On the Computational Complexity of Correcting HTN Domain Models

Songtuan Lin Pascal Bercher

School of Computing, College of Engineering and Computer Science The Australian National University

August, 2021

Australian National University

- Counter-factual explanations.
 - e.g., why this plan is not a solution?
- Modeling assistance.

Introduction $0 \bullet$		
Overview		

- What if a plan is supposed to be a solution to some planning problem, but it is indeed not?
 - Changing the planning model so that it will be.
- Investigation in HTN planning.
 - Complexity of the problem *wrt* inputs in different forms.
 - Partially ordered plans.
 - Sequential plans.

	HTN Planning ●00	
Illustration		

- A hierarchical approach of planning and modeling.
 - Compound tasks on top of primitive tasks (i.e., *actions*).
 - Keeping refining compound tasks until primitive ones are obtained.
- A set of compound and primitive tasks with partial orders defined over them is called a *task network*.

A task network tn is a solution iff

- *tn* is a refinement of the initial task network.
- *tn* possesses an feasible linearisation (NP-complete!).

	HTN Planning 00●	
Solution	Criterion	

Definition (Hybrid Planning)

A task network tn is a solution iff

- *tn* is a refinement of the initial task network (unchanged).
- Every linearisation of tn is feasible (tractable!).
- Most of our discussion is under this definition in order to remove the ambiguous the hardness source.

- What changes are allowed?
 - Adding and deleting actions from a method.

• Adding and deleting ordering constraints from a method.

		nning Changing 0000	Changing HTN Planning Models ○●○○	
Problem Fo	ormalism:	Provided a Partiall	v Ordered Plan	

Given an HTN planning problem P and a task network tn, we want to decide whether we can transform P into P' by using the operations defined previously so that tn is a solution to P'.

- The complexity of deciding whether such changes exist is depending on the solution criterion.
 - If we demand that at least one linearisation of tn is feasible \implies NP-complete.
 - If we demand that *every* linearisation of tn is feasible \implies ?

		ning Changing HTN Planning Models	
Problem Fo	ormalism:	Provided a Partially Ordered Plan	

Given an HTN planning problem P and a task network tn, we want to decide whether we can transform P into P' by using the operations defined previously so that tn is a solution to P'.

- The complexity of deciding whether such changes exist is depending on the solution criterion.
 - If we demand that at least one linearisation of tn is feasible \implies NP-complete.
 - If we demand that *every* linearisation of tn is feasible \implies NP-complete.

		Changing HTN Planning Models ○○●○	
Model Change	Operations:	Provided a Plan and a Method Sec	uence

Given an HTN planning problem P, a method sequence \overline{m} , and a task network tn, we want to decide whether we can transform P into P' s.t. tn is a solution to P' generated by \overline{m} .

• We again demand that every linearisation of tn is feasible \implies NP-complete.

		Changing HTN Planning Models ○00●	
Model Chan	ge Operations:	Provided an Action Sequence	

Given an HTN planning problem P and an action sequence π , we want to decide whether we can transform P into P' s.t. π is a linearisation of a solution to P'.

• We demand that a solution task network requires only one feasible linearisation \implies NP-complete.

		\bigcirc Conclusion
Summary		

Complexity	Plan	Methods?	Solution
	РО	NO	All
NP-complete	РО	YES	All
	ТО	NO	One

Table: The complexity of changing HTN planning models with regard to user inputs in different forms.