Prop. 1 in our ear-
lier work (Lin and Bercher 2021). The constructed domain
contains only one primitive task (action) s.

class HTNunordered (Behnke, Höller, and Biundo 2015, Cor.
5) where HTNunordered refers to the class of totally un-
ordered HTN planning problems. If a planning problem is
in HTNunordered, deleting ordering constraints is clearly re-
dundant. Adding ordering constrains is also pointless be-
cause those operations will only increase the possibility that
a given action sequence is not a valid linearisation of a task
network into which can be decomposed from the initial task
network of a planning problem. Therefore, any VERIFY-
SEQ instance with the input planning problem belonging
HTNunordered can be reduced to a FIXTSEQX

PO instance with
an arbitrary X ⊆ {ORD+,ORD−} and |X| ≥ 1.

When it comes to the combination of changing actions
and changing ordering constrains, we shall first consult the
proof of Prop. 1 presented in our earlier work (Lin and
Bercher 2021). The reduction we constructed is similar to
the one shown in Thm. 2 except that tnI is totally ordered,
and each compound task in tnI is now decomposed into an
empty task network by the respective method, see Fig. 3.
By construction, the only way to reach the target action se-
quence is by adding s to some methods. Thus, the operation
that deletes an action immediately becomes pointless. Al-
though our original proof is not concerned with changing
ordering constraints, those are pointless as well because we
can neither change the existed ordering constraints in tnI
nor add new ones to methods. The following result thus fol-
lows immediately.
Corollary 12. Let X ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−}

and X ≥ 1. FIXTSEQX
PO is NP-complete.

The decision problem aiming at finding the minimal num-
ber of changes required is formulated as follows.
Definition 20. Let k ∈ N, P be a partially ordered HTN
planning problem, and π be an action sequence. For each
X ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−} and X ≥ 1, the prob-

lem FIXTSEQX,k
PO is identical to FIXTSEQX

PO except that we
demand that any change sequence is bounded by k.

Both membership and hardness are implied by the pres-
ence of the polynomial upper bound of the minimal number
of changes required.
Corollary 13. Let X ⊆ {ACT+

PO,ACT−
PO,ORD+,ORD−}

and X ≥ 1. FIXTSEQX,k
PO is NP-complete.

7 Conclusion
We investigated the computational complexity of deciding
whether there exists a sequence of model change operations
(could be of limited length) that transforms a planning prob-
lem into another one that has a given task network as a so-
lution in the context of partially ordered HTN planning. Our
results indicate that the problem is NP-complete unless addi-
tional constraints are specified, e.g., having no primitive task
in the initial task network of a planning problem and having
no duplicate methods in a decomposition method sequence
that is supposed to generate a solution. Our results can be ex-
ploited in the future by transforming the decision problems
into some well-studied NP-complete problems which can be
solved by efficient solvers, e.g., SAT, and fully integrating
model-change into MIP systems.
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